J Solway

University of Illinois at Chicago, Chicago, Illinois, United States

Are you J Solway?

Claim your profile

Publications (162)1019.38 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: E3 ubiquitin ligase Cbl-b has emerged as a gatekeeper that controls the activation threshold of the T cell antigen receptor and maintains the balance between tolerance and autoimmunity. Here, we report that the loss of Cbl-b facilitates T helper 2 (Th2) and Th9 cell differentiation in vitro. In a mouse model of asthma, the absence of Cbl-b results in severe airway inflammation and stronger Th2 and Th9 responses. Mechanistically, Cbl-b selectively associates with Stat6 upon IL-4 ligation and targets Stat6 for ubiquitination and degradation. These processes are heightened in the presence of T cell receptor (TCR)/CD28 costimulation. Furthermore, we identify K108 and K398 as Stat6 ubiquitination sites. Intriguingly, introducing Stat6 deficiency into Cblb(-/-) mice abrogates hyper-Th2 responses but only partially attenuates Th9 responses. Therefore, our data reveal a function for Cbl-b in the regulation of Th2 and Th9 cell differentiation.
    Cell reports. 02/2014;
  • [show abstract] [hide abstract]
    ABSTRACT: An emerging tool in airway biology is the precision cut lung slice (PCLS). Adoption of the PCLS as a model for assessing airway reactivity has been hampered, however, by the limited time window within which tissues remain viable. Here we demonstrate that the PCLS can be frozen, stored long-term, and then thawed for later experimental use. Compared to the never-frozen murine PCLS, the frozen-thawed PCLS shows metabolic activity that is decreased to an extent comparable to that observed in other cryopreserved tissues but shows no differences in cell viability or in airway caliber responses to the contractile agonist methacholine or the relaxing agonist chloroquine. These results indicate that freezing and long-term storage is a feasible solution to the problem of limited viability of the PCLS in culture.
    American Journal of Respiratory Cell and Molecular Biology 12/2013; · 4.15 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Asthma is a major public health problem that afflicts nearly one in 20 people worldwide. Despite available treatments, asthma symptoms remain poorly controlled in a significant minority of asthma patients, especially those with severe disease. Accordingly, much ongoing effort has been directed at developing new therapeutic strategies; these efforts are described in detail below. Although mucus hypersecretion is an important component of asthma pathobiology, the primary mechanism of morbidity and mortality in asthma is excessive narrowing of the airway. The key end- effector of excessive airway narrowing is airway smooth muscle (ASM) contraction; overcoming ASM contraction is therefore a prominent therapeutic strategy. Here, we review exciting new advances aimed at ASM relaxation. Exciting advances in ASM biology have identified new therapeutic targets for the prevention or reversal of bronchoconstriction in asthma.
    Current opinion in pulmonary medicine 11/2013; · 3.12 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Gata5 is a transcription factor expressed in the lung, but whose physiological role is unknown. To test whether and how Gata5 regulates airway constrictor responsiveness, we studied Gata5-/-, Gata5+/-, and WT mice on the C57BL/6J background. Cholinergic airway constrictor responsiveness was assessed invasively in mice without and with induction of allergic airway inflammation through ovalbumin sensitization and aerosol exposure. Gata5 deficient mice displayed native airway constrictor hyperresponsiveness (AHR) in the absence of allergen-induced inflammation. Gata5 deficient mice retained their relatively greater constrictor responsiveness even in ovalbumin-induced experimental asthma. Gata5 deficiency did not alter the distribution of cell types in BAL fluid, but bronchial epithelial mucus metaplasia was more prominent in Gata5-/- mice after allergen challenge. Gene expression profiles revealed that apolipoprotein E was the fifth most down-regulated transcript in Gata5 deficient lungs, and quantitative RT-PCR and immunostaining confirmed reduced apoE expression in Gata5-/- mice. qRT-PCR also revealed increased IL-13 mRNA in the lungs of Gata5 deficient mice. These findings for the first time show that Gata5 regulates apoE and IL-13 expression in vivo and that its deletion causes AHR. Gata5 deficient mice exhibit an airway phenotype that closely resembles that previously reported for apoE-/- mice: Both exhibit cholinergic AHR in native and experimental asthma states, and there is excessive goblet cell metaplasia after allergen sensitization and challenge. The Gata5-deficient phenotype also shares features with that previously reported for IL-13-treated mice. Together, these results indicate that Gata5 deficiency induces AHR at least in part by blunting apoE and increasing IL-13 expression.
