Tobias Schwarz

European Neuroscience Institute Göttingen, Göttingen, Lower Saxony, Germany

Are you Tobias Schwarz?

Claim your profile

Publications (4)29.17 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glutamate receptor interacting protein (GRIP) homologues, initially characterized in synaptic glutamate receptor trafficking, consist of seven PDZ domains (PDZDs), whose conserved arrangement is of unknown significance. The Drosophila GRIP homologue (DGrip) is needed for proper guidance of embryonic somatic muscles towards epidermal attachment sites, with both excessive and reduced DGrip activity producing specific phenotypes in separate muscle groups. These phenotypes were utilized to analyze the molecular architecture underlying DGrip signaling function in vivo. Surprisingly, removing PDZDs 1-3 (DGripDelta1-3) or deleting ligand binding in PDZDs 1 or 2 convert DGrip to excessive in vivo activity mediated by ligand binding to PDZD 7. Yeast two-hybrid screening identifies the cell adhesion protein Echinoid's (Ed) type II PDZD-interaction motif as binding PDZDs 1, 2 and 7 of DGrip. ed loss-of-function alleles exhibit muscle defects, enhance defects caused by reduced DGrip activity and suppress the dominant DGripDelta1-3 effect during embryonic muscle formation. We propose that Ed and DGrip form a signaling complex, where competition between N-terminal and the C-terminal PDZDs of DGrip for Ed binding controls signaling function.
    The EMBO Journal 09/2006; 25(15):3640-51. · 9.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Three ionotropic glutamate receptor subunits, designated GluRIIA, GluRIIB, and GluRIII, have been identified at neuromuscular junctions of Drosophila. Whereas GluRIIA and GluRIIB are redundant for viability, it was shown recently that GluRIII is essential for both the synaptic localization of GluRIIA and GluRIIB and the viability of Drosophila. Here we identify a fourth and a fifth subunit expressed in the neuromuscular system, which we name GluRIID and GluRIIE. Both new subunits we show to be necessary for survival. Moreover, both GluRIID and GluRIIE are required for the synaptic expression of all other glutamate receptor subunits. All five subunits are interdependent for receptor function, synaptic receptor expression, and viability. This indicates that synaptic glutamate receptors incorporate the GluRIII, GluRIID, and GluRIIE subunit together with either GluRIIA or GluRIIB at the Drosophila neuromuscular junction. At this widely used model synapse, the assembly of four different subunits to form an individual glutamate receptor channel may thus be obligatory. This study opens the way for a further characterization of in vivo glutamate receptor assembly and trafficking using the efficient genetics of Drosophila.
    Journal of Neuroscience 04/2005; 25(12):3209-18. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During Drosophila embryogenesis, developing muscles extend growth-cone-like structures to navigate toward specific epidermal attachment sites. Here, we show that the homolog of Glutamate Receptor-Interacting Proteins (DGrip) acts as a key component of proper muscle guidance. Mutations in dgrip impair patterning of ventral longitudinal muscles (VLMs), whereas lateral transverse muscles (LTMs) that attach to intrasegmental attachment sites develop normally. Myoblast fusion, stabilization of muscle contacts, and general muscle function are not impaired in the absence of DGrip. Instead, the proper formation of cellular extensions during guidance fails in dgrip mutant VLMs. DGrip protein concentrates at the ends of VLMs while these muscles guide toward segment border attachment sites. Conversely, LTMs overexpressing DGrip form ectopic cellular extensions that can cause attachment of these muscles to other muscles at segment borders. Our data suggest that DGrip participates in the reception of an attractive signal that emanates from the epidermal attachment sites to direct the motility of developing muscles. This dgrip phenotype should be valuable to study mechanistic principles of Grip function.
    Genes & Development 02/2004; 18(2):223-37. · 12.44 Impact Factor
  • Genes & Development, v.18, 223-237 (2004).