Kyoung Wan Yoon

Korea University, Seoul, Seoul, South Korea

Are you Kyoung Wan Yoon?

Claim your profile

Publications (7)62.47 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Protein arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), is implicated in modulation of cellular processes including gene transcription. The role of PRMTs in the regulation of intracellular signaling pathways has remained obscure, however. We now show that PRMT1 methylates apoptosis signal-regulating kinase 1 (ASK1) at arginine residues 78 and 80 and thereby negatively regulates ASK1 signaling. PRMT1-mediated ASK1 methylation attenuated the H(2)O(2)-induced stimulation of ASK1, with this inhibitory effect of PRMT1 being abolished by replacement of arginines 78 and 80 of ASK1 with lysine. Furthermore, depletion of PRMT1 expression by RNA interference potentiated H(2)O(2)-induced stimulation of ASK1. PRMT1-mediated ASK1 methylation promoted the interaction between ASK1 and its negative regulator thioredoxin, whereas it abrogated the association of ASK1 with its positive regulator TRAF2. Moreover, PRMT1 depletion potentiated paclitaxel-induced ASK1 activation and apoptosis in human breast cancer cells. Together, our results indicate that arginine methylation of ASK1 by PRMT1 contributes to the regulation of stress-induced signaling that controls a variety of cellular events including apoptosis.
    Cell death and differentiation 11/2011; 19(5):859-70. · 8.24 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Son of sevenless 1 (SOS1) is a dual guanine nucleotide exchange factor (GEF) that activates the guanosine triphosphatases Rac1 and Ras, which mediate signaling initiated by peptide growth factors. In this paper, we show that CIIA is a new binding partner of SOS1. CIIA promoted the SOS1-Rac1 interaction and inhibited the SOS1-Ras interaction. Furthermore, CIIA promoted the formation of an SOS1-EPS8 complex and SOS1-mediated Rac1 activation, whereas it inhibited SOS1-mediated activation of Ras. Transforming growth factor β (TGF-β) up-regulated the expression of CIIA and thereby promoted the association between CIIA and SOS1 in A549 human lung adenocarcinoma cells. Depletion of CIIA in these cells by ribonucleic acid interference inhibited the TGF-β-induced interaction between SOS1 and EPS8, activation of Rac1, and cell migration. Together, these results suggest that CIIA mediates the TGF-β-induced activation of SOS1-Rac1 signaling and cell migration in A549 cells. They further show that CIIA functions as a molecular switch for the GEF activity of SOS1, directing this activity toward Rac1.
    The Journal of Cell Biology 10/2011; 195(3):377-86. · 10.82 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Calcium and integrin binding protein 1 (CIB1) is a Ca(2+)-binding protein of 22 kDa that was initially identified as a protein that interacts with integrin alpha(IIb). Although it interacts with various proteins and has been implicated in diverse cellular functions, the molecular mechanism by which CIB1 regulates intracellular signaling networks has remained unclear. We now show that, by targeting apoptosis signal-regulating kinase 1 (ASK1), CIB1 negatively regulates stress-activated MAPK signaling pathways. CIB1 was thus shown to bind to ASK1, to interfere with the recruitment of TRAF2 to ASK1, and to inhibit the autophosphorylation of ASK1 on threonine-838, thereby blocking ASK1 activation. Furthermore, CIB1 mitigated apoptotic cell death initiated either by TNF-alpha in breast cancer MCF7 cells or by 6-hydroxydopamine (6-OHDA) in dopaminergic cells. Ca(2+) influx induced by membrane depolarization reversed the inhibitory effect of CIB1 on 6-OHDA-induced ASK1 activation and cell death in dopaminergic neurons. These observations thus suggest that CIB1 functions as a Ca(2+)-sensitive negative regulator of ASK1-mediated signaling events.
