Jong-Chan Lee

Chonnam National University, Yeoju, Gyeonggi, South Korea

Are you Jong-Chan Lee?

Claim your profile

Publications (5)6.37 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study was conducted to evaluate the potential reproductive toxicity of epichlorohydrin in a one-generation reproduction toxicity study in compliance with OECD Test Guideline 415. Twenty-four male and female rats per group were given epichlorohydrin by gavage at 0, 3.3, 10, and 30 mg/kg/day. Males were dosed for 10 weeks prior to and during mating. Females were dosed from 2 weeks before mating to day 21 of lactation. At 30 mg/kg, an increase in the incidence of clinical signs (i.e., nasal discharge, soft feces, depression, and piloerection), gross necropsy findings (i.e., cystic pustule of the epididymidis and enlargement of the kidney) and the weights of heart, liver, and epididymidis, a decrease in male fertility, and an increased incidence of histopathological changes of the testis, epididymidis, and kidney were observed. At 10 mg/kg, decreased male fertility and increased kidney weight and incidence of histopathological changes of the epididymidis were found. There was a slight, but nonsignificant, reduction in the male fertility index at the dose of 3.3 mg/ kg. Under these experimental conditions, the lowest-observed-adverse-effect level of epichlorohydrin was 3.3 mg/kg/day for parent animals and their offspring. The absolute toxic dose for parent animals and their offspring was estimated to be 10 mg/kg/day.
    Drug and Chemical Toxicology 07/2010; 33(3):291-301. · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative damage is implicated in the pathogenesis of various liver injuries. In the present study the ability of Pycnogenol (PYC) as an antioxidant to protect against CCl4-induced oxidative stress and hepatotoxicity in rats was investigated. Four experimental groups of six rats each were constructed: a vehicle control group received the respective vehicles (distilled water and corn oil) only; a CCl4 group received a 14-day repeated intraperitoneal (i.p.) dose of distilled water and then a single oral dose of CCl4 at 1.25 ml/kg; and the CCl4&PYC 10 and CCl4&PYC 20 groups received a 14-day repeated i.p. dose of PYC 10 and 20 mg/kg, respectively, and then a single oral dose of CCl4 at 1.25 ml/kg. Hepatotoxicity was assessed 24 h after the CCl4 treatment by measurement of serum aminotransferase (AST) and alanine aminotransferase (ALT) activities, hepatic malondialdehyde (MDA) and glutathione (GSH) concentrations, and catalase, superoxide dismutase (SOD), and glutathione-S-transferase (GST) activities. The results were confirmed histopathologically. The single oral dose of CCl4 produced significantly elevated levels of serum AST and ALT activities. Histopathological examinations showed extensive liver injuries, characterized by extensive hepatocellular degeneration/necrosis, fatty changes, inflammatory cell infiltration, congestion, and sinusoidal dilatation. In addition, an increased MDA concentration and decreased GSH, catalase, SOD, and GST were observed in the hepatic tissues. On the contrary, PYC treatment prior to the administration of CCl4 significantly prevented the CCl4-induced hepatotoxicity, including the elevation of serum AST and ALT activities and histopathological hepatic lesions, in a dose-dependent manner. Moreover, MDA and GSH levels and catalase, SOD, and GST activities in hepatic tissues were not affected by administration of CCl4, indicating that the pretreatment of PYC efficiently protects against CCl4-induced oxidative damage in rats. The results indicate that PYC has a protective effect against acute hepatotoxicity induced by the administration of CCl4 in rats, and that the hepatoprotective effects of PYC may be due to both the inhibition of lipid peroxidation and the increase of antioxidant activity.
