Roland P S Kwok

University of Michigan, Ann Arbor, Michigan, United States

Are you Roland P S Kwok?

Claim your profile

Publications (24)103.06 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Ku70 was originally described as an auto-antigen, but it also functions as DNA repair protein in the nucleus and as an anti-apoptotic protein by binding to Bax in the cytoplasm, blocking Bax-mediated cell death. In neuroblastoma (NB) cells, Ku70's binding with Bax is regulated by Ku70 acetylation such that increasing Ku70 acetylation results in Bax release, triggering cell death. While regulating cytoplasmic Ku70 acetylation is important for cell survival, the role of nuclear Ku70 acetylation in DNA repair is unclear. Here we demonstrated that Ku70 acetylation in the nucleus is regulated by the CREB-binding protein (CBP), and that Ku70 acetylation plays an important role in DNA repair in NB cells. We treated NB cells with ionization radiation and measured DNA repair activity as well as Ku70 acetylation status. Cytoplasmic and nuclear Ku70 were acetylated after ionization radiation in NB cells. Interestingly, cytoplasmic Ku70 was redistributed to the nucleus following irradiation. Depleting CBP in NB cells results in reducing Ku70 acetylation and enhancing DNA repair activity in NB cells suggesting nuclear Ku70 acetylation may have an inhibitory role in DNA repair. These results provide support for the hypothesis that enhancing Ku70 acetylation, through deacetylase inhibition, may potentiate the effect of ionization radiation in NB cells.
    Molecular Cancer Research 12/2012; · 4.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ku70 was first characterized as a nuclear factor that binds DNA double-strand breaks in nonhomolog end-joining DNA repair. However, recent studies have shown that Ku70 is also found in the cytoplasm and binds Bax, preventing Bax-induced cell death. We have shown that, in neuroblastoma cells, the binding between Ku70 and Bax depends on the acetylation status of Ku70, such that, when Ku70 is acetylated, Bax is released from Ku70, triggering cell death. Thus, to survive, in neuroblastoma cells, cytoplasmic Ku70 acetylation status is carefully regulated such that Ku70 is maintained in a deacetylated state, keeping Bax complexed with Ku70. We have shown that overexpression of CREB-binding protein (CBP), a known acetyltransferase that acetylates Ku70, releases Bax from Ku70, triggering apoptosis. Although we have shown that blocking deacetylase activity using non-type-specific inhibitors also triggers Ku70 acetylation and Bax-dependent cell death, the targets of these deacetylase inhibitors in neuroblastoma cells remain unknown. Here, we demonstrate that, in neuroblastoma cells, histone deacetylase 6 (HDAC6) binds Ku70 and Bax in the cytoplasm and that knocking down HDAC6 or using an HDAC6-specific inhibitor triggers Bax-dependent cell death. Our results show that HDAC6 regulates the interaction between Ku70 and Bax in neuroblastoma cells and may be a therapeutic target in this pediatric solid tumor.
    Neoplasia (New York, N.Y.) 08/2011; 13(8):726-34. · 5.48 Impact Factor
  • Gynecologic Oncology - GYNECOL ONCOL. 01/2011; 120.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Clusterin is a ubiquitously expressed glycoprotein with multiple binding partners including IL-6, Ku70, and Bax. Clusterin blocks apoptosis by binding to activated Bax and sequestering it in the cytoplasm, thereby preventing Bax from entering mitochondria, releasing cytochrome c, and triggering apoptosis. Because increased clusterin expression correlates with aggressive behavior in tumors, clusterin inhibition might be beneficial in cancer treatment. Our recent findings indicated that, in neuroblastoma cells, cytoplasmic Bax also binds to Ku70; when Ku70 is acetylated, Bax is released and can initiate cell death. Therefore, increasing Ku70 acetylation, such as by using histone deacetylase inhibitors, may be therapeutically useful in promoting cell death in neuroblastoma tumors. Since clusterin, Bax, and Ku70 form a complex, it seemed likely that clusterin would mediate its anti-apoptotic effects by inhibiting Ku70 acetylation and blocking Bax release. Our results, however, demonstrate that while clusterin level does indeed determine the sensitivity of neuroblastoma cells to histone deacetylase inhibitor-induced cell death, it does so without affecting histone deacetylase-inhibitor-induced Ku70 acetylation. Our results suggest that in neuroblastoma, clusterin exerts its anti-apoptotic effects downstream of Ku70 acetylation, likely by directly blocking Bax activation.
