Kathleen Martincic

University of Pittsburgh, Pittsburgh, Pennsylvania, United States

Are you Kathleen Martincic?

Claim your profile

Publications (10)79.68 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alternative polyadenylation controls expression of genes in many tissues including immune cells and male germ cells. The τCstF-64 polyadenylation protein is expressed in both cell types, and we previously showed that Cstf2t, the gene encoding τCstF-64 was necessary for spermatogenesis and fertilization. Here we examine consequences of τCstF-64 loss in both germ cells and immune cells. Spermatozoa from Cstf2t null mutant (Cstf2t(-/-)) mice of ages ranging from 60 to 108 days postpartum exhibited severe defects in motility and morphology that were correlated with a decrease in numbers of round spermatids. Spermatozoa in these mice also displayed severe morphological defects at every age, especially in the head and midpiece. In the testicular epithelium, we saw normal numbers of cells in earlier stages of spermatogenesis, but reduced numbers of round spermatids in Cstf2t(-/-) mice. Although Leydig cell numbers were normal, we did observe reduced levels of plasma testosterone in the knockout animals, suggesting that reduced androgen might also be contributing to the Cstf2t(-/-) phenotype. Finally, while τCstF-64 was expressed in a variety of immune cell types in wild type mice, we did not find differences in secreted IgG or IgM or changes in immune cell populations in Cstf2t(-/-) mice, suggesting that τCstF-64 function in immune cells is either redundant or vestigial. Together, these data show that τCstF-64 function is primarily to support spermatogenesis, but only incidentally to support immune cell function.
    Journal of Reproductive Immunology 04/2011; 89(1):26-37. · 2.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Immunoglobulin secretion is modulated by competition between the use of a weak promoter-proximal poly(A) site and a nonconsensus splice site in the final secretory-specific exon of the heavy chain pre-mRNA. The RNA polymerase II transcription elongation factor ELL2, which is induced in plasma cells, enhanced both polyadenylation and exon skipping with the gene encoding the immunoglobulin heavy-chain complex (Igh) and reporter constructs. Lowering ELL2 expression by transfection of heterogenous ribonucleoprotein F (hnRNP F) or small interfering RNA resulted in lower abundance of secretory-specific forms of immunoglobulin heavy-chain mRNA. ELL2 and the polyadenylation factor CstF-64 tracked together with RNA polymerase II across the Igh mu- and gamma-gene segments; the association of both factors was blocked by ELL2-specific small interfering RNA. Thus, loading of ELL2 and CstF-64 on RNA polymerase II was linked, caused enhanced use of the proximal poly(A) site and was necessary for processing of immunoglobulin heavy-chain mRNA.
    Nature Immunology 10/2009; 10(10):1102-9. · 26.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Little is known about the transcriptional regulators that control the proliferation of multipotent bone marrow progenitors. Understanding the mechanisms that restrict proliferation is of significant interest since the loss of cell cycle integrity can be associated with hematopoietic exhaustion, bone marrow failure, or even oncogenic transformation. Herein, we show that multipotent LSKs (lineage(-)Sca(high)c-kit(+)) from E47-deficient mice exhibit a striking hyperproliferation associated with a loss of cell cycle quiescence and increased susceptibility to in vivo challenge with a mitotoxic drug. Total LSKs contain long-term self-renewing hematopoietic stem cells and downstream multipotential progenitors (MPPs) that possess very limited or no self-renewal ability. Within total LSKs, we found specific developmental and functional deficits in the MPP subset. E47 knockout mice have grossly normal numbers of self-renewing hematopoietic stem cells but a 50-70% reduction in nonrenewing MPPs and downstream lineage-restricted populations. The residual MPPs in E47 knockout mice fail to fully up-regulate flk2 or initiate V(D)J recombination, hallmarks of normal lymphoid lineage progression. Consistent with the loss of normal cell cycle restraints, we show that E47-deficient LSKs have a 50% decrease in p21, a cell cycle inhibitor and known regulator of LSK proliferation. Moreover, enforced expression studies identify p21 as an E47 target gene in primary bone marrow LSKs. Thus, E47 appears to regulate the developmental and functional integrity of early hematopoietic subsets in part through effects on p21-mediated cell cycle quiescence.
    The Journal of Immunology 12/2008; 181(9):5885-94. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: B cells produce Ig H chain (IgH) mRNA and protein, primarily of the membrane-bound specific form. Plasma cells produce 20- to 50-fold higher amounts of IgH mRNA, most processed to the secretory specific form; this shift is mediated by substantial changes in RNA processing but only a small increase in IgH transcription rate. We investigated RNA polymerase II (RNAP-II) loading and phosphorylation of its C-terminal domain (CTD) on the IgG2a H chain gene, comparing two mouse cell lines representing B (A20) and plasma cells (AxJ) that express the identical H chain gene whose RNA is processed in different ways. Using chromatin immunoprecipitation and real-time PCR, we detected increased RNAP-II and Ser-2 and Ser-5 phosphorylation of RNAP-II CTD close to the IgH promoter in plasma cells. We detected increased association of several 3' end-processing factors, ELL2 and PC4, at the 5' end of the IgH gene in AxJ as compared with A20 cells. Polymerase progress and factor associations were inhibited by 5,6-dichlorobenzimidazole riboside, a drug that interferes with the addition of the Ser-2 to the CTD of RNAP-II. Taken together, these data indicate a role for CTD phosphorylation and polyadenylation/ELL2/PC4 factor loading on the polymerase in the choice of the secretory poly(A) site for the IgH gene.
