In Sook Kim

Hanyang University, Sŏul, Seoul, South Korea

Are you In Sook Kim?

Claim your profile

Publications (46)125.92 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: Aromatase (CYP 19A1) is a key steroidogenic enzyme that catalyzes the conversion of androgen to estrogen. In this study, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for aromatase inhibitor screening was developed and validated. The substrate androstenedione was incubated with human CYP 19A1 supersomes in the presence of NADPH for 30 min, and estrone formation was determined by LC-MS/MS analysis. Cortisone was used as internal standard. The incubation mixture was extracted using a liquid-liquid extraction method with ethyl acetate. Chromatographic separation was achieved using a C18 column (3.0 × 50 mm, 2.7 μm) with a mobile phase consisting of 0.1 % formic acid/acetonitrile adopting gradient elution at a flow rate of 0.4 mL/min. The mass spectrometer was operated in positive electrospray ionization mode. The precursor-product ion pairs used for multiple reaction monitoring were m/z 287→97 (androstenedione), m/z 271 → 159 (estrone), and m/z 361 → 163 (IS, cortisone). The developed method met the required criteria for the validation of bioanalytical methods. The validated method was successfully applied to evaluate aromatase inhibitory activity of plants extracts of Simaroubaceae.
    Analytical and Bioanalytical Chemistry 04/2014; · 3.66 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Functional activation of stem cells after transplantation is a main concern in stem cell therapy. For local transplantation, mesenchymal stem cells (MSCs) are usually administered via scaffolds, either by direct implantation or after pre-culturing of cells, and it is unclear which is better for the activation of transplanted cells. In this study, we investigated the in vivo gene expression activity of human MSCs (hMSCs) transplanted into calvarial defects either directly post-seeding on collagen sponges (Group 1) or after overnight in vitro culturing post-seeding (Group 2). Real-time RT-PCR at days 7 and 14 after transplantation identified a time-dependent, rapid decrease in gene expression by the hMSCs, which in Group 1 was slightly more attenuated than in Group 2. Both groups exhibited a limited range of human-specific gene expression, which involved type I collagen (ColI), fibronectin, SDF-1 and osteoprotegerin. Among these, ColI expression was the most efficient, with higher levels in Group 1 than Group 2. There was a lack of evidence for the expression of osteoblast differentiation-related markers or trophic factors, while resident cells showed clear expression of those genes. Rat-specific β-actin expression in Group 2 was least among the scaffold control, Group 1 and Group 2, and this pattern was repeated in the expression of other rat osteogenic genes. Group 1 transplants positively influenced the osteogenic process of the defect tissue in part, and rat IGF-1 expression was significantly increased in Group 1. This tendency of gene expression by hMSCs in a rat model was very similar to what was observed in transplantations using immunodeficient mice. The current study showed that a main gene expressed by transplanted hMSCs during the initial weeks following transplantation is ColI, with a lack of differentiation-related markers or growth factor expression by hMSCs. Our data suggest that direct transplantation of hMSCs loaded on a collagen sponge is more efficient for gene activation in transplanted hMSCs, and more favorable to the local host tissue than transplantation after pre-culturing of cells.
    Tissue Engineering Part A 02/2014; · 4.64 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Rhus verniciflua Stokes has been used as a traditional herbal medicine in Asia. In this study, the effect of R. verniciflua extract on human aromatase (cytochrome P450 19, CYP19) activity was investigated to elucidate the mechanism for the effect of R. verniciflua extract on androgen hormone levels. Androstenedione was used as a substrate and incubated with R. verniciflua extract in cDNA-expressed CYP19 supersomes in the presence of NADPH, and estrone formation was measured using liquid chromatography-tandem mass spectrometry. R. verniciflua extract was assessed at concentrations of 10-1000μg/mL. The resulting data showed that R. verniciflua extract inhibited CYP19-mediated estrone formation in a concentration-dependent manner with an IC50 value of 136μg/mL. Subsequently, polyphenolic compounds from R. verniciflua extract were tested to identify the ingredients responsible for the aromatase inhibitory effects by R. verniciflua extract. As a result, butin showed aromatase inhibitory effect in a concentration-dependent manner with an IC50 value of 9.6μM, whereas the inhibition by other compounds was negligible. These results suggest that R. verniciflua extract could modulate androgen hormone levels via the inhibition of CYP19 activity and butin is a major ingredient responsible for this activity.
