Jörg Bornemann

University Hospital RWTH Aachen, Aachen, North Rhine-Westphalia, Germany

Are you Jörg Bornemann?

Claim your profile

Publications (23)157.35 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regeneration of injured tubular cells occurs after acute tubular necrosis primarily from intrinsic renal cells. This may occur from a pre-existing intratubular stem/progenitor cell population or from any surviving proximal tubular cell. In this study, we characterize a CD24, CD133, and vimentin positive subpopulation of cells scattered throughout the proximal tubule in normal human kidney. Compared to adjacent "normal" proximal tubular cells, these CD24+ cells contained less cytoplasm, less mitochondria and no brush border. In addition, 49 marker proteins are described that are expressed within the proximal tubules in a similar scattered pattern. For 8 of these markers we confirmed co-localization with CD24. In human biopsies of patients with acute tubular necrosis (ATN), the number of CD24+ tubular cells was increased. In both normal human kidneys and in the ATN biopsies, around 85% of proliferating cells were CD24 positive - indicating that this cell population participates in tubular regeneration. In healthy rat kidneys, the novel cell subpopulation was absent. However, upon unilateral ureteral obstruction (UUO), the novel cell population was detected in significant amounts in the injured kidney. In summary, in human renal biopsies, the CD24+ cells represent tubular cells with a deviant phenotype, characterized by a distinct morphology and marker expression. After acute tubular injury, these cells become more numerous. In healthy rat kidneys, these cells are not detectable, whereas after UUO, they appeared de novo - arguing against the notion that these cells represent a pre-existing progenitor cell population. Our data indicate rather that these cells represent transiently dedifferentiated tubular cells involved in regeneration. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
    The Journal of Pathology 11/2012; · 7.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Targeted nanomedicine holds enormous potential for advanced diagnostics and therapy. Although it is known that nanoparticles accumulate in liver in vivo, the impact of cell-targeting particles on the liver, especially in disease conditions, is largely obscure. We had previously demonstrated that peptide-conjugated nanoparticles differentially impact macrophage activation in vitro. We thus comprehensively studied the distribution of gold nanorods (AuNR) in mice in vivo and assessed their hepatotoxicity and impact on systemic and hepatic immune cells in healthy animals and experimental liver disease models. Gold nanorods were stabilized with either cetyltrimethylammonium bromide or poly(ethylene glycol) and additional bioactive tripeptides RGD or GLF. Gold nanorods mostly accumulated in liver upon systemic injection in mice, as evidenced by inductively coupled plasma mass spectrometry from different organs and by non-invasive microcomputerized tomography whole-body imaging. In liver, AuNR were only found in macrophages by seedless deposition and electron microscopy. In healthy animals, AuNR did not cause significant hepatotoxicity as evidenced by biochemical and histological analyses, even at high AuNR doses. However, flow cytometry and gene expression studies revealed that AuNR polarized hepatic macrophages, even at low doses, dependent on the respective peptide sequence, toward M1 or M2 activation. While peptide-modified AuNR did not influence liver scarring, termed fibrosis, in chronic hepatic injury models, AuNR-induced preactivation of hepatic macrophages significantly exacerbated liver damage and disease activity in experimental immune-mediated hepatitis in mice. Bioactively targeted gold nanoparticles are thus potentially harmful in clinically relevant settings of liver injury, as they can aggravate hepatitis severity.
    ACS Nano 09/2012; 6(10):8767-77. · 12.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Iron oxide-based magnetic nanoparticles (MNPs) offer unique properties for cell tracking by magnetic resonance imaging (MRI) in cellular immunotherapy. In this study, we investigated the uptake of chemically engineered NPs into antigen-presenting dendritic cells (DCs). DCs are expected to perceive MNPs as foreign antigens, thus exhibiting the capability to immunologically sense MNP surface chemistry. To systematically evaluate cellular uptake and T2/T2(⁎) MR imaging properties of MNPs, we synthesized polymer-based MNPs by employing layer-by-layer (LbL) technology. Thereby, we achieved modification of particle shell parameters, such as size, surface charge, and chemistry. We found that subcellular packaging of MNPs rather than MNP content in DCs influences MR imaging quality. Increased local intracellular electron density as inferred from transmission electron microscopy (TEM) strongly correlated with enhanced contrast in MRI. Thus, LbL-tailoring of MNP shells using polyelectrolytes that impact on uptake and subcellular localization can be used for modulating MR imaging properties. FROM THE CLINICAL EDITOR: In this study, layer-by-layer tailoring of magnetic NP shells was performed using polyelectrolytes to improve uptake by dendritic cells for cell-specific MR imaging. The authors conclude that polyelectrolyte modified NP-s can be used for modulating improving MR imaging quality by increasing subcellular localization.