    The Journal of Immunology 01/2008; 179(11):7663-73. · 5.52 Impact Factor
  • Source
    Serkan A Alkan, Kathleen Martincic, Christine Milcarek
    [Show abstract] [Hide abstract]
    ABSTRACT: The hnRNPs (heterogeneous nuclear ribonucleoproteins) F and H2 share a similar protein structure. Both have been implicated as regulating polyadenylation, but hnRNP H2 had a positive effect, whereas hnRNP F acted negatively. We therefore carried out side-by-side comparisons of their RNA-binding and in vivo actions. The binding of the CstF2 (64 kDa cleavage stimulatory factor) to SV40 (simian virus 40) late pre-mRNA substrates containing a downstream GRS (guanine-rich sequence) was reduced by hnRNP F, but not by hnRNP H2, in a UV-cross-linking assay. Point mutations of the 14-nt GRS influenced the binding of purified hnRNP F or H2 in parallel. Co-operative binding of the individual proteins to RNA was lost with mutations of the GRS in the G1-5 or G12-14 regions; both regions seem to be necessary for optimal interactions. Using a reporter green fluorescent protein assay with the GRS inserted downstream of the poly(A) (polyadenine) signal, expression in vivo was diminished by a mutant G1-5 sequence which decreased binding of both hnRNPs (SAA20) and was enhanced by a 12-14-nt mutant that showed enhanced hnRNP F or H2 binding (SAA10). Using small interfering RNA, down-regulation of hnRNP H2 levels diminished reporter expression, confirming that hnRNP H2 confers a positive influence; in contrast, decreasing hnRNP F levels had a negligible influence on reporter expression with the intact GRS. A pronounced diminution in reporter expression was seen with the SAA20 mutant for both. Thus the relative levels of hnRNP F and H2 in cells, as well as the target sequences in the downstream GRS on pre-mRNA, influence gene expression.
    Biochemical Journal 02/2006; 393(Pt 1):361-71. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The U1A protein can be found both in a small-ribonucleoprotein particle (snRNP) that contains U1 RNA, or in a distinctive fraction, free of the snRNP, the SF-A complex. Both components have been shown to influence post- or co-transcriptional RNA processing reactions in HeLa cells. Since U1A may influence the processing of the immunoglobulin heavy chain pre-mRNA in B-cells, we wanted to see if the levels of U1A in either of its two forms changed following IL-6 stimulation to IgM secretion. Using antibodies that specifically recognize the two forms of U1A, snRNP-associated and snRNP-free, we found that approximately 16% of U1A is in the SF-A form in B-cells. We measured the levels of U1A protein in its two states in human B-cell lines both by flow cytometry and exhaustive immunoprecipitations. We found a significant decrease in the amount of snRNP-associated U1A following cytokine stimulation that correlates with the change-over to the secretory-specific poly(A) site use in the SKW 6.4 cell line. Meanwhile, the number of U1A molecules in the SF-A fraction of the pool remains nearly constant following induction to secretion. Our results suggest that the changing level of U1A in the snRNP fraction may be important for influencing Ig heavy chain mRNA processing.
    Molecular Immunology 04/2003; 39(13):809-14. · 2.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies on the regulation of polyadenylation of the immunoglobulin (Ig) heavy-chain pre-mRNA argued for trans-acting modifiers of the cleavage-polyadenylation reaction operating differentially during B-cell developmental stages. Using four complementary approaches, we demonstrate that a change in the level of hnRNP F is an important determinant in the regulated use of alternative polyadenylation sites between memory and plasma stage B cells. First, by Western analyses of cellular proteins, the ratio of hnRNP F to H or H' was found to be higher in memory B cells than in plasma cells. In memory B cells the activity of CstF-64 binding to pre-mRNA, but not its amount, was reduced. Second, examination of the complexes formed on input pre-mRNA in nuclear extracts revealed large assemblages containing hnRNP H, H', and F but deficient in CstF-64 in memory B-cell extracts but not in plasma cells. Formation of these large complexes is dependent on the region downstream of the AAUAAA in pre-mRNA, suggesting that CstF-64 and the hnRNPs compete for a similar region. Third, using a recombinant protein we showed that hnRNP F could bind to the region downstream of a poly(A) site, block CstF-64 association with RNA, and inhibit the cleavage reaction. Fourth, overexpression of recombinant hnRNP F in plasma cells resulted in a decrease in the endogenous Ig heavy-chain mRNA secretory form-to-membrane ratio. These results demonstrate that mammalian hnRNP F can act as a negative regulator in the pre-mRNA cleavage reaction and that increased expression of F in memory B cells contributes to the suppression of the Ig heavy-chain secretory poly(A) site.