    American Journal of Respiratory Cell and Molecular Biology 11/2013; · 4.15 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Significant advances in understanding the cell and molecular biology of inflammation and airway smooth muscle (ASM) contractility have identified several potential novel targets for therapies of asthma. New agents targeting G-protein coupled receptors (GPCRs) including bitter taste receptors (TAS2R) agonists and prostaglandin EP4 receptor agonists elicit ASM relaxation. The cAMP/PKA pathway continues to be a promising drug target with the emergence of new PDE inhibitors and a novel PKA target protein, HSP20, which mediates smooth muscle relaxation via actin depolymerization. Smooth muscle relaxation can also be elicited by inhibitors of the RhoA/Rho kinase pathway via inhibition of myosin light chain phosphorylation and actin depolymerization. Targeting epigenetic processes that control chromatin remodeling and RNA-induced gene silencing in airway cells also holds great potential for novel asthma therapy. Further investigation may identify agents that inhibit smooth muscle contraction and/or restrain or reverse obstructive remodeling of the airways.
    Current Opinion in Pharmacology 04/2013; · 5.44 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: BACKGROUND: We previously reported an interaction between maternal asthma and the child's HLA-G genotype on the child's subsequent risk for asthma. The implicated single nucleotide polymorphism at +3142 disrupted a target site for the microRNA (miR)-152 family. We hypothesized that the interaction effect might be mediated by these miRs. OBJECTIVE: The objective of this study was to test this hypothesis in adults with asthma who are a subset of the same subjects who participated in our earlier family-based studies. METHODS: We measured soluble HLA-G (sHLA-G) concentrations in bronchoalveolar lavage fluid (n = 36) and plasma (n = 57) from adult asthmatic subjects with and without a mother with asthma, and HLA-G and miR-152 family (miR-148a, miR-148b, and miR-152) transcript levels in airway epithelial cells from the same subjects. RESULTS: miR-148b levels were significantly increased in airway epithelial cells from asthmatic subjects with an asthmatic mother compared with those seen in asthmatic subjects without an asthmatic mother, and +3142 genotypes were associated with sHLA-G concentrations in bronchoalveolar lavage fluid among asthmatic subjects with an asthmatic mother but not among those with a nonasthmatic mother. Neither effect was observed in the plasma (sHLA-G) or white blood cells (miRNA). CONCLUSION: These combined results are consistent with +3142 allele-specific targeting of HLA-G by the miR-152 family and support our hypothesis that miRNA regulation of sHLA-G in the airway is influenced by both the asthma status of the subject's mother and the subject's genotype. Moreover, we demonstrate that the effects of maternal asthma on the gene regulatory landscape in the airways of the mother's children persist into adulthood.
    The Journal of allergy and clinical immunology 03/2013; · 12.05 Impact Factor
  • Diana C Doeing, Julian Solway
    [show abstract] [hide abstract]
    ABSTRACT: Airway smooth muscle (ASM) plays an integral part in the pathophysiology of asthma. It is responsible for acute bronchoconstriction, which is potentiated by constrictor hyperresponsiveness, impaired relaxa-tion and length adaptation. ASM also contributes to airway remodeling and inflammation in asthma. In light of this, ASM is an important target in the treatment of asthma.
    Journal of Applied Physiology 01/2013; · 3.48 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: CD38, a membrane protein expressed in airway smooth muscle (ASM) cells, plays a role in cellular Ca(2+) dynamics and ASM contractility. In human ASM (HASM) cells, TNF-α induces CD38 expression through activation of MAPKs, NF-κB, and AP-1, and its expression is differentially elevated in cells from asthmatic patients compared with cells from nonasthmatic subjects. The CD38 3'-untranslated region (UTR) has targets for miR-140-3p. We hypothesized that miR-140-3p regulates CD38 expression in HASM cells by altering CD38 mRNA stability. Basal and TNF-α-induced expression of miR-140-3p was determined in nonasthmatic ASM (NAASM) and asthmatic ASM (AASM) cells. NAASM and AASM cells were transfected with control, miR-140-3p mimic, or miR-140-3p antagomirs, and CD38 expression and CD38 mRNA stability were determined. Luciferase reporter assays were used to determine miR-140-3p binding to the CD38 3'-UTR. Activation of p38, ERK, and JNK MAPKs, NF-κB, and AP-1 was determined in miR-140-3p mimic-transfected NAASM. TNF-α attenuated miR-140-3p expression in NAASM and AASM cells, but at a greater magnitude in AASM cells. CD38 mRNA expression was attenuated by miR-140-3p mimic at comparable magnitude in NAASM and AASM cells. Mutated miR-140-3p target on the CD38 3'-UTR reversed the inhibition of luciferase activity by miR-140-3p mimic. CD38 mRNA stability was unaltered by miR-140-3p mimic in NAASM or AASM cells following arrest of transcription. TNF-α-induced activation of p38 MAPK and NF-κB was attenuated by miR-140-3p mimic. The findings indicate that miR-140-3p modulates CD38 expression in HASM cells through direct binding to the CD38 3'-UTR and indirect mechanisms involving activation of p38 MAPK and NF-κB. Furthermore, indirect mechanisms appear to play a major role in the regulation of CD38 expression.