    Nanomedicine: nanotechnology, biology, and medicine 09/2012; 8(5):682-91. · 6.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This work deals with the production and characterization of water-compatible, iron oxide based nanoparticles covered with functional poly(ethylene glycol) (PEG)-biotin surface groups (SPIO-PEG-biotin). Synthesis of the functionalized colloids occurred by incubating the oleate coated particles used as precursor magnetic fluid with anionic liposomes containing 14 mol% of a phospholipid-PEG-biotin conjugate. The latter was prepared by coupling dimyristoylphosphatidylethanolamine (DC(14:0)PE) to activated α-biotinylamido-ω -N-hydroxy-succinimidcarbonyl-PEG (NHS-PEG-biotin). Physical characterization of the oleate and PEG-biotin iron oxide nanocolloids revealed that they appear as colloidal stable clusters with a hydrodynamic diameter of 160 nm and zeta potentials of - 39 mV (oleate coated particles) and - 14 mV (PEG-biotin covered particles), respectively, as measured by light scattering techniques. Superconducting quantum interference device (SQUID) measurements revealed specific saturation magnetizations of 62-73 emu g(-1) Fe(3)O(4) and no hysteresis was observed at 300 K. MR relaxometry at 3 T revealed very high r(2) relaxivities and moderately high r(1) values. Thus, both nanocolloids can be classified as small, superparamagnetic, negative MR contrast agents. The capacity to functionalize the particles was illustrated by binding streptavidin alkaline phosphatase (SAP). It was found, however, that these complexes become highly aggregated after capturing them on the magnetic filter device during high-gradient magnetophoresis, thereby reducing the accessibility of the SAP.
    Nanotechnology 08/2012; 23(35):355707. · 3.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fetuin-A is a liver-derived plasma protein involved in the regulation of calcified matrix metabolism. Biochemical studies showed that fetuin-A is essential for the formation of protein-mineral complexes, called calciprotein particles (CPPs). CPPs must be cleared from circulation to prevent local deposition and pathological calcification. We studied CPP clearance in mice and in cell culture to identify the tissues, cells, and receptors involved in the clearance. In mice, fetuin-A-containing CPPs were rapidly cleared by the reticuloendothelial system, namely Kupffer cells of the liver and marginal zone macrophages of the spleen. Macrophages from scavenger receptor-AI/II (SR-A)-deficient mice cleared CPPs less efficiently than macrophages from wild-type mice, suggesting that SR-AI/II is involved in CPP binding and endocytosis. Accordingly, we found reduced clearance of CPPs in SR-A/MARCO-deficient mice. We could demonstrate that fetuin-A-containing CPPs facilitate the clearance of mineral debris by macrophages via SR-A. Since the same receptor also contributes to the uptake of modified low-density lipoprotein particles in atherosclerosis, defective endocytosis of both types of particle may impinge on lipid as well as mineral debris clearance in calcifying atherosclerosis.
    Circulation Research 07/2012; 111(5):575-84. · 11.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The medical use of nanoparticles (NPs) has to consider their interactions with the cells of the reticuloendothelial system. In this study the authors used gold nanorods coated by PEG chains bearing peptides or charged functional groups to study their influence on the uptake, subcellular distribution, and activation of human primary reticuloendothelial cells: monocytes, macrophages (MΦ), immature and mature dendritic cells (DC), and endothelial cells (EC). We found that beside MΦ and immature DC also EC internalize large quantities of NPs and observed an increased uptake of positively charged particles. Most notably, NPs accumulated in the MHC II compartment in mature DC that is involved in antigen processing. Furthermore, surface-coupled peptide sequences RGD and GLF altered the activation profile of DC, and modulated cytokine release in both DC and MΦ in a cell specific manner. These data suggest that the charge of NPs mainly influences their uptake, whereas conjugated peptides alter cell functions. FROM THE CLINICAL EDITOR: In this paper the interactions between RES cells and nanoparticles is investigated, concluding that in the case of gold nanorods charge determines uptake characteristics, whereas conjugated peptides determine their function.