    Bioorganic & medicinal chemistry letters 02/2014; · 2.65 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: A simple, sensitive, and precise reversed-phase liquid chromatographic method was developed for the quantitative determination of 4 bioactive phenolic compounds (gallic acid, fustin, fisetin, and sulfuretin) from the stem extract of Rhus verniciflua stokes. Chromatographic analysis was performed on a Capcell Pak C18 column (150×4.6mm, 3μm) with a mobile phase consisting of 0.1% formic acid and 90% acetonitrile at a flow rate of 1mL/min. Quantitation was performed using a UV-vis detector at 260nm. The method was validated in terms of selectivity, linearity, accuracy, precision, and recovery. Excellent linear behavior was observed over the investigated concentration range (10-500μg/mL for gallic acid, fustin, and fisetin; 0.5-100μg/mL for sulfuretin) with correlation coefficient (r(2)) values >0.99. The intra- and inter-day precision over the concentration range of compounds was less than 6.65% (relative standard deviation) and the accuracy was between 92.42% and 103.62%. The mean recoveries for all the analytes were more than 92.18%. This method was successfully applied for the analysis of bioactive phenolic compounds in the R. verniciflua extracts.
    Food Chemistry 12/2013; 141(4):3813-9. · 3.33 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: While recombinant human bone morphogenetic protein (rhBMP)-2-based bone therapy presents potential osteoinductivity, it also leads concern due to transient osteoclast activation during early healing periods, ultimately limiting its clinical use. Therefore, we investigated in vivo and in vitro rhBMP-2 signaling which mediates early bone resorbing effect, depending on the dose, and attempted to inhibit this resorption phenomenon using NFAT inhibitor as a target molecule. High-dose of rhBMP-2 (20 μg/defect) enhanced osteoclast activation and the expression of bone resorption markers, compared to low dose (5 μg/defect) at one week after surgery in collagen sponge-delivered rat calvarial defect models. Interestingly, this trend was also observed in the expression of bone formation markers. In particular, rhBMP-2 upregulated RANKL expression, while it downregulated osteoprotegerin (OPG) expression, resulting in a dose-dependent increase in the ratio of RANKL to OPG. NFAT inhibitor (150 μm) treatment in vivo suppressed the high-dose effect of rhBMP-2 on both resorption and formation. In vitro results of rhBMP-2 signaling and NFAT inhibitor effects in rat mesenchymal stem cells showed similar trends as in vivo results. Microcomputer tomography-based evaluation at 4 weeks showed that combined treatment of NFAT inhibitor with 20 μg rhBMP-2 in vivo increased bone volume (BV) more than 20 μg rhBMP-2 alone, which showed little difference in BV compared to 5 μg of rhBMP-2. These results demonstrated that rhBMP-2 implantation concurrently signalized into enhanced osteoclastogenesis and osteoblastogenesis in vivo, dose-dependently. Ratio of RANKL/OPG might be an index for early bone resorbing activity of implanted rhBMP-2. A local cocktail treatment of NFAT inhibitor and high-dose rhBMP-2 might be an alternative to overcome early bone resorbing effects, thereby accelerating bone formation.
