Carina Treiber

Freie Universität Berlin, Berlin, Land Berlin, Germany

Are you Carina Treiber?

Claim your profile

Publications (14)35.1 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Studies in animals have reported that normalized or elevated Cu levels can inhibit or even remove Alzheimer's disease-related pathological plaques and exert a desirable amyloid-modifying effect. We tested engineered nanocarriers composed of diverse core-shell architectures to modulate Cu levels under physiological conditions through bypassing the cellular Cu uptake systems. Two different nanocarrier systems were able to transport Cu across the plasma membrane of yeast or higher eukaryotic cells, CS-NPs (core-shell nanoparticles) and CMS-NPs (core-multishell nanoparticles). Intracellular Cu levels could be increased up to 3-fold above normal with a sublethal dose of carriers. Both types of carriers released their bound guest molecules into the cytosolic compartment where they were accessible for the Cu-dependent enzyme SOD1. In particular, CS-NPs reduced Abeta levels and targeted intracellular organelles more efficiently than CMS-NPs. Fluorescently labeled CMS-NPs unraveled a cellular uptake mechanism, which depended on clathrin-mediated endocytosis in an energy-dependent manner. In contrast, the transport of CS-NPs was most likely driven by a concentration gradient. Overall, nanocarriers depending on the nature of the surrounding shell functioned by mediating import of Cu across cellular membranes, increased levels of bioavailable Cu, and affected Abeta turnover. Our studies illustrate that Cu-charged nanocarriers can achieve a reasonable metal ion specificity and represent an alternative to metal-complexing agents. The results demonstrate that carrier strategies have potential for the treatment of metal ion deficiency disorders.
    Biochemistry 04/2009; 48(20):4273-84. · 3.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We found previously by fluorescence resonance energy transfer experiments that amyloid precursor protein (APP) homodimerizes in living cells. APP homodimerization is likely to be mediated by two sites of the ectodomain and a third site within the transmembrane sequence of APP. We have now investigated the role of the N-terminal growth factor-like domain in APP dimerization by NMR, biochemical, and cell biological approaches. Under nonreducing conditions, the N-terminal domain of APP formed SDS-labile and SDS-stable complexes. The presence of SDS was sufficient to convert native APP dimers entirely into monomers. Addition of an excess of a synthetic peptide (APP residues 91-116) containing the disulfide bridge-stabilized loop inhibited cross-linking of pre-existing SDS-labile APP ectodomain dimers. Surface plasmon resonance analysis revealed that this peptide specifically bound to the N-terminal domain of APP and that binding was entirely dependent on the oxidation of the thiol groups. By solution-state NMR we detected small chemical shift changes indicating that the loop peptide interacted with a large protein surface rather than binding to a defined pocket. Finally, we studied the effect of the loop peptide added to the medium of living cells. Whereas the levels of alpha-secretory APP increased, soluble beta-cleaved APP levels decreased. Because Abeta40 and Abeta42 decreased to similar levels as soluble beta-cleaved APP, we conclude either that beta-secretase binding to APP was impaired or that the peptide allosterically affected APP processing. We suggest that APP acquires a loop-mediated homodimeric state that is further stabilized by interactions of hydrophobic residues of neighboring domains.
    Journal of Biological Chemistry 04/2008; 283(11):7271-9. · 4.65 Impact Factor
  • Carina Treiber
    [Show abstract] [Hide abstract]
    ABSTRACT: The prion protein (PrP) is the key protein implicated in diseases known as transmissible spongiform encephalopathies. PrP has been shown to be a metallo-protein that binds copper (Cu), and copper might have a role in the normal function of the protein. Conversely, PrP expression in yeast led us to suggest that the protein might be involved in the regulation of Cu homeostasis. In the presence of excess Cu in the growth medium, PrP expression limited the increase of the total number of Cu atoms per cell to a maximum of 14-fold compared with mock control cells, which showed a 52-fold increased intracellular Cu level. Conclusively, we suggest that PrP expression itself has a regulatory or buffering function for the cellular Cu level in yeast cells, most likely due to binding of Cu to the multiple Cu binding sites.
    Methods in molecular biology (Clifton, N.J.) 02/2008; 459:161-72. · 1.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The potential of core-shell (CS) and core-multishell (CMS) nanoparticles as drug delivery systems for biologically active metal ion, copper (Cu) and a representative from the bisphosphonate class of drugs, ibandronate (Ibn), was assessed. Both types of nanoparticles encapsulated substantial payload of guest species per carrier molecule. In case of Cu-ion delivery, the loaded nanocarriers bypassed the normal Ctr1 import mechanism responsible for cellular Cu intake and endocytosed into the cell via a clathrin-mediated pathway in an energy-dependent manner.
    Journal of Controlled Release - J CONTROL RELEASE. 01/2008; 132(3).
