Je-Nie Phue

The National Institute of Diabetes and Digestive and Kidney Diseases, Maryland, United States

Are you Je-Nie Phue?

Claim your profile

Publications (10)30.1 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: When exposed to the nonmetabolized glucose derivative alpha methyl glucoside (αMG), both Escherichia coli K-12 (JM109 and MG1655) and E. coli B (BL21) respond by reducing the concentration of the mRNA of the ptsG gene which is responsible for the biosynthesis of the glucose transporter EIICB(glu). This occurs through the over-expression of the noncoding small RNA SgrS, which interacts specifically with the mRNA of the ptsG gene and prevents its translation. However, when these bacteria are exposed to a glucose concentration of 40g/L, over-expression of SgrS is observed only in E. coli B (BL21). Unlike E. coli K-12 (JM109 and MG1655), which are affected by high glucose concentration and produce higher levels of acetate, E. coli B (BL21) is not affected. Based on this information, it was assumed that over-expression of SgrS enables E. coli B (BL21) to reduce its acetate excretion by controlling the glucose transport. When SgrS was over-expressed in both E. coli K-12 strains from a multicopy plasmid, it was possible to reduce their acetate excretion levels to those seen in E. coli B. This observation opens a new approach towards controlling bacterial metabolism through the use of noncoding RNA.
    New Biotechnology 11/2011; · 1.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: E. coli B (BL21), unlike E.coli K-12 (JM109) is insensitive to glucose concentration and, therefore, grows faster and produces less acetate than E. coli K-12, especially when growing to high cell densities at high glucose concentration. By performing genomic analysis, it was demonstrated that the cause of this difference in sensitivity to the glucose concentration is the result of the differences in the central carbon metabolism activity. We hypothesized that the global transcription regulator Cra (FruR) is constitutively expressed in E. coli B and may be responsible for the different behaviour of the two strains. To investigate this possibility and better understand the function of Cra in the two strains, cra - negative E. coli B (BL21) and E. coli K-12 (JM109) were prepared and their growth behaviour and gene expression at high glucose were evaluated using microarray and real-time PCR. The deletion of the cra gene in E. coli B (BL21) minimally affected the growth and maximal acetate accumulation, while the deletion of the same gene in E.coli K-12 (JM109) caused the cells to stop growing as soon as acetate concentration reached 6.6 g/L and the media conductivity reached 21 mS/cm. ppsA (gluconeogenesis gene), aceBA (the glyoxylate shunt genes) and poxB (the acetate producing gene) were down-regulated in both strains, while acs (acetate uptake gene) was down-regulated only in E.coli B (BL21). These transcriptional differences had little effect on acetate and pyruvate production. Additionally, it was found that the lower growth of E. coli K-12 (JM109) strain was the result of transcription inhibition of the osmoprotectant producing bet operon (betABT). The transcriptional changes caused by the deletion of cra gene did not affect the activity of the central carbon metabolism, suggesting that Cra does not act alone; rather it interacts with other pleiotropic regulators to create a network of metabolic effects. An unexpected outcome of this work is the finding that cra deletion caused transcription inhibition of the bet operon in E. coli K-12 (JM109) but did not affect this operon transcription in E. coli B (BL21). This property, together with the insensitivity to high glucose concentrations, makes this the E. coli B (BL21) strain more resistant to environmental changes.
    Microbial Cell Factories 06/2011; 10:52. · 3.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Individual deletions of acs and aceA genes in E. coli B (BL21) showed little difference in the metabolite accumulation patterns but deletion of the ackA gene alone or together with pta showed acetic acid gradually accumulated to 3.1 and 1.7 g/l, respectively, with a minimal extended lag in bacterial growth and a higher pyruvate formation. Single poxB deletion in E. coli B (BL21) or additional poxB deletion in the ackA-pta mutants did not change the acetate accumulation pattern. When the acetate production genes (ackA-pta-poxB) were deleted in E. coli B (BL21) acetate still accumulated. This may be an indication that perhaps acetate is not only a by-product of carbon metabolism; it is possible that acetate plays also a role in other cellular metabolite pathways. It is likely that there are alternative acetate production pathways.