    Biomaterials 12/2013; · 7.60 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: High-power pulsed lasers have been recently regarded to be anabolic to bone, but in vivo evidence is still lacking. This study aimed to investigate the capacity of bone repair using a high-power, Q-switched, pulsed, neodymium-doped yttrium aluminium garnet (Nd:YAG) laser, using bilateral calvarial defect models having non-critical sized, 5 mm (rat) or 8 mm (rabbit) diameter. One of the bilateral defects, which were all filled with collagen sponge or left empty, was irradiated with a Nd:YAG laser once every 2 days for 2 weeks at a constant total fluence rate (344 J/cm(2) ), output power (0.75 W), pulse repetition rate (15 pps) and wavelength (1064 nm) and examined for the laser effect. The same experimental scheme was designed using a rabbit calvarial defect model implanted with sponge, which was explored for the dose effect of output power at 0.75 and 3 W with the same quantities of the other parameters. New bone formation was evaluated by micro-computed tomography-based analysis and histological observation at 4 weeks after surgery. Laser irradiation significantly increased new bone formation by approximately 45%, not only in the sponge-filled defects of rats but also when the defects were left empty, compared to the non-irradiated group. Consistently, both doses of output power (0.75 and 3 W) enhanced new bone formation, but there was no significant difference between the two doses. This study is one of the first to demonstrate the beneficial effect of Nd:YAG lasers on the regeneration of bone defects which were left empty or filled with collagen sponge, suggesting its great potential in postoperative treatment targeting local bone healing. Copyright © 2013 John Wiley & Sons, Ltd.
    Journal of Tissue Engineering and Regenerative Medicine 11/2013; · 2.83 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We evaluated the new bone regeneration of a rabbit mandibular defect using hBMSCs under electrical stimulation combined with rhBMP-2 in this study. An inner scaffold prepared by setting a collagen sponge with hBMSCs and hydrogel was placed into a polycaprolactone (PCL) outer box, and an electrical stimulation device was installed between the inner scaffold and the outer box. There were three experimental groups depending on electrical stimulation and application of rhBMP-2. The experimental group was divided into the following three groups. Group 1, in which rhBMP-2 (5 μg/defect) was added to hydrogel and electrical stimulation was not applied; Group 2, in which rhBMP-2 (5 μg/defect) was added as in Group 1 and electrical stimulation was applied; and Group 3, in which electrical stimulation was applied and rhBMP-2 (5 μg/defect) was injected directly into defect site. The delivered electrical stimulation was charge-balanced bi-phasic electric current pulses, and electrical stimulation was conducted for 7 days. The stimulation parameters of the bi-phasic electrical current set at an amplitude of 20 μA, a duration of 100 μs and a frequency of 100 Hz. Four weeks after surgery, new bone formation in each group was evaluated using radiography, histology, and micro-computed tomography (μCT). Groups 2 and 3 exhibited a significant increase in new bone formation compared to Group 1, while Group 3 showed the highest level of new bone regeneration. In a comparison between two groups, Group 2 showed a higher bone volume (BV) by 260 % (p < 0.01) compared with Group 1, and Group 3 showed a higher BV by 442 % (p < 0.01) compared with Group 1. The trend of the bone surface density (ratio of new bone to the real defect volume, BS/TV), trabecular number, and connectivity was identical to that of the BV. The total bone mineral density (BMD) of Groups 2 and 3 showed values higher by the ratios of 103 % (p < 0.01) and 107.5 % (p < 0.01) compared with Group 1, respectively. Part BMD for Groups 2 and 3 showed higher values by the ratios of 104.9 % (p < 0.01) and 122.4 % (p < 0.01) compared with Group 1, respectively. These results suggest that the combined treatment of electrical stimulation, hBMSCs, a collagen sponge, hydrogel, and rhBMP-2 was effective for bone regeneration of large-size mandibular defects. The application of rhBMP-2 with an injection following electrical stimulation demonstrated better efficiency as regards bone regeneration.