    Nanomedicine: nanotechnology, biology, and medicine 03/2012; 8(8):1282-92. · 6.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Here, we present a detailed characterisation of rhodamine B-containing magnetoliposomes (FLU-ML), emphasising the dependence of their fluorescence properties on the presence of iron oxide cores, and the molar fraction of the fluorophore. The magnetoliposome types used exist as colloidally stable, negatively charged clusters with an average hydrodynamic diameter of 95 nm. The molar rhodamine B fractions were 0.67 % and 1.97 %. Rhodamine B normalised fluorescence, quantum yields and fluorescence lifetimes were substantially reduced by inner filter effects as the magnetoliposome concentration is increased, by increasing molar rhodamine B fraction, and by quenching originating from the iron oxide cores. MR relaxometry at 3 T revealed extremely high r2 relaxivities (440 to 554 s-1mM-1) and moderately high r1 values (2.06 to 3.59 s-1mM-1). Upon incubating human prostate carcinoma (PC-3) cells with FLU-ML, a dose-dependent particle internalisation was found by MR relaxometry. In addition, the internalised FLU-ML were clearly visible by fluorescence microscopy. At the FLU-ML concentrations used (up to 3 × 10³ M Fe) cell viability was not substantially impaired. These results provide valuable insights on the fluorescence properties of bimodal magnetoliposomes and open promising perspectives for the use of these materials as a platform technology for advanced functional and molecular MR and optical imaging applications.
    Contrast Media & Molecular Imaging 01/2012; 7(1):59-67. · 2.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tumorigenesis and tumor progression are associated with dysfunction of the nuclear transport machinery at the level of import and export receptors (karyopherins). Recent studies have shown that the nuclear import factor karyopherin-α2 (KPNA2) is a novel prognostic marker for poor prognosis in human breast cancer. Based on the well-defined hallmarks of cancer progression, we performed a detailed in vitro characterization of the phenotypic effects caused by KPNA2 overexpression and KPNA2 silencing in benign and malignant human breast cells. KPNA2 overexpression clearly increased proliferation of MCF7 tumor cells and further led to a reduction of cell-matrix adhesion in benign MCF10A cells, whereas cell migration was significantly increased (P<0.0001) in both tumor models. Remarkably, these individual effects of KPNA2 overexpression on proliferation, cell-matrix adhesion and migration resulted in an increased colony spreading of benign MCF10A breast cells and malignant MCF7 tumor cells (P<0.001), which is a hallmark of cancer progression. Conversely, RNA interference-mediated KPNA2 silencing caused a complete inhibition of MCF7 tumor cell proliferation and migration (P<0.0001). In addition, in these experiments apoptosis was increased (P<0.05) and formation of tumor cell colonies was reduced (P<0.01). Thus, KPNA2 overexpression provoked increased aggressiveness of malignant MCF7 breast tumor cells and induced a shift in benign MCF10A breast cells toward a malignant breast cancer phenotype. In conclusion, we demonstrate for the first time in experimental tumor models that forced KPNA2 expression drives malignant features relevant for breast cancer progression, while its silencing is required for the remission of those progressive phenotypes. This study gives clear evidence that KPNA2 acts as a novel oncogenic factor in human breast cancer, in vitro.
    Oncogene 09/2011; 31(16):2101-14. · 8.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Medial artery calcification in patients with chronic kidney disease proceeds through intramembranous ossification resulting from osteoblast-induced calcification of the collagen extracellular matrix. The current study is based on the hypothesis that mesenchymal stem cells (MSC) constitute critical cells for procalcific extracellular matrix remodeling in patients with chronic kidney disease. Human MSC were cultured in media supplemented with pooled sera from either healthy or uremic patients (20%). Exposure to uremic serum enhanced the proliferation of MSC (cell counting, BrdU incorporation) whereas apoptosis and necrosis were not affected (annexin V and 7-amino-actinomycin staining). Uremic serum-exposed MSC recapitulated osteogenesis by matrix calcification and expression of bone-related genes (bone morphogenetic protein [BMP]-2 receptor, alkaline phosphatase, osteopontin, and Runx2) in 35 days. The uremic serum-induced osteogenesis was completely blocked by a BMP-2/4 neutralizing antibody or the natural antagonist NOGGIN. Calcification and matrix remodeling were further analyzed in a collagen-embedded osteogenesis model recapitulating the vascular collagen I/III environment. The uremic serum-induced calcification was shown to occur along collagen fibers as shown by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and von Kossa staining and was accompanied by extensive matrix remodeling. Uremic serum induced in a BMP-2/4-dependent manner an osteoblast-like phenotype in MSC accompanied by matrix remodeling and calcification.