    Food and Chemical Toxicology 02/2008; 46(1):380-7. · 3.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently we reported that 2-bromopropane (2-BP) has maternal toxicity, embryotoxicity, and teratogenicity in Sprague-Dawley rats. The aims of this study are to examine the potential effects of 2-BP administration on pregnant dams and embryo-fetal development, and to investigate the effects of metabolic activation induced by phenobarbital (PB) on developmental toxicities of 2-BP. Pregnant rats received 1000 mg/kg/day subcutaneous 2-BP injections on gestational days (GD) 6 through 10 (Group II and Group IIII) or 11 through 15 (Group IV). Pregnant rats in Group III received an intraperitoneal PB injection once daily at 80 mg/kg/day on GD 3 through 5 for induction of the liver metabolic enzyme system. Control rats received vehicle injections only on GD 6 through 15. All dams underwent caesarean sections on GD 20 and their fetuses were examined for external, visceral, and skeletal abnormalities. Significant adverse effects on pregnant dams and embryo-fetal development were observed in all the treatment groups, and the maternal and embryo-fetal effects of 2-BP observed in Group II were higher than those seen in Group IV. Conversely, maternal and embryo-fetal developmental toxicities observed in Group III were comparable to those seen in Group II. These results suggest that the potential effects of 2-BP on pregnant dams and embryo-fetal development are more likely in the first half of organogenesis (days of pregnancy) than in the second half and that the metabolic activation induced by PB pre-treatment did not modify the developmental toxic effects of 2-BP in rats.
    Toxicological Research. 01/2008; 24(4).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study was carried out to investigate the potential adverse effects of 1,3-dichloro-2-propanol on pregnant dams after maternal exposure during the gestational days (GD) 6 through 19 in Sprague-Dawley rats. The tested chemical was administered orally to pregnant rats at dose levels of 0, 10, 30, or 90 mg/kg/day. During the test period, clinical signs, mortality, body weights, food consumption, serum biochemistry, gross findings, organ weights, and Caesarean section findings were examined. In the 90 mg/kg group, decreases in the body weight gain and food consumption, and increases in the weights of liver and adrenal glands were observed. Serum biochemical investigations revealed increases in aspartate aminotransferase (AST), alanine aminotransferase (ALT), cholesterol (CHO), triglyceride (TG), alkaline phosphatase (ALP), and bilirubin (BIL) and decreases in glucose (GLU), albumin (ALB) and total protein (TP). In the 30 mg/kg group, a decrease in the food consumption and an increase in the liver weight were observed. Serum biochemical investigation also showed increases in CHO and TG and a decrease in glucose. Since there were no signs of maternal toxicity in the 10 mg/kg group, it is considered to be the no-observed-adverse-effect level (NOAEL) of 1,3-dichloro-2-propanol. It is concluded that successive oral administration of 1,3-dichloro- 2-propanol to pregnant rats for 14 days may cause significant toxicities in body weight and liver at a dose rate 30 mg/kg/day.
    Toxicological Research. 01/2008; 24(4).
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study evaluated the putative antioxidant activity of Pycnogenol (PYC) against CCl4-induced hepatic oxidative damage in Sprague-Dawley rats. A single oral dose of CCl4 (1.25 mL/kg) produced significantly increased levels of serum aminotransferase (AST) and alanine aminotransferase (ALT) activities. In addition, increased malondialdehyde (MDA) concentration, reduced glutathione (GSH) content, and decreased catalase, superoxide dismutase (SOD) and glutathione-S-transferase (GST) activities were observed in the hepatic tissues. However, concomitant administration with PYC (10 or 20 mg/kg) significantly improved CCl4-induced hepatic injury, as evidenced by the decline of serum AST and ALT activities in a dose dependent manner. Moreover, PYC reduced MDA concentration and increased GSH levels and catalase, SOD and GST activities in hepatic tissues, indicating that concomitant administration with PYC efficiently prevent the CCl4-induced oxidative damage in rats. The free radical scavenging assay showed that PYC has a dose-dependent scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals. These results indicate that PYC has an antioxidant effect against CCl4-induced hepatic oxidative damage and is useful as a hepatoprotective agent against various liver diseases induced by oxidative stress.
    Phytotherapy Research 12/2007; 21(11):1015-9. · 2.07 Impact Factor