    Medical & Biological Engineering 08/2013; · 1.76 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: This study aimed to assess the potential inhibitory effects of β-lapachone, a new anticancer candidate, on the activities of the cytochrome P450 (CYP450) enzymes in vitro. Different concentrations of β-lapachone were incubated with human liver microsomes in the presence of CYP isozyme-specific substrates and NADPH, and the formation of the marker metabolites was measured using liquid chromatography-tandem mass spectrometry. In addition, time-dependent inhibition was examined to characterize the mode of the inhibition. β-Lapachone showed concentration-dependent inhibitory effects on all CYP isozymes tested (CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYPC19, CYP2D6, and CYP3A4), and its half-maximal inhibitory concentration (IC50) values ranged from 2.6 to 9.7 μM. However, β-lapachone did not appear to modulate CYP450 activities as a mechanism-based inactivator. These results suggest that pharmacological drug-drug interactions might occur between β-lapachone and drugs co-administered with it, which are extensively metabolized by CYP450 enzymes, and thus, careful observation is required in clinical pharmacokinetic studies.
    Cancer Chemotherapy and Pharmacology 07/2013; · 2.80 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: β-Lapachone (3,4-dihydro-2,2-dimethyl-2H-naphthol[1,2-b]pyran-5,6-dione) is a natural compound extracted from the bark of the lapacho tree (Tabebuia avellanedae) and is undergoing phase II clinical trials as an antitumor drug candidate. The present study characterized in vitro metabolites of β-lapachone in mouse, rat, dog, monkey and human liver microsomes. β-Lapachone (10μM) was incubated with mouse, rat, dog, monkey, and human liver microsomes in the presence of NADPH. The reaction mixtures were analyzed by LC/MS and the metabolites were identified based on their elemental composition and product ion spectra. A total of 6 metabolites (M1-M6) were detected in liver microsomes with a slight difference between species. M1 and M6 were identified as a decarbonated metabolite and a carboxylated metabolite, respectively; M2, M3, and M4 were identified as monohydroxylated metabolites; and M5 was identified as an O-methylated metabolite. M5, an O-methylated metabolite was found in rat and human liver microsomes, which is thought to be formed from a catechol intermediate by MB-COMT-mediated methylation and reported here for the first time.
    Journal of pharmaceutical and biomedical analysis 05/2013; 83C:286-292. · 2.45 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: In this study, we describe and validate a rapid and sensitive method for quantitation of dapoxetine in rat plasma by using ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI/MS/MS). Plasma samples were prepared by protein precipitation with acetonitrile, and sildenafil was used as an internal standard (IS). The mobile phase consisted of 0.5% formic acid/acetonitrile (60:40, v/v); a C18 reversed-phase column (2.0×50mm, 1.7μm) was used for chromatographic separation. Multiple reaction monitoring (MRM) was used in the positive ion mode for mass spectrometric detection. The calibration curve for dapoxetine was linear (r(2)=0.999) in the concentration range of 1-500ng/mL. The intra- and inter-day precision was between 3.8% and 8.3%, and the intra- and inter-day accuracy was between 101.1% and 109.0%. Dapoxetine was found to be stable in various conditions with the recoveries>87.0% (RSD <7.2%). The method was found to be specific, precise, and accurate, and no matrix effect was observed. Our results suggest that this method can be successfully applied in pharmacokinetic studies of dapoxetine in rat plasma.
    Journal of chromatography. B, Analytical technologies in the biomedical and life sciences 03/2013; 926C:42-46. · 2.78 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: In the present study, the effect of CP-001, a standardized herbal mixture of Houttuynia cordata, Rehmannia glutinosa, Betula platyphylla, and Rubus coreanus, on cytochrome P450 (CYP) enzyme-mediated drug metabolism was investigated in vitro to evaluate the potential for herb-drug interactions. CP-001 was tested at concentrations of 1, 3, 10, 30, and 100 μ g/mL. A CYP-specific substrate mixture was incubated with CP-001 in human liver microsomes, and the metabolites generated by each CYP-specific metabolic reaction were measured by liquid chromatography-tandem mass spectrometry. CP-001 seemed to slightly inhibit some CYP isozymes, but the IC50 values for all CYP isozymes were greater than 100 μ g/mL. Furthermore, CP-001 did not exhibit time-dependent CYP inhibitory activities, indicating that it does not act as a mechanism-based inactivator of CYP enzymes. In conclusion, the effects of CP-001 on CYP isozyme activities were negligible at the concentrations tested. Therefore, the likelihood of herbal mixture-drug interaction is considered minimal.