    Biotechnology Letters 12/2010; 32(12):1897-903. · 1.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasmid DNA (pDNA) is an emerging experimental vaccine, produced in E. coli, initially targeted for viral diseases. Unlike traditional protein vaccines whose average dose is micrograms, the average dose of pDNA is on the scale of milligrams. Production yields are, therefore, important for the future development of this vaccine. The E. coli strains currently used for pDNA production, JM109 and DH5alpha, are both suitable for production of stable pDNA due to the deletion of recA and endA, however, these two E. coli K strains are sensitive to growth conditions such as high glucose concentration. On the other hand E. coli BL21 is less sensitive to growth conditions than E. coli JM109 or DH5alpha, this strain grows to higher densities and due to its active glyoxylate shunt and anaplerotic pathways is not sensitive to high glucose concentration. This strain is used for recombinant protein production but not for pDNA production because of its inability to produce stable pDNA. To adapt E. coli BL21 for stable pDNA production, the strain was mutated by deleting both recA and endA, and a proper growth and production strategy was developed. Production values, reaching 2 g/L were obtained using glucose as a carbon source. The produced plasmid, which was constructed for HIV clinical study, was found to have identical properties to the plasmid currently produced by E. coli DH5alpha.
    Biotechnology and Bioengineering 06/2008; 101(4):831-6. · 4.16 Impact Factor
  • Source
    Biotechnol. Bioeng. 01/2008; 101(4):831-836.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Escherichia coli K (JM109) and E. coli B (BL21) are strains used routinely for recombinant protein production. These two strains grow and respond differently to environmental factors such as glucose and oxygen concentration. The differences have been attributed to differential expression of individual genes that constitute certain metabolic pathways that are part of the central carbon metabolism. By implementing a semiparametric algorithm, which is based on a density ratio model, it was possible to compare and quantify the expression patterns of groups of genes involved in several central carbon metabolic pathways. The groups comprising the glyoxylate shunt, TCA cycle, fatty acid, and gluconeogenesis and anaplerotic pathways were expressed differently between the two strains, whereas no differences were apparent for the groups comprising either glycolysis or the pentose phosphate pathway. These results further characterized differences between the two E. coli strains and illustrated the potency of the semiparametric algorithm.
    Genomics 03/2007; 89(2):300-5. · 3.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An experimental malaria transmission blocking vaccine antigen, Pfs25H, expressed and secreted from Pichia pastoris was recovered and purified using a screenless expanded bed column equipped with a rotating fluid distribution system. This column was able to accommodate feed stock, containing 30% biomass, at a flow rate of 300-400 cm/h without affecting column stability. This capability is three times higher than the capability of the expanded bed column currently in use, which is equipped with a perforated plate fluid distribution system; this design could accommodate biomass concentrations of only up to 10%. The screen-less design did not affect the binding capacity, purification level or process yield and, therefore, shorten the process. Purified Pfs25H of 6.4 g were recovered from 37 l of Pichia pastoris culture in one step.