    Molecular and Cellular Biology 03/2001; 21(4):1228-38. · 5.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The amount of the 64-kDa subunit of polyadenylation/cleavage stimulatory factor (CstF-64) increases 5-fold during the G0 to S phase transition and concomitant proliferation induced by serum in 3T6 fibroblasts. Higher levels of CstF-64 result in an increase in CstF trimer. The rise in CstF-64 occurs at a time when the amount of poly(A)-containing RNA rose at least 5-8 fold in the cytoplasm. Primary human splenic B cells, resting in G0, show a similar 5-fold increase in CstF-64 when cultured under conditions inducing proliferation (CD40 ligand exposure). Therefore, the increase in CstF-64 is associated with the G0 to S phase transition. As B cell development progresses, RNA processing changes occur at the Ig heavy chain locus resulting in a switch from the membrane- to the upstream secretory-specific poly(A) site. Treating resting B cells with agents triggering this switch in Ig mRNA production along with proliferation (CD40 ligand plus lymphokines or Staphylococcus aureus protein A) induces no further increase in CstF-64 above that seen for proliferation alone. The rise in CstF-64 is therefore insufficient to induce secretion. After stimulation of a continuously growing B cell line with lymphokines, a switch to Ig micrometer secretory mRNA and protein occurs but without a change in the CstF-64 level. Therefore, an increase in CstF-64 levels is not necessary to mediate the differentiation-induced switch to secreted forms of Ig-micrometer heavy chain. Because augmentation of CstF-64 levels is neither necessary nor sufficient for Ig secretory mRNA production, we conclude that other lymphokine-induced factors play a role.
    Proceedings of the National Academy of Sciences 10/1998; 95(19):11095-100. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The erbAalpha gene encodes two alpha-thyroid hormone receptor isoforms, TRalpha1 and TRalpha2, which arise from alternatively processed mRNAs, erbAalpha1 (alpha1) and erb alpha2 (alpha2). The splicing and alternative polyadenylation patterns of these mRNAs resemble that of mRNAs encoding different forms of immunoglobulin heavy chains, which are regulated at the level of alternative processing during B cell differentiation. This study examines the levels of erbAalpha mRNA in eight B cell lines representing four stages of differentiation in order to determine whether regulation of the alternatively processed alpha1 and alpha2 mRNAs parallels the processing of immunoglobulin heavy chain mRNAs. Results show that the pattern of alpha1 and alpha2 mRNA expression is clearly different from that observed for immunoglobulin heavy chain mRNAs. B cell lines display characteristic ratios of alpha1/alpha2 mRNA at distinct stages of differentiation. Furthermore, expression of an overlapping gene, Rev-ErbAalpha (RevErb), was found to correlate strongly with an increase in the ratio of alpha1/alpha2 mRNA. These results suggest that alternative processing of erbAalpha mRNAs is regulated by a mechanism which is distinct from that regulating immunoglobulin mRNA. The correlation between RevErb and erbAalpha mRNA is consistent with negative regulation of alpha2 via antisense interactions with the complementary RevErb mRNA.
    Nucleic Acids Research 12/1997; 25(21):4296-300. · 8.81 Impact Factor
  • Source
    S A Matis, K Martincic, C Milcarek
    [Show abstract] [Hide abstract]
    ABSTRACT: Early/memory and plasma B-cell lines and fibroblasts were analyzed for their ability to use a 5' proximal (variant) versus a 3' distal (constant) poly(A) site, in the absence of a competing splice, from a set of related constructs. The proximal:distal poly(A) site use (P:D ratio) of the resulting cytoplasmic poly(A)+ mRNA is a measure of poly(A) site strength. In this context the immunoglobulin gamma2b secretory-specific poly(A) site showed a P:D ratio of 1:1 in plasma cells, 0.43:1 in early/memory B-cells and an intermediate value in fibroblasts. Meanwhile, a construct with a proximal SV40 early-like poly(A) site produced mRNA with a P:D ratio of >50:1 in all cell types. Alterations in the region downstream of the proximal poly(A) addition site and at the site itself resulted in changes in the P:D ratio. However, these poly(A) sites, all with a P:D ratio of < or = 5:1, were used most efficiently in plasma cells. Constructs totally devoid of immunoglobulin sequences, but containing heterologous poly(A) sites producing mRNA with P:D ratios of < or = 5:1, were also used more efficiently in plasma cells. We therefore conclude that weak poly(A) sites, regardless of sequence composition, are used more efficiently in plasma cells than in the other cell types.
    Nucleic Acids Research 12/1996; 24(23):4684-92. · 8.81 Impact Factor