    Proceedings of the National Academy of Sciences 09/2009; 106(41):17389-94. · 9.74 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Gemin5 is a 170-kDa WD-repeat-containing protein that was initially identified as a component of the survival of motor neurons (SMN) complex. We now show that Gemin5 facilitates the activation of apoptosis signal-regulating kinase 1 (ASK1) and downstream signaling. Gemin5 physically interacted with ASK1 as well as with the downstream kinases SEK1 and c-Jun NH(2)-terminal kinase (JNK1), and it potentiated the H(2)O(2)-induced activation of each of these kinases in intact cells. Moreover, Gemin5 promoted the binding of ASK1 to SEK1 and to JNK1, as well as the ASK1-induced activation of JNK1. In comparison, Gemin5 did not physically associate with MKK7, MKK3, MKK6, or p38. Furthermore, depletion of endogenous Gemin5 by RNA interference (RNAi) revealed that Gemin5 contributes to the activation of ASK1 and JNK1, and to apoptosis induced by H(2)O(2) and tumor necrosis factor-alpha (TNFalpha) in HeLa cells. Together, our results suggest that Gemin5 functions as a scaffold protein for the ASK1-JNK1 signaling module and thereby potentiates ASK1-mediated signaling events.
    Cell Death and Differentiation 09/2007; 14(8):1518-28. · 8.37 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Serum- and glucocorticoid-inducible protein kinase 1 (SGK1) has been implicated in diverse cellular activities including the promotion of cell survival. The molecular mechanism of the role of SGK1 in protection against cellular stress has remained unclear, however. We have now shown that SGK1 inhibits the activation of SEK1 and thereby negatively regulates the JNK signaling pathway. SGK1 was found to physically associate with SEK1 in intact cells. Furthermore, activated SGK1 mediated the phosphorylation of SEK1 on serine 78, resulting in inhibition of the binding of SEK1 to JNK1, as well as to MEKK1. Replacement of serine 78 of SEK1 with alanine abolished SGK1-mediated SEK1 inhibition. Oxidative stress upregulated SGK1 expression, and depletion of SGK1 by RNA interference potentiated the activation of SEK1 induced by oxidative stress in Rat2 fibroblasts. Moreover, such SGK1 depletion prevented the dexamethasone-induced increase in SGK1 expression, as well as the inhibitory effects of dexamethasone on paclitaxel-induced SEK1-JNK signaling and apoptosis in MDA-MB-231 breast cancer cells. Together, our results suggest that SGK1 negatively regulates stress-activated signaling through inhibition of SEK1 function.
    The EMBO Journal 08/2007; 26(13):3075-85. · 9.82 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 1 (MEKK1) is an important component in the stress-activated protein kinase pathway. Glutathione S-transferase Mu 1-1 (GST M1-1) has now been shown to inhibit the stimulation of MEKK1 activity induced by cellular stresses such as UV and hydrogen peroxide. GST M1-1 inhibited MEKK1 activation in a manner independent of its glutathione-conjugating catalytic activity. In vitro binding and kinase assays revealed that GST M1-1 directly bound MEKK1 and inhibited its kinase activity. Co-immunoprecipitation analysis showed a physical association between endogenous GST M1-1 and endogenous MEKK1 in L929 cells. Overexpressed GST M1-1 interfered with the binding of MEKK1 to SEK1 in transfected HEK293 cells. Furthermore, GST M1-1 suppressed MEKK1-mediated apoptosis. Taken together, our results suggest that GST M1-1 functions as a negative regulator of MEKK1.
    Journal of Biological Chemistry 11/2004; 279(42):43589-94. · 4.65 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Diverse stimuli initiate the activation of apoptotic signaling pathways that often causes nuclear DNA fragmentation. Here, we report a new antiapoptotic protein, a caspase-activated DNase (CAD) inhibitor that interacts with ASK1 (CIIA). CIIA, by binding to apoptosis signal-regulating kinase 1 (ASK1), inhibits oligomerization-induced ASK1 activation. CIIA also associates with CAD and inhibits the nuclease activity of CAD without affecting caspase-3-mediated ICAD cleavage. Overexpressed CIIA reduces H2O2- and tumor necrosis factor-alpha-induced apoptosis. CIIA antisense oligonucleotides, which abolish expression of endogenous CIIA in murine L929 cells, block the inhibitory effect of CIIA on ASK1 activation, deoxyribonucleic acid fragmentation, and apoptosis. These findings suggest that CIIA is an endogenous antagonist of both ASK1- and CAD-mediated signaling.
    The Journal of Cell Biology 11/2003; 163(1):71-81. · 10.82 Impact Factor