    Biotechnology Letters 08/2006; 28(13):951-8. · 1.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In a series of previous reports it was established by implementing metabolic flux, NMR/MS, and Northern blot analysis that the glyoxylate shunt, the TCA cycle, and acetate uptake by acetyl-CoA synthetase are more active in Escherichia coli BL21 than in Escherichia coli JM109. These differences were accepted as the reason for the differences in the glucose metabolism and acetate excretion of these two strains. Examination of the bacterial metabolism by microarrays and time course Northern blot showed that in addition to the glyoxylate shunt, the TCA cycle and the acetate uptake, other metabolic pathways are active differently in the two strains. These are gluconeogenesis, sfcA shunt, ppc shunt, glycogen biosynthesis, and fatty acid degradation. It was found that in E. coli JM109, acetate is produced by pyruvate oxidase (poxB) using pyruvate as a substrate rather than by phosphotransacetylase-acetate kinase (Pta-AckA) system which uses acetyl-CoA. The inactivation of the gluconeogenesis enzyme phosphoenolpyruvate synthetase (ppsA), the activation of the anaplerotic sfcA shunt, and low and stable pyruvate dehydrogenase (aceE, aceF) cause pyruvate accumulation which is converted to acetate by pyruvate oxidase B. The behavior of the ppsA, acs, and aceBAK in JM109 was dependent on the glucose supply strategy. When the glucose concentration was high, no transcription of these genes was observed and acetate concentration increased, but at low glucose concentrations these genes were expressed and the acetate concentration decreased. It is possible that there is a major regulatory molecule that controls not only ppsA and aceBAK but also acs. The gluconeogenesis pathway (fbp, pckA, and ppsA) which leads to glycogen accumulation is constitutively active in E. coli BL21 regardless of glucose feeding strategy.
    Biotechnology and Bioengineering 07/2005; 90(7):805-20. · 4.16 Impact Factor
  • Je-Nie Phue, Joseph Shiloach
    [Show abstract] [Hide abstract]
    ABSTRACT: High density growth of Escherichia coli especially in large bioreactors may temporarily expose the cells to oxygen limitation as a result of a local inadequate oxygen supply or intermittently high concentrations of cells and nutrients. Although short, these periods can potentially alter bacterial metabolism, affecting both growth and recombinant proteins production capability, and thus lowering process productivity. When E. coli B (BL21), a lower acetate producing strain, was grown aerobically on high glucose, acetate accumulation was found to be inversely correlated to the dissolved oxygen (DO) levels, reaching 10 g/L at 1%, 4 g/L at 6%, and zero at 30% DO concentration at stationary growth phase. Time-course transcription analysis of several genes involved in glucose and acetate metabolism indicated that the enhanced acetate production at lower DO levels is the result of altered transcription of several key genes. These genes are: the acetate producing gene (poxB), the glyoxylate shunt gene (aceA), the acetate uptake gene (acs), the gluconeogensis and anaplerotic pathways genes, (pckA, ppsA, ppc, and sfcA), the TCA cycle gene (gltA), and the sigma factors 70 and S (rpoD and rpoS). It is suggested that the catabolic repressor/activator Cra is responsible for the bacterial response to different oxygen levels. Oxygen limitation seems to repress the constitutive expression of the glyoxylate shunt and gluconeognesis. In this work, the concept of transition state is proposed to describe the bacterial response to the lower DO concentration.
    Metabolic Engineering 01/2005; 7(5-6):353-63. · 6.86 Impact Factor
  • Je-Nie Phue, Joseph Shiloach
    [Show abstract] [Hide abstract]
    ABSTRACT: Acetate accumulation is a common problem observed in aerobic high cell density cultures of Escherichia coli. It has been hypothesized in previous reports that the glyoxylate shunt is active in E. coli BL21, the low acetate producer, and inactive in E. coli JM109, the high acetate producer. This hypothesis was further strengthened by incorporating 13C from uniformly labeled glucose into TCA cycle intermediates. Using northern blot analyses, the current report demonstrates that the reason for the inactivity of the glyoxylate pathway in E. coli JM109 is the no apparent transcription of isocitrate lyase (aceA) and malate synthase (aceB), and transcription of the isocitrate lyase repressor (iclR). The reverse is seen in E. coli BL21 where the glyoxylate pathway is active due to constitutive transcription of aceA and aceB and no transcription of the iclR. In addition, there is a difference between the two strains in the transcription of the acetyl-CoA synthetase (acs), phosphotransacetylase-acetate kinase (pta-ackA) pathway, and pyruvate oxidase (poxB), pathway. The transcript of acs is higher in E. coli BL21 and lower in the E. coli JM109, while the reverse is true for poxB transcription.
    Journal of Biotechnology 05/2004; 109(1-2):21-30. · 3.18 Impact Factor