    Tumor Biology 11/2010; 32(2):285-94. · 2.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The transcription factor CCAAT/enhancer binding protein beta (C/EBPbeta) contains multiple acetylation sites, including lysine (K) 39. Mutation of C/EBPbeta at K39, an acetylation site in the transcriptional activation domain, impairs transcription of C/EBPbeta target genes in a dominant-negative fashion. Further, K39 of C/EBPbeta can be deacetylated by HDAC1, and HDAC1 may decrease C/EBPbeta-mediated transcription, suggesting that acetylation of C/EBPbeta at K39 is dynamically regulated in mediating gene transcription. Acetylation of endogenous C/EBPbeta at K39 is detected in adipose tissue, and also occurs in 3T3-L1 cells undergoing adipocyte conversion. In addition, mutation of K39 in C/EBPbeta impairs activation of its target genes encoding C/EBPalpha and PPARgamma, essential mediators of adipogenesis, as well as adipocyte genes for leptin and Glut4. These findings suggest that acetylation of C/EBPbeta at K39 is an important and dynamic regulatory event that contributes to its ability to transactivate target genes, including those associated with adipogenesis and adipocyte function.
    Molecular and Cellular Endocrinology 08/2008; 289(1-2):94-101. · 4.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: GH activates the c-fos promoter by regulating multiple transcription factors. This study adds to our understanding of GH-regulated transcription by demonstrating that GH regulates the c-fos cAMP-response element (CRE) and its binding protein, CREB. Activation of the c-fos promoter by GH is impaired by expression of dominant-negative A-CREB. GH stimulates rapid and transient phosphorylation of CREB at Ser 133 (P-CREB), a critical site for transactivation by CREB, in 3T3-F442A preadipocytes. Mutation of this residue impairs GH-induced c-fos expression, suggesting that phosphorylation of CREB at Ser 133 contributes to GH-induced c-fos activation. The MEK inhibitor UO126 impaired the phosphorylation of CREB and that of C/EBPbeta, suggesting that ERKs mediate the phosphorylation of both proteins. UO126, but not the protein kinase A inhibitor H89, blocked GH-induced c-fos mRNA expression. A combination of CREB and C/EBPbeta enhanced c-fos promoter activation, and mutation of the CRE impaired the enhancement, as well as GH-stimulated c-fos activation. GH treatment increased the occupancy of both endogenous phospho-CREB and phospho-C/EBPbeta on the c-fos promoter. The increases were impaired by UO126. The active P-CREB and P-C/EBPbeta are induced by GH to occupy the same c-fos promoter DNA, suggesting that they may participate in a GH-regulated complex on c-fos. These findings suggest that coordinated phosphorylation of CREB and C/EBPbeta in response to GH is mediated by ERK1/2, and that the phosphorylated proteins are part of a regulatory complex that occupies c-fos in vivo to regulate c-fos transcription cooperatively in response to GH.
    Journal of Endocrinology 02/2008; 196(1):89-100. · 4.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cytotoxic mechanism of the histone deacetylase inhibitor (HDACI) Trichostatin A (TSA) was explored in a neuroblastoma (NB) model. TSA induces cell death in neuroblastic-type NB cells by increasing the acetylation of Ku70, a Bax-binding protein. Ku70 acetylation causes Bax release and activation, triggering cell death. This response to TSA depends on the CREB-binding protein (CBP) acetylating Ku70. TSA-induced cell death response correlates with CBP expression. In stromaltype NB cell lines with low levels of CBP and relative resistance to TSA, increasing CBP expression disrupts Bax-Ku70 binding and sensitizes them to TSA. Reducing CBP expression in neuroblastic cell types causes resistance. Cytotoxic response to TSA is Bax-dependent. Interestingly, depleting NB cells of Ku70 also triggers Bax-dependent cell death, suggesting that conditions that leave Bax unbound to Ku70 result in cell death. We also show that CBP, Ku70, and Bax are expressed in human NB tumors and that CBP expression varies across cell types comprising these tumors, with the highest expression observed in neuroblastic elements. Together, these results demonstrate that CBP, Bax, and Ku70 contribute to a therapeutic response to TSA against NB and identify the possibility of using these proteins to predict clinical responsiveness to HDACI treatment.