    Arteriosclerosis Thrombosis and Vascular Biology 06/2011; 31(9):e45-54. · 6.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Magnetic resonance (MR) and ultrasound (US) imaging are widely used diagnostic modalities for various experimental and clinical applications. In this study, iron oxide nanoparticle-embedded polymeric microbubbles were designed as multi-modal contrast agents for hybrid MR-US imaging. These magnetic nano-in-micro imaging probes were prepared via a one-pot emulsion polymerization to form poly(butyl cyanoacrylate) microbubbles, along with the oil-in-water (O/W) encapsulation of iron oxide nanoparticles in the bubble shell. The nano-in-micro embedding strategy was validated using NMR and electron microscopy. These hybrid imaging agents exhibited strong contrast in US and an increased transversal relaxation rate in MR. Moreover, a significant increase in longitudinal and transversal relaxivities was observed after US-induced bubble destruction, which demonstrated triggerable MR imaging properties. Proof-of-principle in vivo experiments confirmed that these nanoparticle-embedded microbubble composites are suitable contrast agents for both MR and US imaging. In summary, these magnetic nano-in-micro hybrid materials are highly interesting systems for bimodal MR-US imaging, and their enhanced relaxivities upon US-induced destruction recommend them as potential vehicles for MR-guided US-mediated drug and gene delivery.
    Biomaterials 05/2011; 32(26):6155-63. · 8.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Besides worse prognosis of bladder cancer with squamous differentiation (pure squamous cell carcinoma (SCC) or mixed urothelial carcinoma (UC/SCC)), high-grade non-keratinising squamous differentiation is difficult to identify in haematoxylin-eosin stainings. This study aims to validate routine immunohistochemical markers for squamous differentiation in a larger cohort of patients. Tissue microarrays of 89 pure SCCs and mixed UC/SCCs, 66 urothelial carcinomas (UC), precursor lesions and normal urothelium were stained for cytokeratin (CK) 5/6, CK 5/14, CK 7, CK 20 and uroplakin III. Electron microscopy was performed to confirm the differentiation. Pure SCCs displayed staining throughout the epithelium for CK 5/6 (76.6% (36/47)) and CK 5/14 (95.8% (46/48)), focal staining for CK 7 (28.9% (13/45)) and no staining for CK 20 and uroplakin III (both 0% (0/48)). UCs exhibited a basal or diffuse staining for CK 5/6 (30.2% (16/53)) and CK 5/14 (57.1% (32/56)), focal positivity for CK 7 (83.6% (46/55)), CK 20 (50.9% (29/57)) and uroplakin III (21.8% (12/55)). Each marker discriminated SCC and UC significantly (p < 0.01). A third subgroup rarely showed full epithelial staining for CK 5/6 (14.3% (1/7)) and CK 5/14 (28.6% (2/7)), focal staining for CK 7 (85.7% (6/7)) and no staining for CK 20 and uroplakin III (both 0% (0/7)). Electron microscopy could prove both, SCC and UC characteristics, revealing a transient type. A staining pattern with CK 5/6- and CK 5/14-positivity plus CK 20- and uroplakin III-negativity identified squamous differentiation in bladder tumours and revealed a third type of squamous transdifferentiation.