    Evidence-based Complementary and Alternative Medicine 01/2013; 2013:824270. · 1.72 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Ex-vivo expanded mesenchymal stromal cells (MSCs) represent a potential cell population for tissue regeneration strategy. Xenogeneic transplantation using human MSCs (hMSCs) can be an approach to reveal what hMSCs guide in bone regeneration with distinguishable gene expression from host animal. In this study, we investigated the regenerating effect of hMSCsvarying injection time point in rabbit distraction osteogenesis (DO) model. Undifferentiated hMSCs (2 x 106 cells) were injected transcutaneously into the osteotomy site of one side of the mandible one day prior to onset of distraction (Group 1) or after distraction (Group 2). The contralateral side of the mandible, which was subjected to distraction but no hMSC injection, was used as the control in each group. hMSCs showed lack of major histocompatibility complex class II expression and suppression of xenogeneic lymphocyte proliferation stimulated by proinflammatory cytokine. Micro-computed tomography-based evaluation showed a significant increase in new bone volume in the distracted callus in Group 1 compared to the contralateral side. Injection of hMSCs increased the bone mineral density (BMD) of the regenerated bone in both Group 1 and 2, although the former had a higher BMD than the latter. hMSCs of Group 1 subjected to distraction after injection expressed IGF-1 and fibronectin, while the expression of most osteoblast differentiation-related markers and growth factors was negligible. These results demonstrated that hMSCs exerted immune suppressive behavior in rabbit T cells in vitro, and hMSC transplantation into the distracted callus of a rabbit model provided osteogenic benefits that were more pronounced when the hMSCs were injected just prior to distraction than at the end of distraction. The beneficial effect of hMSCs might be mediated, partly by the expression of matrix proteins or IGF-1 which are known to favor bone formation.
    Tissue Engineering Part A 10/2012; · 4.64 Impact Factor
  • Tae Kon Kim, In Sook Kim, Hye Hyun Yoo
    [show abstract] [hide abstract]
    ABSTRACT: In this study, a sensitive, simple and reliable method for the quantification of docetaxel in rat plasma was developed and validated using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The plasma samples were prepared by protein precipitation, and paclitaxel was used as an internal standard (IS). Chromatographic separation was achieved using a Gemini C(18) column (2.0 × 150 mm, 5 µm) with a mobile phase consisting of 0.1% formic acid-acetonitrile (30:70, v/v). The precursor-product ion pairs used for multiple reaction monitoring were m/z 808.5 → 527.5 (docetaxel) and m/z 854.2 → 286.5 (IS, paclitaxel). A calibration curve for docetaxel was constructed over the range 1-1000 ng/mL. The developed method was specific, precise and accurate, and no matrix effect was observed. The validated method was applied in a comparative pharmacokinetic study in which two docetaxel formulations, SID530, a new parenteral formulation of docetaxel with hydroxypropyl-β-cyclodextrin (HP-β-CD), and Taxotere, were administered to rats at a dose of 5 mg/kg. For SID530 and Taxotere, the mean C(0) values were 1494 and 1818 ng/mL, respectively, and the AUC(last) values were 837 and 755 h ng/mL, respectively. These two formulations did not show any statistical differences with regard to the pharmacokinetic parameters, thus establishing that the SID530 and Taxotere products are pharmacokinetically comparable in male rats. Copyright © 2012 John Wiley & Sons, Ltd.
