Guang-Hui Jin

Nanjing University, Nanjing, Jiangsu Sheng, China

Are you Guang-Hui Jin?

Claim your profile

Publications (6)23.84 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent with tumor-selective apoptotic activity. TRAIL plays a role in the innate and adaptive immune response and autoimmune disease and may also be involved in hepatic cell death and inflammation. For these reasons, chronic exposure to TRAIL may have deleterious side effects in patients as a cancer therapeutic. In this study, we have improved the antitumor activity of TRAIL by targeted delivery to the tumor vasculature, leading to dramatic enhancement of its therapeutic properties. TRAIL was fused to the ACDCRGDCFC peptide (named RGD-L-TRAIL), a ligand of alpha(V)beta(3) and alpha(V)beta(5) integrins. Biological activity was evaluated in vitro and antitumor efficacy was investigated in vivo as a single agent and in combination with irinotecan hydrochloride (CPT-11). The fusion protein RGD-L-TRAIL, but not TRAIL or RGE-L-TRAIL, specifically bound to microvascular endothelial cells in a dose-dependent manner and showed enhanced apoptosis-inducing activity (caspase-3 and caspase-8 activation) in alpha(V)beta(3) and alpha(V)beta(5) integrin-positive cancer cells. In addition, RGD-L-TRAIL was more effective in suppressing tumor growth of COLO-205 tumor-bearing mice than an equivalent dose of TRAIL. The antitumor effect of RGD-L-TRAIL was further enhanced by combination with CPT-11 in both TRAIL-sensitive COLO-205 and TRAIL-resistive HT-29 tumor xenograft models. Our findings suggest that the novel fusion protein RGD-L-TRAIL can directly target tumor endothelial cells as well as alpha(V)beta(3) and alpha(V)beta(5) integrin-positive tumor cells. The tumor-targeted delivery of TRAIL derivatives, such as RGD-L-TRAIL, may prove to be a promising lead candidate for cancer therapy.
    Molecular Cancer Therapeutics 05/2008; 7(4):851-61. · 5.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antiangiogenic therapy could destroy tumor vasculature and inhibit tumor growth. It might inhibit tumor growth significantly when used as a single treatment modality and its therapeutic benefit may even be greater when used in combination with established treatment modalities such as radiation therapy (RT). In the present report, we investigated the effect of recombinant human plasminogen kringle 5 domain (rhK5) in combination with ionizing radiation on angiogenesis, tumor growth and survival in a murine Lewis lung carcinoma (LLC) tumor model. Combined treatment using rhK5 and radiotherapy displayed obvious suppressive effect on LLC tumor growth as compared with single treatment with either modality (p < 0.05), and resulted in a more additive effect on tumor growth delay in this model. In addition, combined treatment significantly enhanced the survival of mice and no toxic effect, such as weight loss, was observed. The significant antitumor effect of rhK5 plus radiation was associated with a direct suppression effect on early neoangiogenesis and tumor cell apoptosis. Furthermore, the expression of VEGF and HIF-1alpha in tumor tissue correlated well with decreased vessel density. The results suggest that rhK5 significantly enhances the antitumor activity of RT and could be a potent adjuvant therapeutic approach to improve the efficacy of radiotherapy for lung cancer.
    International Journal of Cancer 12/2007; 121(11):2539-46. · 6.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chemotherapy for cancer is partly limited by the inability of drugs to act on poorly vascularized or avascularized areas of tumors. Tumor-targeting bacteria are capable of preferentially replicating in these poorly perfused regions. Some strains have been combined with chemotherapeutic agents and the results have been promising. However, no systematic work has been carried out to test the effect of bacteria on clinical modes of chemotherapy, such as standard maximum tolerated dose (MTD) and novel low-dose metronomic (LDM) chemotherapy. Here Salmonella typhimurium VNP20009 was combined with cyclophosphamide (CTX) at both MTD and LDM schedules in a murine melanoma model. The results showed that VNP20009 significantly improved the effects of all forms of CTX treatments. The combination of VNP20009 and CTX led to a more significant decrease in tumor microvessel density and serum vascular endothelial growth factor (VEGF) level, compared with either treatment alone. Furthermore, combination therapy remarkably increased the number of bacteria within tumors when compared with bacteria treatment alone. These findings suggest that tumor-targeting bacteria, in conjunction with CTX at standard MTD and LDM regimens, might be of clinical value for the treatment of melanoma.