    Neoplasia (New York, N.Y.) 07/2007; 9(6):495-503. · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diverse physiological actions of growth hormone (GH) are mediated by changes in gene transcription. Transcription can be regulated at several levels, including post-translational modification of transcription factors, and formation of multiprotein complexes involving transcription factors, co-regulators and additional nuclear proteins; these serve as targets for regulation by hormones and signaling pathways. Evidence that GH regulates transcription at multiple levels is exemplified by analysis of the proto-oncogene c-fos. Among the GH-regulated transcription factors on c-fos, C/EBPbeta appears to be key, since depletion of C/EBPbeta by RNA interference blocks the stimulation of c-fos by GH. The phosphorylation state of C/EBPbeta and its ability to activate transcription are regulated by GH through MAPK and PI3K/Akt-mediated signaling cascades. The acetylation of C/EBPbeta also contributes to its ability to activate c-fos transcription. These and other post-translational modifications of C/EBPbeta appear to be integrated for regulation of transcription by GH. The formation of nuclear proteins into complexes associated with DNA-bound transcription factors is also regulated by GH. Both C/EBPbeta and the co-activator p300 are recruited to c-fos in response to GH, altering c-fos promoter activation. In addition, GH rapidly induces spatio-temporal re-localization of C/EBPbeta within the nucleus. Thus, GH-regulated gene transcription mediated by C/EBPbeta reflects the integration of diverse mechanisms including post-translational modifications, modulation of protein complexes associated with DNA and re-localization of gene regulatory proteins. Similar integration involving other transcription factors, including Stats, appears to be a feature of regulation by GH of other gene targets.
    Molecular Genetics and Metabolism 03/2007; 90(2):126-33. · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transcription factor function can be modulated by post-translational modifications. Because the transcription factor CCAAT/enhancer-binding protein (C/EBP) beta associates with the nuclear coactivator p300, which contains acetyltransferase activity, acetylation of C/EBPbeta was examined to understand its regulation and function. C/EBPbeta is acetylated by acetyltransferases p300 and p300/CREB-binding protein associated factor. Endogenous C/EBPbeta in 3T3-F442A preadipocytes is also recognized by an acetyl-lysine-specific antibody. Analysis of truncations of C/EBPbeta and peptides based on C/EBPbeta sequences identified multiple lysines within C/EBPbeta that can be acetylated. Among these, a novel acetylation site at lysine 39 of C/EBPbeta was identified. Mutation of Lys-39 to arginine or alanine impairs its acetylation and the ability of C/EBPbeta to activate transcription at the promoters for C/EBPalpha and c-fos. Different C/EBPbeta-responsive promoters require different patterns of acetylated lysines in C/EBPbeta for transcription activation. Furthermore, C/EBPbeta acetylation was increased by growth hormone, and mutation of Lys-39 impaired growth hormone-stimulated c-fos promoter activation. These data suggest that acetylation of Lys-39 of C/EBPbeta, alone or in combination with acetylation at other lysines, may play a role in C/EBPbeta-mediated transcriptional activation.