    Biomedical Chromatography 07/2012; · 1.95 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Earlier, we demonstrated that local electrical stimulation (ES) improved bone and peripheral nerve regeneration. To determine how ES induces the regeneration of different kinds of tissues, we studied the initial ES-induced regeneration process by investigating the expression of chemokines and growth factors from human mesenchymal stromal cells (hMSCs). In particular, we assessed the responses of hMSCs grown in three-dimensional (3D) culture on a collagen sponge, as 3D culture techniques induced cell behavior that was similar to in vivo cell behavior. We also compared the gene expression patterns of monolayer hMSCs with those of 3D hMSCs under the condition that cells in either culture are exposed to the same type of ES. Biphasic pulses did not affect the proliferation of hMSCs in 3D culture significantly at the magnitude applied in previous animal studies showing improved bone and peripheral nerve regeneration. However, ES enhanced the gene expression of growth factors (BMP-2, IGF-1, and VEGF), chemokines (CXCL2, interleukin (IL)-8), and chemokine receptors (CXCR4 and IL-8RB) from hMSCs grown in 3D culture. A particular difference between the 3D and monolayer cultures was found in the expression of chemokine receptors, CXCR4 and IL-8RB, which is related to the homing capabilities of mesenchymal stromal cells. These genes were expressed by cells in 3D cultures, but were not or expressed at extremely low levels by cells grown in monolayer cultures. ES led to a significant increase in the expression of CXCR4 and IL-8RB in both monolayer and 3D hMSCs, but the increase in the monolayer culture was detected at an extremely low level. These results demonstrate that ES increased the expression of a variety of growth factors and chemokine genes from 3D hMSCs, which may explain increased tissue regeneration in vivo, independent of the tissue type. A culture-dependent expression of the CXCR4 gene suggested that cell response to external stimulus in 3D systems may be more accurately reflected in in vivo findings than in monolayer cultures.
    Tissue Engineering Part A 09/2011; 18(3-4):432-45. · 4.64 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Low survival of injected cells which are prepared by ex-vivo culture is main obstacle in cell-based tissue regeneration. To elevate cell adaptation, we designed an implantable electrical bioreactor where human mesenchymal stromal cells (hMSCs) can be cultured and stimulated electrically. Bioreactor was composed of biocompatible cylindrical Teflon body containing a flexible polyimide electrode and implantable stimulator. The Teflon body has about 300 holes with a diameter of 300 um for effective nutrients supply inside the bioreactor and has a length of 17 mm and a diameter of 8mm for implantation. After hMSCs seeded on the collagen sponge that serves as scaffold to form a bone tissue graft, they are cultured in the bioreactor with biphasic electric current (BEC) stimulation. BEC stimulation with amplitude of 20/40 uA, duration of 100 us and a frequency of 100 Hz was applied for one week in the early stage of cultivation. Subsequently, after hMSCS were cultured for another week without electrical stimulation, cell response such as cell proliferation, cell attachment and gene expression are evaluated. In vitro and In vivo culture of hMSCs showed 19% and 22% increase in cell proliferation at stimulated groups, compared to unstimulated control. The expression of type I collagen increased significantly at stimulated group. These results suggest that the usage of implantable electrical bioreactor can be a good strategy to enhance the efficiency of stem cell-based tissue engineering.
    Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 08/2011; 2011:3601-4.
  • [show abstract] [hide abstract]
    ABSTRACT: Nonglycosylated recombinant human bone morphogenetic protein (rhBMP)-2 prepared in Escherichia coli (E. coli rhBMP-2) has recently been considered as an alternative to mammalian cell rhBMP-2. However, its clinical use is still limited owing to lack of evidence for osteogenic activity comparable with that of mammalian cell rhBMP-2 via microcomputed tomography-based analysis. Therefore, this study aimed to evaluate the ability of E. coli rhBMP-2 in absorbable collagen sponge to form ectopic and orthotopic bone and to compare it to that of mammalian rhBMP-2. In vitro investigation was performed to study osteoblast differentiation of human mesenchymal stromal cells. Both types of rhBMP-2 enhanced proliferation, alkaline phosphatase activity, and matrix mineralization of human mesenchymal stromal cells at similar levels. Similar tendencies were observed in microcomputed tomography analysis, which determined bone volume, fractional bone volume, trabecular thickness, trabecular separation, bone mineral density, and other characteristics. Histology from an in vivo osteoinductivity test and from a rat calvarial defect model demonstrated a dose-dependent increase in local bone formation. The E. coli rhBMP-2 group (5 μg) not only induced complete regeneration of an 8-mm critical-sized defect at 4 weeks, but also led to new bone with the same bone mineral density as normal bone at 8 weeks, with the same efficiency as that of mammalian cell rhBMP-2 (5 μg). These uniformly favorable results provide evidence that the osteogenic activity of E. coli rhBMP-2 is not inferior to that of mammalian cell rhBMP-2 despite its low solubility and lack of gylcosylation. These results suggest that the application of E. coli rhBMP-2 in absorbable collagen sponge may be a promising equivalent to mammalian cell rhBMP-2 in bone tissue engineering.