    Archiv für Pathologische Anatomie und Physiologie und für Klinische Medicin 12/2010; 458(3):301-12. · 2.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, a new generation of dermal equivalents (DE) was presented which are solely generated on a human fibroblast-derived dermal matrix. Since human mesenchymal stem cells from bone marrow (BM-MSC) and Wharton's Jelly of the umbilical cord (UC-MSC) are characterised by a distinct biosynthetic and paracrine activity, they are an appealing alternative approach for generating cell-based DE. This study compares the epithelial-mesenchymal interaction and extracellular matrix (ECM) remodelling of cell-based and collagen-based DE using fibroblasts, BM-MSC or UC-MSC, respectively, in co-culture with the keratinocyte cell line HaCaT. While fibroblast-based DE exhibit normal matrix synthesis, proliferation and differentiation of keratinocytes, mesenchymal stem cell-based DE resulted in excessive production of inhomogenous matrix aggregates, loss of polarisation of the epidermal cell layer and an inconstant paracrine activity. In contrast, collagen-embedded MSC revealed a homogenous growth pattern as well as a constant expression of growth factors and ECM proteins without a negative influence on the epidermal layer as shown by histology, electron microscopy, immunohistochemistry and realtime-RT-PCR. These results indicate the necessity of an instructive biomaterial-based scaffold to direct stem cell differentiation, proliferation, paracrine activity as well as regulation of ECM deposition.
    Biomaterials 11/2010; 31(31):7948-59. · 8.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nanoparticle-based in vivo applications should consider the omnipresence of the phagocytes in the bloodstream and tissue. We have studied the nanoparticle uptake capacities of the most important human primary leukocyte populations using a nanoparticle library encompassing both rod-shaped and spherical gold nanoparticles with diameters between 15 and 50 nm and a variety of surface chemistries. Cetyltrimethylammoniumbromide (CTAB)-stabilized nanoparticles were internalized rapidly within 15 min and in large amounts by macrophages and to a lower extent also by monocytes. Interestingly, we found that the uptake of nanorods by macrophages was more efficient than that of nanospheres. Blocking experiments and electron microscopic studies revealed macropinocytosis as the major uptake mechanism. Grafting of poly(ethylene oxide) (PEO) onto the nanorods was found to significantly delay their internalization for several hours. The long-term uptake of PEO-coated nanoparticles with positively or negatively charged end groups was almost identical. Particle surface chemistry strongly influenced the expression of inflammation-related genes within 1 day. Furthermore, the macrophage phenotype was significantly affected after 7 days of culture with nanorods depending on the surface chemistry. Thus, in vivo application of nanoparticles with certain surface functionalities may lead to inflammation upon particle accumulation. However, our data also suggest that chemical modifications of nanoparticles may be useful for immunomodulation.
    ACS Nano 06/2010; 4(6):3073-86. · 12.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During early embryogenesis, mesenchymal cells arise from the primitive epithelium and can revert to an epithelial phenotype by passing through mesenchymal-to-epithelial transition (MET). Mesenchymal stem cells (MSC) of the Wharton's Jelly of the umbilical cord (UC-MSC) express pluripotency markers underlining their primitive developmental state. As mesenchymal stem cells from bone marrow (BM-MSC) possess a strong propensity to ameliorate mesenchymal tissue damage, UC-MSC might also be able to differentiate into cells apart from the mesoderm, allowing replacement of ectodermal and mesodermal tissues. In this study, we analysed the possible epidermal differentiation of UC-MSC on dermal equivalents (DEs) consisting of collagen I/III with dermal fibroblasts and subjected to the culture conditions for tissue engineering of skin with keratinocytes. The culture conditions were further modified by pre-treating the cells with 5-azacytidine or by supplementing the medium with all trans retinoic acid. Interestingly, a subpopulation of UC-MSC (29%) co-expressed pan-cytokeratin (epithelial marker; pan-CK) and vimentin (mesenchymal marker) after isolation. Under the three-dimensional conditions of skin, the number of pan-CK(+)-cells increased to >30% after 21 days of cultivation, while under osteogenic culture conditions the cells were pan-CK-negative, thus showing the influence of the artificial niche. Nevertheless, the pan-CK-expression was neither accompanied by typical epithelial morphology nor expression of other epidermal markers. The pan-CK-detection can be explained by the expression of cytokeratins in myofibroblasts. UC-MSC expressed alpha-smooth muscle actin after isolation and displayed all features of functional myofibroblasts like morphology, cell-mediated contraction of a collagen gel and production of components of the extracellular matrix (ECM). The treatment with all trans retinoic acid or 5-azacytidine could neither induce an epidermal differentiation nor enhance the myofibroblastic differentiation. Concluding, UC-MSC might be an interesting cell source to support the regeneration of wounds by their differentiation into myofibroblasts and their extensive synthesis of ECM components.