  • [Show abstract] [Hide abstract]
    ABSTRACT: The prion protein (PrP) is a metalloprotein with an unstructured region covering residues 60-91 that bind two to six Cu(II) ions cooperatively. Cu can bind to PrP regions C-terminally to the octarepeat region involving residues His111 and/or His96. In addition to Cu(II), PrP binds Zn(II), Mn(II) and Ni(II) with binding constants several orders of magnitudes lower than those determined for Cu. We used for the first time surface plasmon resonance (SPR) analysis to dissect metal binding to specific sites of PrP domains and to determine binding kinetics in real time. A biosensor assay was established to measure the binding of PrP-derived synthetic peptides and recombinant PrP to nitrilotriacetic acid chelated divalent metal ions. We have identified two separate binding regions for binding of Cu to PrP by SPR, one in the octarepeat region and the second provided by His96 and His111, of which His96 is more essential for Cu coordination. The octarepeat region at the N-terminus of PrP increases the affinity for Cu of the full-length protein by a factor of 2, indicating a cooperative effect. Since none of the synthetic peptides covering the octarepeat region bound to Mn and recombinant PrP lacking this sequence were able to bind Mn, we propose a conformational binding site for Mn involving residues 91-230. A novel low-affinity binding site for Co(II) was discovered between PrP residues 104 and 114, with residue His111 being the key amino acid for coordinating Co(II). His111 is essential for Co(II) binding, whereas His96 is more important than His111 for binding of Cu(II).
    JBIC Journal of Biological Inorganic Chemistry 07/2007; 12(5):711-20. · 3.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The prion protein (PrP) is the key protein implicated in transmissible spongiform encephalopathies. It is a metalloprotein that binds manganese and copper. The latter is involved in the physiological function of the protein. We have previously found that PrP expression in Pichia pastoris affects intracellular metal ion concentrations and that formation of protease-resistant PrP is induced by additional copper and/or manganese. In this study, we show that heterologously expressed PrP is post-translationally modified and transported to the cell wall. We found by combining three different test systems that PrP itself had gained superoxide dismutase-like activity in P. pastoris. However, this activity could not be inhibited by KCN and depended on additional copper in the medium. Thus, this study defines the conditions under which PrP exhibits superoxide dismutase-like activity by showing that copper must be present for the protein to participate in scavenging and detoxification of reactive oxygen species.
    FEBS Journal 04/2007; 274(5):1304-11. · 4.25 Impact Factor
  • Source
    Carina Treiber, Andreas Simons, Gerd Multhaup
    [Show abstract] [Hide abstract]
    ABSTRACT: The prion protein (PrP) is the key protein implicated in diseases known as transmissible spongiform encephalopathies. PrP has been shown to bind manganese and copper, the latter being involved in the normal function of the protein. Indeed, upon expression in yeast we noted a major increase in intracellular copper and a decrease in manganese. Interestingly, protease-resistant PrP(Sc)-like protein (PrP(res)) formation was induced when PrP-expressing yeast cells were grown in copper- and/or manganese-supplemented media. The pattern of PrP banding in SDS-PAGE was dominantly determined by manganese. This conformational transition was stable against EDTA treatment but not in the presence of the copper chelators bathocuproinedisulfonic acid or clioquinol. Conclusively, PrP itself influences manganese and copper metabolism, and a replacement of copper in PrP complexes with manganese is highly likely under the condition of copper depletion or if excess amounts of copper and manganese are present. Taken together, our present study demonstrates the involvement of PrP in the regulation of intracellular metal ion homeostasis and uncovers copper and, more severely, manganese ions as in vivo risk factors for the conversion into PrP(Sc).
    Biochemistry 06/2006; 45(21):6674-80. · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: All organisms are confronted with external variations in trace element abundance. To elucidate the mechanisms that maintain metal homeostasis and protect against heavy metal stress, we have determined the transcriptome responses in Drosophila to sublethal doses of cadmium, zinc, copper, as well as to copper depletion. Furthermore, we analyzed the transcriptome of a metal-responsive transcription factor (MTF-1) null mutant. The gene family encoding metallothioneins, and the ABC transporter CG10505 that encodes a homolog of 'yeast cadmium factor' were induced by all three metals. Zinc and cadmium responses have similar features: genes upregulated by both metals include those for glutathione S-transferases GstD2 and GstD5, and for zinc transporter-like proteins designated ZnT35C and ZnT63C. Several of the metal-induced genes that emerged in our study are regulated by the transcription factor MTF-1. mRNA studies in MTF-1 overexpressing or null mutant flies and in silico search for metal response elements (binding sites for MTF-1) confirmed novel MTF-1 regulated genes such as ferritins, the ABC transporter CG10505 and the zinc transporter ZnT35C. The latter was analyzed in most detail; biochemical and genetic approaches, including targeted mutation, indicate that ZnT35C is involved in cellular and organismal zinc efflux and plays a major role in zinc detoxification.