    Tissue Engineering Part A 02/2011; 17(3-4):337-48. · 4.64 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Electrical stimulation (ES) is a promising technique for axonal regeneration of peripheral nerve injuries. However, long-term, continuous ES in the form of biphasic electric current (BEC) to stimulate axonal regeneration has rarely been attempted and the effects of BEC on Schwann cells are unknown. We hypothesized that long-term, continuous ES would trigger the activation of Schwann cells, and we therefore investigated the effect of BEC on the functional differentiation of primary human mesenchymal stromal cells (hMSCs) into Schwann cells, as well as the activity of primary Schwann cells. Differentiation of hMSCs into Schwann cells was determined by coculture with rat pheochromocytoma cells (PC12 cell line). We also investigated the in vivo effects of long-term ES (4 weeks) on axonal outgrowth of a severed sciatic nerve with a 7-mm gap after retraction of the nerve ends in rats by implanting an electronic device to serve as a neural conduit. PC12 cells cocultured with hMSCs electrically stimulated during culture in Schwann cell differentiation medium (Group I) had longer neurites and a greater percentage of PC12 cells were neurite-sprouting than when cocultured with hMSCs cultured in growth medium (control group) or unstimulated hMSCs in the same culture conditions as used for Group I (Group II). Group I cells showed significant upregulation of Schwann cell-related neurotrophic factors such as nerve growth factor and glial-derived neurotrophic factor compared to Group II cells at both the mRNA and protein levels. Primary Schwann cells responded to continuous BEC with increased proliferation and the induction of nerve growth factor and glial-derived neurotrophic factor, similar to Group I cells, and in addition, induction of brain-derived neurotrophic factor was observed. Immunohistochemical investigation of sciatic nerve regenerates revealed that BEC increased axonal outgrowth significantly. These results demonstrate that BEC enhanced the functional activity of Schwann cells via the induction of neurotrophic factor release and guide-increased axonal outgrowth in vivo. The effectiveness of long-term ES highlights the feasibility of a BEC-based therapeutic device to accelerate nerve regeneration of severed peripheral nerve injuries with a gap.
    Tissue Engineering Part A 01/2011; 17(9-10):1327-40. · 4.64 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Hyaluronic acid (170 kDa)-based hydrogel was synthesized using acrylated hyaluronic acid (HA) and matrix metalloproteinase (MMP) sensitive HA-based hydrogels were then prepared by conjugation with two different peptides: cell adhesion peptides containing integrin-binding domains (Arg-Gly-Asp: RGD) and a cross-linker with MMP degradable peptides to mimic the remodeling characteristics of natural extracellular matrices by cell-derived MMPs. Mechanical properties of these hydrogels were evaluated with different weight percentages (2.5 and 3.5 wt %) by measuring elastic modulus, viscous modulus, and swelling ratio. Human mesenchymal stem cells (hMSCs) were then cultured in MMP-sensitive or insensitive HA-based hydrogels and/or immobilized cell adhesive RGD peptides in vitro. Actin staining and image analysis proved that cells cultured in the MMP-sensitive hydrogel with RGD peptides showed extensive cell spreading and sprouting. Gene expression analysis showed that bone specific genes such as alkaline phosphatase, osteocalcin, and osteopontin increased in MMP-sensitive hydrogels as biomolecules such as BMPs and cells were added in the gels. For in vivo calvarial defect regeneration, five different samples (MMP insensitive hydrogel, MMP sensitive hydrogel, MMP sensitive hydrogel with BMP-2, MMP sensitive hydrogel with hMSC, and MMP sensitive hydrogel with BMP-2 and hMSC) were prepared. After 4 weeks of implantation, the Masson-Trichrome staining and micro computed tomography scan results demonstrated that the MMP sensitive hydrogels with BMP-2 and hMSCs have the highest mature bone formation. The MMP sensitive HA-based hydrogel could become useful scaffolds in bone tissue engineering with improvements on tissue remodeling rates and regeneration activity.