    AJP Lung Cellular and Molecular Physiology 07/2012; 303(5):L460-8. · 3.52 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: In the normal lung, breathing and deep inspirations potently antagonize bronchoconstriction, but in the asthmatic lung this salutary effect is substantially attenuated or even reversed. To explain these findings, the prevailing hypothesis focuses on contracting airway smooth muscle and posits a nonlinear dynamic interaction between actomyosin binding and the tethering forces imposed by tidally expanding lung parenchyma. This hypothesis has never been tested directly in bronchial smooth muscle embedded within intraparenchymal airways. Our objective here is to fill that gap. We designed a novel system to image contracting intraparenchymal human airways situated within near-normal lung architecture and subjected to dynamic parenchymal expansion that simulates breathing. Reversal of bronchoconstriction depended on the degree to which breathing actually stretched the airway, which in turn depended negatively on severity of constriction and positively on the depth of breathing. Such behavior implies positive feedbacks that engender airway instability. OVERALL CONCLUSIONS: These findings help to explain heterogeneity of airflow obstruction as well as why, in people with asthma, deep inspirations are less effective in reversing bronchoconstriction.
    American Journal of Respiratory and Critical Care Medicine 06/2012; 186(3):225-32. · 11.04 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The recent explosion of genomic data and technology points to opportunities to redefine lung diseases at the molecular level; to apply integrated genomic approaches to elucidate mechanisms of lung pathophysiology; and to improve early detection, diagnosis, and treatment of lung diseases. Research is needed to translate genomic discoveries into clinical applications, such as detecting preclinical disease, predicting patient outcomes, guiding treatment choices, and most of all identifying potential therapeutic targets for lung diseases. The Division of Lung Diseases in the National Heart, Lung, and Blood Institute convened a workshop, "Genomic Medicine and Lung Diseases," to discuss the potential for integrated genomics and systems approaches to advance 21st century pulmonary medicine and to evaluate the most promising opportunities for this next phase of genomics research to yield clinical benefit. Workshop sessions included (1) molecular phenotypes, molecular biomarkers, and therapeutics; (2) new technology and opportunity; (3) integrative genomics; (4) molecular anatomy of the lung; (5) novel data and information platforms; and (6) recommendations for exceptional research opportunities in lung genomics research.
    American Journal of Respiratory and Critical Care Medicine 05/2012; 186(3):280-5. · 11.04 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Silencing of GATA5 gene expression as a result of promoter hypermethylation has been observed in lung, gastrointestinal and ovarian cancers. However, the regulation of GATA5 gene expression has been poorly understood. In the present study, we have demonstrated that an E (enhancer)-box in the GATA5 promoter (bp -118 to -113 in mice; bp -164 to -159 in humans) positively regulates GATA5 transcription by binding USF1 (upstream stimulatory factor 1). Using site-directed mutagenesis, EMSA (electrophoretic mobility-shift analysis) and affinity chromatography, we found that USF1 specifically binds to the E-box sequence (5'-CACGTG-3'), but not to a mutated E-box. CpG methylation of this E-box significantly diminished its binding of transcription factors. Mutation of the E-box within a GATA5 promoter fragment significantly decreased promoter activity in a luciferase reporter assay. Chromatin immunoprecipitation identified that USF1 physiologically interacts with the GATA5 promoter E-box in mouse intestinal mucosa, which has the highest GATA5 gene expression in mouse. Co-transfection with a USF1 expression plasmid significantly increased GATA5 promoter-driven luciferase transcription. Furthermore, real-time and RT (reverse transcription)-PCR analyses confirmed that overexpression of USF1 activates endogenous GATA5 gene expression in human bronchial epithelial cells. The present study provides the first evidence that USF1 activates GATA5 gene expression through the E-box motif and suggests a potential mechanism (disruption of the E-box) by which GATA5 promoter methylation reduces GATA5 expression in cancer.