    Differentiation 02/2010; 79(3):182-93. · 2.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Liver fibrosis is a major cause of morbidity and mortality worldwide. Platelets are involved in liver damage, but the underlying molecular mechanisms remain elusive. Here, we investigate the platelet-derived chemokine (C-X-C motif) ligand 4 (CXCL4) as a molecular mediator of fibrotic liver damage. Serum concentrations and intrahepatic messenger RNA of CXCL4 were measured in patients with chronic liver diseases and mice after toxic liver injury. Platelet aggregation in early fibrosis was determined by electron microscopy in patients and by immunohistochemistry in mice. Cxcl4(-/-) and wild-type mice were subjected to two models of chronic liver injury (CCl(4) and thioacetamide). The fibrotic phenotype was analyzed by histological, biochemical, and molecular analyses. Intrahepatic infiltration of immune cells was investigated by fluorescence-activated cell sorting, and stellate cells were stimulated with recombinant Cxcl4 in vitro. The results showed that patients with advanced hepatitis C virus-induced fibrosis or nonalcoholic steatohepatitis had increased serum levels and intrahepatic CXCL4 messenger RNA concentrations. Platelets were found directly adjacent to collagen fibrils. The CCl(4) and thioacetamide treatment led to an increase of hepatic Cxcl4 levels, platelet activation, and aggregation in early fibrosis in mice. Accordingly, genetic deletion of Cxcl4 in mice significantly reduced histological and biochemical liver damage in vivo, which was accompanied by changes in the expression of fibrosis-related genes (Timp-1 [tissue inhibitor of matrix metalloproteinase 1], Mmp9 [matrix metalloproteinase 9], Tgf-beta [transforming growth factor beta], IL10 [interleukin 10]). Functionally, Cxcl4(-/-) mice showed a strongly decreased infiltration of neutrophils (Ly6G) and CD8(+) T cells into the liver. In vitro, recombinant murine Cxcl4 stimulated the proliferation, chemotaxis, and chemokine expression of hepatic stellate cells. Conclusion: The results underscore an important role of platelets in chronic liver damage and imply a new target for antifibrotic therapies.
    Hepatology 11/2009; 51(4):1345-53. · 12.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adult human mesenchymal stem cells from bone marrow (BM-MSC) represent a promising source for skeletal regeneration. Perinatal MSC from Wharton's Jelly of the umbilical cord (UC-MSC) are expected to possess enhanced differentiation capacities due to partial expression of pluripotency markers. For bone tissue engineering, it is important to analyse in vitro behaviour of stem cell/biomaterial hybrids concerning in vivo integration into injured tissue via migration, matrix remodelling and differentiation. This study compares the cell-mediated remodelling of three-dimensional collagen I/III gels during osteogenic differentiation of both cell types. When activated through collagen contact and subjected to osteogenic differentiation, UC-MSC differ from BM-MSC in expression and synthesis of extracellular matrix (ECM) proteins as shown by histology, immunohistochemistry, Western Blot analysis and realtime-RT-PCR. The biosynthetic activity was accompanied in both cell types by the ultrastructural appearance of hydroxyapatite/calcium crystals and osteogenic gene induction. Following secretion of matrix metalloproteinases (MMP), both MSC types migrated into and colonised the collagenous matrix causing matrix strengthening and contraction. These results indicate that UC-MSC and BM-MSC display all features needed for effective bone fracture healing. The expression of ECM differs in both cell types considerably, suggesting different mechanisms for bone formation and significant impact for bone tissue engineering.