    Journal of Biomedical Materials Research Part A 12/2010; 95(3):673-81. · 2.83 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Matrix mineralization is a terminal process in osteoblast differentiation, and several approaches have been introduced to characterize the process in tissues or cultured cells. However, an analytical technique that quantitates in vitro matrix mineralization of live cells without any labeling or complex treatments is still lacking. In this study, we investigate a simple and enhanced optical method based on surface plasmon resonance (SPR) detection that can monitor the surface-limited refractive index change in real-time. During monitoring MC3T3-E1 cells in vitro culture every 2 days for over 4 weeks, the SPR angle is shifted with a greater resonance change in cells cultured with osteogenic reagents than those without the reagents. In addition, the SPR results obtained have a close relevance with the tendency of conventional mineralization staining and an inductively coupled plasma-based calcium content measure. These results suggest a new approach of a real-time SPR monitoring in vitro matrix mineralization of cultured cells.
    Biotechnology and Bioengineering 12/2010; 108(6):1473-8. · 3.65 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: This paper examined the efficacy of an implantable electrical stimulator in rats for the functional regeneration of peripheral nerves. The implantable electrical stimulator was fabricated on a polyimide-based conduit with an integrated electrode, a stimulation chip, and a battery; 3 mg/mL of collagen gel was coated onto the conduit surface and electrical stimulation (20 µ A, 100 µ s, and 100 Hz biphasic current) was continuously applied between the nerve stumps for four weeks. The stimulator was tested on a severed sciatic nerve with a 7-mm gap in rats. The effects of both the electrical stimulation and the collagen application were examined. Functionality was evaluated through walk track assessments and by recording the action potential of the regenerated nerve. Immunohistochemical staining of the regenerated nerve was done using peripheral myelin protein 22. The results suggest that the functional recovery of a severed peripheral nerve by the proposed implantable electrical stimulator was achieved through electrical current stimulation along the use of a collagen coating on the conduit surface.
    Neuromodulation 10/2010; 13(4):299-304; discussion 305. · 1.19 Impact Factor

Publication Stats

301 Citations
125.92 Total Impact Points


  • 2013–2014
    • Hanyang University
      Sŏul, Seoul, South Korea
    • Kyungpook National University
      • College of Pharmacy
      Sangju, North Gyeongsang, South Korea
  • 2006–2013
    • Seoul National University
      • • Department of Electrical and Computer Engineering
      • • Dental Research Institute
      • • College of Dentistry
      Seoul, Seoul, South Korea
  • 2010
    • Korea Institute of Science and Technology
      • Doping Control Center
      Seoul, Seoul, South Korea
    • Korea University
      • Department of Biomedical Engineering
      Sŏul, Seoul, South Korea
  • 2009
    • Seoul National University Hospital
      • Department of Internal Medicine
      Sŏul, Seoul, South Korea
  • 2003–2005
    • Asan Medical Center
      • Department of Gastroenterology
      Sŏul, Seoul, South Korea
  • 2004
    • Ulsan University Hospital
      Urusan, Ulsan, South Korea