    International Journal of Cancer 08/2007; 121(3):666-74. · 6.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study aims at exploring the oxidative stress in keratinocytes induced by UVB irradiation and the protective effect of nutritional antioxidants. Cultured Colo-16 cells were exposed to UVB in vitro followed by measurement of reactive oxygen species (ROS), endogenous antioxidant enzyme activity, as well as cell death in the presence or absence of supplementation with vitamin C, vitamin E, or Ginsenoside Panoxatriol. Intracellular ROS content was found significantly reduced 1 h after exposure, but increased at later time points. After exposure to 150-600 J m(-2) UVB, reduction of ROS content was accompanied by increased activity of catalase and CuZn-superoxide dismutase at early time points. Vitamins C and E, and Ginsenoside Panoxatriol counteracted the increase of ROS in the Colo-16 cells induced by acute UVB irradiation. At the same time, Ginsenoside Panoxatriol protected the activity of CuZn-superoxide dismutase, while vitamin E showed only a moderate protective role. Vitamins C and E, and Ginsenoside Panoxatriol in combination protected the Colo-16 cells from UVB-induced apoptosis, but not necrosis. These findings suggest that vitamins C and E as well as Ginsenoside Panoxatriol are promising protective agents against UVB-induced damage in skin cells.
    Biophysik 04/2007; 46(1):61-8. · 1.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polyethylenimine (PEI) has been known as an efficient gene carrier with the highest cationic charge potential. High transfection efficiency of PEI, along with its cytotoxicity, strongly depends on its molecular weight. To enhance its gene delivery efficiency and minimize cytotoxicity, we have synthesized small cross-linked PEI with biodegradable linkages and evaluated their transfection efficiencies in vitro. In this study, branched PEI with a molecular weight of 800 Da was cross-linked by small diacrylate [1,4-butanediol diacrylate or ethyleneglycol dimethacrylate (EGDMA)] for 2-6 h. The efficiencies of the cross-linked PEI in in vitro transfection of plasmid DNA containing enhanced green fluorescent protein (EGFP) reporter gene were assessed in melanoma B16F10 cell line and other cell lines. Flow cytometry was used to quantify the cellular entry efficiency of plasmid and the transgene expression level. The cytotoxicities of the cross-linked PEI in these cells were evaluated by MTT assay. EGDMA-PEI 800-4h, a typical cross-linked PEI reported here, mediated a more efficient expression of reporter gene than the commercially available 25-kDa branched PEI control, and resulted in a 9-fold increase in gene delivery in B16F10 cells and a 16-fold increase in 293T cells, while no cytotoxicity was found at the optimized condition for gene delivery. Furthermore, the transfection activity of polyplexes was preserved in the presence of serum proteins.
    Acta Biochimica et Biophysica Sinica 12/2006; 38(11):780-7. · 1.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plasmid containing mIL-18 and B7.1 genes downstream of Egr-1 promoter was constructed and used in gene-radiotherapy on malignant melanoma in C57BL/6J mice implanted with B16 cells followed by exploration of the immunologic mechanism of the therapeutic effect. The treatment with plasmid pEgr-IL-18-B7.1 plus local X-irradiation showed more effective suppression of tumor growth than the treatment with radiation alone, pEgr-IL-18-B7.1 alone, or single gene pEgr-IL-18 (or pEgr-B7.1) combined with local X-irradiation. Anticancer immunity was found to be significantly upregulated in tumor-bearing mice treated with pEgr-IL-18-B7.1 plus local X-irradiation. IL-18 showed no direct killing effect on malignant melanoma cells in vitro, and the mechanism of the combined therapy with pEgr-IL-18-B7.1 and local X-irradiation was apparently related with the stimulation of host anticancer immunity by increased secretion of IL-18 and upregulated immunogenicity of the tumor cells by increased expression of B7.1 on their surface in addition to the direct effect of local X-irradiation on the tumor cells.
    Biochemical and Biophysical Research Communications 06/2005; 330(3):975-81. · 2.28 Impact Factor

Publication Stats

92 Citations
23.84 Total Impact Points

Institutions

  • 2006–2008
    • Nanjing University
      • State Key Laboratory of Pharmaceutical Biotechnology
      Nanjing, Jiangsu Sheng, China
  • 2005
    • Jilin University
      Yung-chi, Jilin Sheng, China