    Biomaterials 10/2009; 31(3):467-80. · 8.31 Impact Factor
  • Small 09/2009; 5(18). · 7.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gold nanoparticles (AuNPs) are generally considered nontoxic, similar to bulk gold, which is inert and biocompatible. AuNPs of diameter 1.4 nm capped with triphenylphosphine monosulfonate (TPPMS), Au1.4MS, are much more cytotoxic than 15-nm nanoparticles (Au15MS) of similar chemical composition. Here, major cell-death pathways are studied and it is determined that the cytotoxicity is caused by oxidative stress. Indicators of oxidative stress, reactive oxygen species (ROS), mitochondrial potential and integrity, and mitochondrial substrate reduction are all compromised. Genome-wide expression profiling using DNA gene arrays indicates robust upregulation of stress-related genes after 6 and 12 h of incubation with a 2 x IC50 concentration of Au1.4MS but not with Au15MS nanoparticles. The caspase inhibitor Z-VAD-fmk does not rescue the cells, which suggests that necrosis, not apoptosis, is the predominant pathway at this concentration. Pretreatment of the nanoparticles with reducing agents/antioxidants N-acetylcysteine, glutathione, and TPPMS reduces the toxicity of Au1.4MS. AuNPs of similar size but capped with glutathione (Au1.1GSH) likewise do not induce oxidative stress. Besides the size dependency of AuNP toxicity, ligand chemistry is a critical parameter determining the degree of cytotoxicity. AuNP exposure most likely causes oxidative stress that is amplified by mitochondrial damage. Au1.4MS nanoparticle cytotoxicity is associated with oxidative stress, endogenous ROS production, and depletion of the intracellular antioxidant pool.
    Small 08/2009; 5(18):2067-76. · 7.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Imaging techniques with high resolution are evolving rapidly for medical applications and may substitute invasive diagnostic techniques. The use of ultrahigh resolution optical coherence tomography (UHR-OCT) to image healthy and morphologically altered bladder tissue with virtual histology is evaluated ex vivo to define parameters necessary for future, diagnostically relevant in vivo systems. Here, special focus is on the visualization of the basement membrane zone. Optical coherence tomography examinations were performed by using a modified commercial OCT system comprising a Ti:sapphire femtosecond laser to support an enhanced resolution of 3 microm axial x 10 microm lateral. Tomograms of 142 fresh human bladder tissue samples from cystectomies, radical prostatectomies, and transurethral tumor resections were recorded and referenced to histologic sections using standard hematoxylin and eosin staining. OCT of normal bladder mucosa allows for a clear differentiation of urothelium and lamina propria. The basement membrane zone is identified as a narrow, low-scattering band between these layers. This allows for reliable exclusion of invasion. Healthy urothelial tissue, carcinoma in situ, and transitional cell carcinoma can be differentiated using this imaging technique. Sensitivity of UHR-OCT for malignant bladder tissue could be determined to be 83.8%, and specificity to be 78.1%. UHR-OCT is considered promising in the attempt to strive for fluorescence cystoscopy-guided virtual histology as a means of supporting therapeutic decisions for bladder neoplasia.
    Urology 06/2008; 72(3):677-81. · 2.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The CXC ligand (CXCL)12/CXC receptor (CXCR)4 chemokine-receptor axis controls hematopoiesis, organ development, and angiogenesis, but its role in the inflammatory pathogenesis of atherosclerosis is unknown. Here we show that interference with Cxcl12/Cxcr4 by a small-molecule antagonist, genetic Cxcr4 deficiency, or lentiviral transduction with Cxcr4 degrakine in bone marrow chimeras aggravated diet-induced atherosclerosis in apolipoprotein E-deficient (Apoe-/-) or LDL receptor-deficient (Ldlr-/-) mice. Chronic blockade of Cxcr4 caused leukocytosis and an expansion of neutrophils and increased neutrophil content in plaques, associated with apoptosis and a proinflammatory phenotype. Whereas circulating neutrophils were recruited to atherosclerotic lesions, depletion of neutrophils reduced plaque formation and prevented its exacerbation after blocking Cxcr4. Disrupting Cxcl12/Cxcr4 thus promotes lesion formation through deranged neutrophil homeostasis, indicating that Cxcl12/Cxcr4 controls the important contribution of neutrophils to atherogenesis in mice.
    Circulation Research 03/2008; 102(2):209-17. · 11.86 Impact Factor

Publication Stats

658 Citations
157.35 Total Impact Points

Institutions

  • 2007–2011
    • University Hospital RWTH Aachen
      Aachen, North Rhine-Westphalia, Germany
  • 2009
    • RWTH Aachen University
      • Institute of Inorganic Chemistry
      Aachen, North Rhine-Westphalia, Germany