    Biochemical Journal 05/2012; 446(1):89-98. · 4.65 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We used two-dimensional quantitative trait locus analysis to identify interacting genetic loci that contribute to the native airway constrictor hyperresponsiveness to methacholine that characterizes A/J mice, relative to C57BL/6J mice. We quantified airway responsiveness to intravenous methacholine boluses in eighty-eight (C57BL/6J X A/J) F₂ and twenty-seven (A/J X C57BL/6J) F₂ mice as well as ten A/J mice and six C57BL/6J mice; all studies were performed in male mice. Mice were genotyped at 384 SNP markers, and from these data two-QTL analyses disclosed one pair of interacting loci on chromosomes 11 and 18; the homozygous A/J genotype at each locus constituted the genetic interaction linked to the hyperresponsive A/J phenotype. Bioinformatic network analysis of potential interactions among proteins encoded by genes in the linked regions disclosed two high priority subnetworks--Myl7, Rock1, Limk2; and Npc1, Npc1l1. Evidence in the literature supports the possibility that either or both networks could contribute to the regulation of airway constrictor responsiveness. Together, these results should stimulate evaluation of the genetic contribution of these networks in the regulation of airway responsiveness in humans.
    PLoS ONE 01/2012; 7(1):e29579. · 3.73 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Expression and function of Kv7 (KCNQ) voltage-activated potassium channels in guinea pig and human airway smooth muscle cells (ASMCs) were investigated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), patch-clamp electrophysiology, and precision-cut lung slices. qRT-PCR revealed expression of multiple KCNQ genes in both guinea pig and human ASMCs. Currents with electrophysiological and pharmacological characteristics of Kv7 currents were measured in freshly isolated guinea pig and human ASMCs. In guinea pig ASMCs, Kv7 currents were significantly suppressed by application of the bronchoconstrictor agonists methacholine (100 nM) or histamine (30 μM), but current amplitudes were restored by addition of a Kv7 channel activator, flupirtine (10 μM). Kv7 currents in guinea pig ASMCs were also significantly enhanced by another Kv7.2-7.5 channel activator, retigabine, and by celecoxib and 2,5-dimethyl celecoxib. In precision-cut human lung slices, constriction of airways by histamine was significantly reduced in the presence of flupirtine. Kv7 currents in both guinea pig and human ASMCs were inhibited by the Kv7 channel blocker XE991. In human lung slices, XE991 induced robust airway constriction, which was completely reversed by addition of the calcium channel blocker verapamil. These findings suggest that Kv7 channels in ASMCs play an essential role in the regulation of airway diameter and may be targeted pharmacologically to relieve airway hyperconstriction induced by elevated concentrations of bronchoconstrictor agonists.
    AJP Lung Cellular and Molecular Physiology 09/2011; 302(1):L120-32. · 3.52 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Airway smooth muscle (ASM) hypertrophy is a cardinal feature of severe asthma, but the underlying molecular mechanisms remain uncertain. Forced protein kinase B/Akt 1 activation is known to induce myocyte hypertrophy in other muscle types, and, since a number of mediators present in asthmatic airways can activate Akt signaling, we hypothesized that Akt activation could contribute to ASM hypertrophy in asthma. To test this hypothesis, we evaluated whether Akt activation occurs naturally within airway myocytes in situ, whether Akt1 activation is sufficient to cause hypertrophy of normal airway myocytes, and whether such hypertrophy is accompanied by excessive accumulation of contractile apparatus proteins (contractile phenotype maturation). Immunostains of human airway sections revealed concordant activation of Akt (reflected in Ser(473) phosphorylation) and of its downstream effector p70(S6Kinase) (reflected in Thr(389) phosphorylation) within airway muscle bundles, but there was no phosphorylation of the alternative Akt downstream target glycogen synthase kinase (GSK) 3β. Artificial overexpression of constitutively active Akt1 (by plasmid transduction or lentiviral infection) caused a progressive increase in size and protein content of cultured canine tracheal myocytes and increased p70(S6Kinase) phosphorylation but not GSK3β phosphorylation; however, constitutively active Akt1 did not cause disproportionate overaccumulation of smooth muscle (sm) α-actin and SM22. Furthermore, mRNAs encoding sm-α-actin and SM22 were reduced. These results indicate that forced Akt1 signaling causes hypertrophy of cultured airway myocytes without inducing further contractile phenotypic maturation, possibly because of opposing effects on contractile protein gene transcription and translation, and suggest that natural activation of Akt1 plays a similar role in asthmatic ASM.