    Journal of Biological Chemistry 02/2007; 282(2):956-67. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transcription factor function can be modulated by post-translational modifications. Because the transcription factor CCAAT/enhancer-binding protein (C/EBP) β associates with the nuclear coactivator p300, which contains acetyltransferase activity, acetylation of C/EBPβ was examined to understand its regulation and function. C/EBPβ is acetylated by acetyltransferases p300 and p300/CREB-binding protein associated factor. Endogenous C/EBPβ in 3T3-F442A preadipocytes is also recognized by an acetyl-lysine-specific antibody. Analysis of truncations of C/EBPβ and peptides based on C/EBPβ sequences identified multiple lysines within C/EBPβ that can be acetylated. Among these, a novel acetylation site at lysine 39 of C/EBPβ was identified. Mutation of Lys-39 to arginine or alanine impairs its acetylation and the ability of C/EBPβ to activate transcription at the promoters for C/EBPα and c-fos. Different C/EBPβ-responsive promoters require different patterns of acetylated lysines in C/EBPβ for transcription activation. Furthermore, C/EBPβ acetylation was increased by growth hormone, and mutation of Lys-39 impaired growth hormone-stimulated c-fos promoter activation. These data suggest that acetylation of Lys-39 of C/EBPβ, alone or in combination with acetylation at other lysines, may play a role in C/EBPβ-mediated transcriptional activation.
    Journal of Biological Chemistry 01/2007; 282(2):956-967. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuroblastic (N) type neuroblastoma (NB) is the predominant cell type in NB tumors. Previously, we determined that activated nuclear factor kappaB (NF-kappaB) is required for doxorubicin and etoposide to kill N-type NB cells. This study was undertaken to determine how NF-kappaB is activated by these agents. The results show that p53 protein levels increase within 15 to 30 minutes of treatment. This increase occurs before the degradation of inhibitor of NF-kappaB (I-kappaB) alpha and the NF-kappaB-dependent activation of gene transcription. Moreover, p53 is necessary for NF-kappaB activation because cells with inactive p53 were resistant to NF-kappaB-mediated cell death. This pathway was further defined to show that p53 leads to the activation of MAPK/ERK activity kinase (MEK) 1 through a process that depends on protein synthesis and H-Ras. MEK1, in turn, mediates I-kappaB kinase activation. Together, these results demonstrate for the first time how NF-kappaB is activated in NB cells in response to conventional drugs. Furthermore, these findings provide an explanation as to why H-Ras expression correlates with a favorable prognosis in NB and identify intermediary signaling molecules that are targets for discovering treatments for NB that is resistant to conventional agents.
    Neoplasia (New York, N.Y.) 12/2006; 8(11):967-77. · 5.48 Impact Factor
  • Source
    Roland P S Kwok, Xiao-Tie Liu, Gary D Smith
    [Show abstract] [Hide abstract]
    ABSTRACT: cAMP response element binding protein (CREB)-binding protein (CBP) and p300 are two structurally related transcriptional co-activators that activate expression of many eukaryotic genes. Current dogma would suggest that these transcriptional co-activators have similar mechanisms of transcription regulation. Studies of CBP or p300 homozygotic mouse mutants indicate that normal embryogenesis requires the existence of both factors. However, whether this is indicative of a dosage effect of these two proteins, or whether these proteins play different roles in mouse embryo development is not clear. Here we demonstrated that both factors are first found in the cytoplasm of oocytes within primordial follicles, and that they enter into the oocyte nucleus at different stages of oocyte growth, suggesting that they may play different roles in gene expression during oocyte growth and development. Consistent with this model, in the pre-implantation mouse embryos, from the two-cell stage to the blastocyst stage, the localizations of CBP and p300 are different, at times opposite, indicating that CBP and p300 also have different functions in early mouse embryogenesis.
    Molecular Reproduction and Development 08/2006; 73(7):885-94. · 2.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Histone deacetylase inhibitors constitute a promising new treatment for cancer due to their novel site of action and low toxicity. Almost all histone deacetylase inhibitors currently in clinical development have anti-proliferate activities against cells in cultures, and specifically cause cell cycle arrest, differentiation and apoptosis. Interestingly, despite their rapid advance into clinical use, the cellular responses leading to these effects remain unclear. We recently reported that histone deacetylase inhibitor treatment induces apoptosis of neuroblastoma cells by increasing the acetylation of Ku70 in the cytoplasm, resulting in the release of Bax from Ku70. Subsequently, Bax releases cytochrome c from mitochondria causing apoptosis. Here we will discuss these findings and the implications of our model for the further clinical development of histone deacetylase inhibitors in the treatment of cancer.