    Nucleic Acids Research 02/2006; 34(17):4866-77. · 8.81 Impact Factor
  • Carina Treiber
    [Show abstract] [Hide abstract]
    ABSTRACT: Prion diseases for the most part affect individuals older than 60 years of age and share features with other diseases characterized by protein deposits in the brain, such as Alzheimer's disease and Parkinson's disease. The international conference "Prion 2005: Between Fundamentals and Society's Needs," organized by the German Transmissible Spongiform Encephalopathies Research Platform, aimed to integrate and coordinate the research efforts of participants to better achieve prevention, treatment, control, and management of prion diseases, including Creutzfeldt-Jakob disease and fatal familial insomnia in humans. Several main topics were discussed, such as the molecular characteristics of prion strains, the cell biology of cellular and pathogenic forms of the prion proteins, the pathogenesis of the diseases they cause, emerging problems, and promising approaches for therapy and new diagnostic tools. The presentations at the Prion 2005 conference provided new insights in both basic and applied research, which will have broad implications for society's needs.
    Science of Aging Knowledge Environment 02/2006; 2006(4):pe4.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent evidence indicates that both intraneuronal Abeta and Cu are involved in the pathological processes in Alzheimer's disease (AD). This perspective shows a possible interrelation of these factors. AbetaPP, the precursor of Abeta which represents the main constituent of amyloid plaques, is involved in Cu homeostasis in mammals. In vitro observations and in vivo data obtained from AbetaPP mouse models provide strong evidence that AbetaPP and the resulting Abeta overproduction facilitate intracellular Cu to leave the cell. An increased Cu efflux seems to lead to Cu deficiency and, subsequently, reduced SOD-1 activity. The Cu-dependent SOD-1 activity is the main enzyme involved in detoxifying free radicals. Several reports have shown that oxidative stress is an invariable age-dependent feature in the brain of AD patients. Increased oxidative stress leads to an increase in intraneuronal Abeta accumulation, which has been shown to be the main trigger for neuronal loss in transgenic mouse models. Thus, we conclude that bioavailability of Cu is a crucial point for the pathogenesis of AD.
    Clinical neuropathology 01/2006; 25(4):163-71. · 1.34 Impact Factor
  • Carina Treiber
    [Show abstract] [Hide abstract]
    ABSTRACT: The 20th biennial meeting of the International Society for Neurochemistry was recently held in Innsbruck, Austria. This meeting gave an overview of the latest findings in the field of molecular mechanisms and diagnosis of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and prion disease. There was a focus on the molecular pathogenesis of protein misfolding in these disorders as well as on the association between oxidative metabolism and neurological diseases. RNA interference, metal chelators, and the use of metallopeptidases were discussed as possible therapeutic strategies.
    Science of Aging Knowledge Environment 11/2005; 2005(43):pe32.
  • Carina Treiber
    [Show abstract] [Hide abstract]
    ABSTRACT: Current research suggests that imbalances in metal-ion homeostasis play a critical role in neurodegenerative disorders, such as Alzheimer's disease and transmissible spongiform encephalopathy, and in cancer. It is thus important to elucidate the mechanisms by which homeostasis is maintained and how metals function in cellular processes, including cell signaling, neurotransmission, and protein transport and storage. This summary of a meeting recently held in Barcelona, Spain, highlights some of the latest findings on intra- and extracellular zinc signaling, the consequences of zinc imbalances on cells and on the brain, the mechanisms of metal-ion influx and efflux, how metal ions are sequestered by metallothioneins, and the development of candidate drugs to treat brain injury due to metal-ion imbalances.
    Science of Aging Knowledge Environment 10/2005; 2005(36):pe27.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The key protein in Alzheimer's disease, the amyloid precursor protein (APP), is a ubiquitously expressed copper-binding glycoprotein that gives rise to the Abeta amyloid peptide. Whereas overexpression of APP results in significantly reduced brain copper levels in three different lines of transgenic mice, knock-out animals revealed increased copper levels. A provoked rise in peripheral levels of copper reduced concentrations of soluble amyloid peptides and resulted in fewer pathogenic Abeta plaques. Contradictory evidence has been provided by the efficacy of copper chelation treatment with the drug clioquinol. Using a yeast model system, we show that adding clioquinol to the yeast culture medium drastically increased the intracellular copper concentration but there was no significant effect observed on zinc levels. This finding suggests that clioquinol can act therapeutically by changing the distribution of copper or facilitating copper uptake rather than by decreasing copper levels. The overexpression of the human APP or APLP2 extracellular domains but not the extracellular domain of APLP1 decreased intracellular copper levels. The expression of a mutant APP deficient for copper binding increased intracellular copper levels several-fold. These data uncover a novel biological function for APP and APLP2 in copper efflux and provide a new conceptual framework for the formerly diverging theories of copper supplementation and chelation in the treatment of Alzheimer's disease.
    Journal of Biological Chemistry 01/2005; 279(50):51958-64. · 4.65 Impact Factor
  • Carina Treiber, Andreas Simons, Gerd Multhaup
    Neurobiology of Aging - NEUROBIOL AGING. 01/2004; 25.