    AJP Lung Cellular and Molecular Physiology 03/2011; 300(5):L701-9. · 3.52 Impact Factor
  • Chun Y Seow, Julian Solway
    [show abstract] [hide abstract]
    ABSTRACT: Excessive narrowing of the airways due to airway smooth muscle (ASM) contraction is a major cause of asthma exacerbation. ASM is therefore a direct target for many drugs used in asthma therapy. The contractile mechanism of smooth muscle is not entirely clear. A major advance in the field in the last decade was the recognition and appreciation of the unique properties of smooth muscle-mechanical and structural plasticity, characterized by the muscle's ability to rapidly alter the structure of its contractile apparatus and cytoskeleton and adapt to the mechanically dynamic environment of the lung. This article describes a possible mechanism for smooth muscle to adapt and function over a large length range by adding or subtracting contractile units in series spanning the cell length; it also describes a mechanism by which actin-myosin-actin connectivity might be influenced by thin and thick filament lengths, thus altering the muscle response to mechanical perturbation. The new knowledge is extremely useful for our understanding of ASM behavior in the lung and could provide new and more effective targets for drugs aimed at relaxing the muscle or keeping the muscle from excessive shortening in the asthmatic airways. © 2011 American Physiological Society. Compr Physiol 1:283-293, 2011.
    Comprehensive Physiology. 01/2011; 1(1):283-93.
  • [show abstract] [hide abstract]
    ABSTRACT: The ADP-ribosyl cyclase activity of CD38, a membrane protein expressed in human airway smooth muscle (ASM) cells, generates cyclic ADP-ribose (cADPR), a Ca²(+)-mobilizing agent. cADPR-mediated Ca²(+) responses to agonists are augmented in human ASM cells by TNF-α. CD38-deficient mice fail to develop airway hyperresponsiveness following intranasal TNF-α or IL-13 challenge, suggesting a role in asthma. The role of CD38 in human asthma remains unknown. We hypothesized that CD38 expression will be elevated in ASM cells from asthmatic donors (ASMA cells). CD38 mRNA and ADP-ribosyl cyclase activity were measured in cells maintained in growth-arrested conditions and exposed to vehicle or TNF-α (10-40 ng/ml). TNF-α-induced induction of CD38 expression was greater in ASMA than in ASM cells from nonasthmatic donors (ASMNA). In four of the six donors, basal and TNF-α-induced ERK and p38 MAPK activation were higher in ASMA than ASMNA cells. JNK MAPK activation was lower in ASMA than ASMNA cells. Nuclear NF-κB (p50 subunit) and phosphorylated c-Jun were comparable in cells from both groups, although nuclear c-Fos (part of the AP-1 complex) levels were lower in ASMA than ASMNA cells. NF-κB or AP-1 binding to their consensus sequences was comparable in ASMNA and ASMA cells, as are the decay kinetics of CD38 mRNA. The findings suggest that the differential induction of CD38 by TNF-α in ASMA cells is due to increased transcriptional regulation involving ERK and p38 MAPK activation and is independent of changes in NF-κB or AP-1 activation. The findings suggest a potential role for CD38 in the pathophysiology of asthma.
    AJP Lung Cellular and Molecular Physiology 12/2010; 299(6):L879-90. · 3.52 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We have previously shown that the transcription-promoting activity of serum response factor (SRF) is partially regulated by its extranuclear redistribution. In this study, we examined the cellular mechanisms that facilitate SRF nuclear entry in canine tracheal smooth muscle cells. We used in vitro pull-down assays to determine which karyopherin proteins bound SRF and found that SRF binds KPNA1 and KPNB1 through its nuclear localization sequence. Immunoprecipitation studies also demonstrated direct SRF-KPNA1 interaction in HEK293 cells. Import assays demonstrated that KPNA1 and KPNB1 together were sufficient to mediate rapid nuclear import of SRF-GFP. Our studies also suggest that SRF is able to gain nuclear entry through an auxiliary, nuclear localization sequence-independent mechanism.