    Cell cycle (Georgetown, Tex.) 01/2006; 4(12):1741-3. · 5.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Small ubiquitin-like modifier (SUMO) modification is emerging as an important control in transcription regulation. Here, we show that CREB-binding protein (CBP), a versatile transcriptional coactivator for numerous transcription factors in response to diverse signaling events, can be modified by SUMO-1 at lysine residues 999, 1034, and 1057 both in vitro and in vivo. Mutation of the SUMO acceptor lysine residues either individually or in combination enhanced CBP transcriptional activity, and expression of a SUMO protease SENP2 potentiated the transcriptional activity of CBP wild-type but not its sumoylation mutant, indicating that SUMO modification negatively regulates CBP transcriptional activity. Furthermore, we demonstrated an interaction of SUMO-1-modified CBP with the transcriptional corepressor Daxx and an essential role of Daxx in mediating SUMO-dependent transcriptional regulation of CBP through histone deacetylase 2 recruitment. Together, our findings indicate that SUMO modification and subsequent recruitment of Daxx represent a previously undescribed mechanism in modulating CBP transcriptional potential.
    Proceedings of the National Academy of Sciences 12/2005; 102(47):16973-8. · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: DEK is a mammalian protein that has been implicated in the pathogenesis of autoimmune diseases and cancer, including acute myeloid leukemia, melanoma, glioblastoma, hepatocellular carcinoma, and bladder cancer. In addition, DEK appears to participate in multiple cellular processes, including transcriptional repression, mRNA processing, and chromatin remodeling. Sub-nuclear distribution of this protein, with the attendant functional ramifications, has remained a controversial topic. Here we report that DEK undergoes acetylation in vivo at lysine residues within the first 70 N-terminal amino acids. Acetylation of DEK decreases its affinity for DNA elements within the promoter, which is consistent with the involvement of DEK in transcriptional repression. Furthermore, deacetylase inhibition results in accumulation of DEK within interchromatin granule clusters (IGCs), sub-nuclear structures that contain RNA processing factors. Overexpression of P/CAF acetylase drives DEK into IGCs, and addition of a newly developed, synthetic, cell-permeable P/CAF inhibitor blocks this movement. To our knowledge, this is the first reported example of acetylation playing a direct role in relocation of a protein to IGCs, and this may explain how DEK can function in multiple pathways that take place in distinct sub-nuclear compartments. These findings also suggest that DEK-associated malignancies and autoimmune diseases might be amenable to treatment with agents that alter acetylation.
    Journal of Biological Chemistry 10/2005; 280(36):31760-7. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The regulation of c-fos transcription by GH involves multiple factors, including CCAAT/enhancer binding protein (C/EBP) beta. Knockdown of C/EBPbeta by RNA interference prevents stimulation of endogenous c-fos mRNA by GH, indicating a key role for C/EBPbeta in GH-stimulated c-fos transcription. GH rapidly increases the occupancy of both endogenous C/EBPbeta and p300 on the c-fos promoter in 3T3-F442A preadipocytes as indicated by chromatin immunoprecipitation. The transient occupancy of p300 on c-fos and the presence of p300 in the anti-C/EBPbeta immunoprecipitate coincide with the transient increase in c-fos transcription with GH, suggesting that a nuclear complex containing both p300 and C/EBPbeta occupies the c-fos promoter in response to GH. Expression of p300 with C/EBPbeta markedly increases c-fos promoter activity when neither alone is effective, indicating that p300 coactivates C/EBPbeta-mediated c-fos promoter activation. Such coactivation can determine a baseline for c-fos activation by GH. Furthermore, the occupancy of phosphorylated murine C/EBPbeta (T188) on c-fos upon GH treatment is simultaneous with increased occupancy by p300, suggesting that phospho-C/EBPbeta recruits p300 in response to GH. Thus, endogenous C/EBPbeta and p300 on c-fos are dynamically regulated by GH to determine transcriptional activation. Phosphorylated C/EBPbeta and p300 appear to function as part of a regulated complex that mediates GH-stimulated transcription.