    American Journal of Respiratory Cell and Molecular Biology 12/2010; 45(3):453-8. · 4.15 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Tidal breathing, and especially deep breathing, is known to antagonise bronchoconstriction caused by airway smooth muscle (ASM) contraction; however, this bronchoprotective effect of breathing is impaired in asthma. Force fluctuations applied to contracted ASM in vitro cause it to relengthen, force-fluctuation-induced relengthening (FFIR). Given that breathing generates similar force fluctuations in ASM, FFIR represents a likely mechanism by which breathing antagonises bronchoconstriction. Thus it is of considerable interest to understand what modulates FFIR, and how ASM might be manipulated to exploit this phenomenon. It was demonstrated previously that p38 mitogen-activated protein kinase (MAPK) signalling regulates FFIR in ASM strips. Here, it was hypothesised that the MAPK kinase (MEK) signalling pathway also modulates FFIR. In order to test this hypothesis, changes in FFIR were measured in ASM treated with the MEK inhibitor, U0126 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene). Increasing concentrations of U0126 caused greater FFIR. U0126 reduced extracellular signal-regulated kinase 1/2 phosphorylation without affecting isotonic shortening or 20-kDa myosin light chain and p38 MAPK phosphorylation. However, increasing concentrations of U0126 progressively blunted phosphorylation of high-molecular-weight caldesmon (h-caldesmon), a downstream target of MEK. Thus changes in FFIR exhibited significant negative correlation with h-caldesmon phosphorylation. The present data demonstrate that FFIR is regulated through MEK signalling, and suggest that the role of MEK is mediated, in part, through caldesmon.
    European Respiratory Journal 09/2010; 36(3):630-7. · 6.36 Impact Factor
  • Julian Solway, Bushra Rehman, Lainie F Ross
    Clinical and Translational Science 12/2009; 2(6):394-7. · 2.33 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: GATA5 is a member of the GATA zinc finger transcription factor family involved in tissue-specific transcriptional regulation during cell differentiation and embryogenesis. Previous reports indicate that null mutation of the zebrafish GATA5 gene results in embryonic lethality, whereas deletion of exon 1 from the mouse GATA5 gene causes only derangement of female urogenital development. Here, we have identified an alternate promoter within intron 1 of the mouse GATA5 gene that transcribes a 2.5-kb mRNA that lacks exon 1 entirely but includes 82 bp from intron 1 and all of exons 2-6. The alternative promoter was active during transient transfection in cultured airway myocytes and bronchial epithelial cells, and it drove reporter gene expression in gastric epithelial cells in transgenic mice. The 2.5-kb alternative transcript encodes an NH(2)-terminally truncated "short GATA5" comprising aa 226-404 with a single zinc finger, which retains ability to transactivate the atrial natriuretic factor promoter (albeit less efficiently than full-length GATA5). Another new GATA5 transcript contains all of exons 1-5 and the 5' portion of exon 6 but lacks the terminal 1143 bp of the 3'-untranslated region from exon 6. These findings extend current understanding of the tissue distribution of GATA5 expression and suggests that GATA5 expression and function are more complex than previously appreciated.
    AJP Gastrointestinal and Liver Physiology 09/2009; 297(6):G1214-22. · 3.65 Impact Factor

Publication Stats

3k Citations
1,019.38 Total Impact Points

Institutions

  • 1989–2013
    • University of Illinois at Chicago
      • • Department of Pediatrics (Peoria)
      • • Department of Medicine (Chicago)
      Chicago, Illinois, United States
    • University of Chicago
      • • Department of Human Genetics
      • • Department of Medicine
      • • Department of Pediatrics
      • • Pritzker School of Medicine
      Chicago, IL, United States
  • 2011
    • University of British Columbia - Vancouver
      • Department of Pathology and Laboratory Medicine
      Vancouver, British Columbia, Canada
  • 2008
    • University of Michigan
      • Department of Pediatrics and Communicable Diseases
      Ann Arbor, MI, United States
    • Johns Hopkins University
      Baltimore, Maryland, United States
    • Northwestern University
      • Department of Neurobiology
      Evanston, IL, United States
  • 2004
    • University of Melbourne
      • Department of Pharmacology
      Melbourne, Victoria, Australia
  • 2002
    • Howard Hughes Medical Institute
      Maryland, United States
  • 2001
    • University of Manitoba
      Winnipeg, Manitoba, Canada
  • 1993
    • Technion - Israel Institute of Technology
      H̱efa, Haifa District, Israel
  • 1990
    • Harvard Medical School
      • Department of Medicine
      Boston, Massachusetts, United States
  • 1985–1990
    • Brigham and Women's Hospital
      • Department of Medicine
      Boston, MA, United States