    Molecular Endocrinology 09/2005; 19(8):2175-86. · 4.75 Impact Factor
  • Journal of Biological Chemistry. 06/2005;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Histone deacetylase inhibitors (HDACIs) are therapeutic drugs that inhibit deacetylase activity, thereby increasing acetylation of many proteins, including histones. HDACIs have antineoplastic effects in preclinical and clinical trials and are being considered for cancers with unmet therapeutic need, including neuroblastoma (NB). Uncertainty of how HDACI-induced protein acetylation leads to cell death, however, makes it difficult to determine which tumors are likely to be responsive to these agents. Here, we show that NB cells are sensitive to HDACIs, and that the mechanism by which HDACIs induce apoptosis involves Bax. In these cells, Bax associates with cytoplasmic Ku70, a protein that typically increases chemotherapy resistance. Our data show that in NB cells Ku70 binds to Bax in an acetylation-sensitive manner. Upon HDACI treatment, acetylated Ku70 releases Bax, allowing it to translocate to mitochondria and trigger cytochrome c release, leading to caspase-dependent death. This study shows that Ku70 is an important Bax-binding protein, and that this interaction can be therapeutically regulated in NB cells. Whereas the Bax-binding ability of Ku70 allows it to block apoptosis in response to certain agents, it is also a molecular target for the action of HDACIs, and in this context, a mediator of NB cell death.
    Proceedings of the National Academy of Sciences 04/2005; 102(13):4842-7. · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pifithrin-alpha (PFTalpha) was originally thought to be a specific inhibitor of signaling by the tumor suppressor protein p53. However, the laboratory that discovered pifithrin recently reported that the compound also inhibits heat shock and glucocorticoid receptor (GR) signaling, and they suggested that PFTalpha targets a factor common to all three signal transduction pathways, such as the hsp90/hsp70-based chaperone machinery (Komarova, E. A., Neznanov, N., Komarov, P. G., Chernov, M. V., Wang, K., and Gudkov, A. V. (2003) J. Biol. Chem. 278, 15465-15468). Because it is important for the mechanistic study of this machinery to identify unique inhibitors of chaperone action, we have examined the effect of PFTalpha on transcriptional activation, the hsp90 heterocomplex assembly, and hsp90-dependent nuclear translocation for both p53 and the GR. At concentrations where PFTalpha blocks p53-mediated induction of p21/Waf-1 in human embryonic kidney cells, we observed no inhibition of GR-mediated induction of a chloramphenicol acetyl transferase reporter in LMCAT cells. PFTalpha did, however, cause a left shift in the dexamethasone dose response curve by increasing intracellular dexamethasone concentration, apparently by competing for dexamethasone efflux from the cell. The assembly of p53 or GR heterocomplexes with hsp90 and immunophilins was not affected by PFTalpha either in vivo or in vitro and did not affect the nuclear translocation of either transcription factor. Thus, we conclude that PFTalpha does not inhibit GR-mediated induction or the function of the chaperone machinery, and, as originally thought, it may specifically inhibit p53 signaling by acting at a stage after p53 translocation to the nucleus.
    Journal of Biological Chemistry 08/2004; 279(29):30195-201. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The MHC class II transactivator (CIITA) plays a central role in adaptive immune responses by controlling the expression of MHC class II genes. CIITA binds DNA-binding proteins and co-activator proteins to form an enhanceosome complex necessary for MHC class II gene expression. Here we demonstrate that CIITA interactions depend upon the phosphorylation status of CIITA. Hyper-phosphorylated CIITA interacts with co-activator p300, RFX5 and CIITA itself, which in turn results in induction of MHC class II promoter activity. Moreover, the C-terminal region of CIITA containing leucine-rich repeats (LRR) is a regulatory domain for CIITA self-association and LRR binding to CIITA is negatively regulated by phosphorylation. cAMP-dependent protein kinase (PKA) phosphorylates CIITA, and serine residues residing in a region between the proline/serine/threonine-rich domain and the GTP-binding domain are phosphorylated by PKA in vitro. The maximum transactivation potential of CIITA requires PKA phosphorylation as demonstrated by reduced transactivation activities of the mutant bearing substitutions of serine residues at the PKA site.
    International Immunology 11/2003; 15(10):1195-205. · 3.14 Impact Factor