Yuh-Lih Chang

National Yang Ming University, T’ai-pei, Taipei, Taiwan

Are you Yuh-Lih Chang?

Claim your profile

Publications (38)137.29 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The overexpression of matrix metalloproteinases (MMPs) induced by oxidized low-density lipoprotein (oxLDL) has been found in atherosclerotic lesions. Previous reports have identified that oxLDL, via the upregulation of lectin-like ox-LDL receptor 1 (LOX-1), modulates the expression of MMPs in endothelial cells. Ginkgo biloba extract (GbE), from Ginkgo biloba leaves, has often been considered as a therapeutic compound for cardiovascular and neurologic diseases. However, further investigation is needed to ascertain the probable molecular mechanisms underlying the antiatherogenic effects of GbE. The aim of this study was to investigate the effects of GbE on oxLDL-activated MMPs of human endothelial cells and to test the involvement of LOX-1 and protein kinase C (PKC)-α, extracellular signal-regulated kinase (ERK), and peroxisome proliferator-activated receptor-γ (PPAR-γ).
    Journal of vascular surgery. 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Anaplastic astrocytoma (AA) is a grade III glioma that often occurs in middle-aged patients and presents a uniformly poor prognosis. A small subpopulation of cancer stem cells (CSCs) possessing a self-renewing capacity is reported to be responsible for tumor recurrence and therapeutic resistance. An accumulating amount of microRNAs (miRNA) were found aberrantly expressed in human cancers, and regulate CSCs. Efforts have been made to couple miRNAs with non-viral gene delivery approaches to target specific genes in cancer cells. However, the efficiency of delivery of miRNAs to AA-derived CSCs is still an applicability hurdle. The present study aimed to investigate the effectiveness and applicability of non-viral vector-mediated delivery of Let-7a with regard to eradication of AA and AA-derived CSC cells. Herein, our miRNA/mRNA-microarray and RT-PCR analysis showed that the expression of Let-7a, a tumor-suppressive miRNA, is inversely correlated with the levels of HMGA2 and Sox2 in the AA side population (SP(+)) cells. Luciferase reporter assay showed that Let-7a directly targets the 3'UTRs of HMGA2 in AA-SP(+) cells. Knockdown of HMGA2 significantly suppressed the protein expression of Sox2 in AA-SP(+) cells, whereas overexpression of HMGA2 up-regulated Sox2 expression in AA-SP(-). Nuclear localization signal (NLS) peptides can facilitate nuclear targeting of DNA and are used to improve gene delivery. Using polyurethane-short branch polyethylenimine (PU-PEI) as a therapeutic delivery vehicle, we conjugated NLS with Let-7 and successfully delivered it to AA-SP(+) cells, resulting in significantly suppressed expression of HMGA2 and Sox2, tumorigenicity, and CSC-like abilities. This treatment facilitated the differentiation of AA-SP(+) cells into non-SP CSCs. Furthermore, PU-PEI-mediated delivery of NLS-conjugated Let-7a in AA-SP(+) cells suppressed the expression of drug-resistant and anti-apoptotic genes, and increased cell sensitivity to radiation. Finally, the in vivo delivery of PU-PEI-NLS-Let-7a significantly suppressed the tumorigenesis of AA-SP(+) cells, and synergistically improved the survival rate of orthotopically AA-SP(+)-transplanted immunocompromised mice when combined with radiotherapy. Therefore, PU-PEI-NLS-Let-7a is a potential novel therapeutic approach for AA.
    Cell transplantation. 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many female breast cancer (FBC) patients take Chinese herbal medicine (CHM) and Western medication (WM) concurrently in Taiwan. Despite the possibility of interactions between the CHM and WM mentioned in previous studies, the pattern of these coprescriptions in FBC patients remains unclear. Hence, the aim of the present study is to investigate the utilization of coprescriptions of CHM and WM among the FBC patients in Taiwan.
    Patient Preference and Adherence 01/2014; 8:671-82. · 1.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: High tidal volume (VT) mechanical ventilation (MV) can induce the recruitment of neutrophils, release of inflammatory cytokines and free radicals, and disruption of alveolar epithelial and endothelial barriers. It is proposed to be the triggering factor that initiates ventilator-induced lung injury (VILI) and concomitant hyperoxia further aggravates the progression of VILI. The Src protein tyrosine kinase (PTK) family is one of the most critical families to intracellular signal transduction related to acute inflammatory responses. The anti-inflammatory abilities of induced pluripotent stem cells (iPSCs) have been shown to improve acute lung injuries (ALIs); however, the mechanisms regulating the interactions between MV, hyperoxia, and iPSCs have not been fully elucidated. In this study, we hypothesize that Src PTK plays a critical role in the regulation of oxidants and inflammation-induced VILI during hyperoxia. iPSC therapy can ameliorate acute hyperoxic VILI by suppressing the Src pathway.
    PLoS ONE 01/2014; 9(10):e109953. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Chronic lung diseases cause serious morbidity and mortality, and effective treatments are limited. Induced pluripotent stem cells lacking the reprogramming factor c-Myc (3-gene iPSCs) can be used as ideal tools for cell-based therapy due to their low level of tumorigenicity. In this study, we investigated whether 3-gene iPSC transplantation could rescue bleomycin-induced pulmonary fibrosis. METHODS: Following the induction of pulmonary inflammation and fibrosis via intra-tracheal delivery of bleomycin sulphate, mice were intravenously injected with 3-gene iPSCs or conditioned medium (iPSC-CM) at 24 hours post-bleomycin treatment. RESULTS: Administration of either 3-gene iPSCs or iPSC-CM significantly attenuated collagen content and myeloperoxidase activity, diminished neutrophil accumulation and rescued pulmonary function and recipient survival post-bleomycin treatment. Notably, both treatments reduced the levels of inflammatory cytokines and chemokines, including interleukin (IL)-1, IL-2, IL-10, tumor necrosis factor (TNF)-α, and monocyte chemotactic protein (MCP)-1, yet increased the production of the anti-fibrotic chemokine interferon gamma-induced protein 10 (IP-10) in bleomycin-injured lungs. Furthermore, IP-10 neutralization via treatment with IP-10-neutralizing antibodies ameliorated the reparative effect of either 3-gene iPSCs or iPSC-CM on collagen content, neutrophil and monocyte accumulation, pulmonary fibrosis and recipient survival. CONCLUSIONS: Intravenous delivery of 3-gene iPSCs/iPSC-CM alleviated the severity of histopathologic and physiologic impairment in bleomycin-induced lung fibrosis. The protective mechanism was partially mediated by the early moderation of inflammation, reduced levels of cytokines and chemokines that mediate inflammation and fibrosis, and an increased production of anti-fibrotic IP-10 in the injured lungs.
    Shock (Augusta, Ga.) 01/2013; · 2.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prescription errors that occur due to the process of pill splitting are a common medication problem; however, available prescription information involving inappropriate pill splitting and its associated factors is lacking. We retrospectively evaluated a cohort of ambulatory prescriptions involving extended-release or enteric-coated formulations in a Taiwan medical center during a 5-month period in 2010. For this study, those pill splitting prescriptions involving special oral formulations were defined as inappropriate prescriptions. Information obtained included patient demographics, prescriber specialty and prescription details, which were assessed to identify factors associated with inappropriate pill splitting. There were 1,252 inappropriate prescriptions identified in this cohort study, representing a prescription frequency for inappropriate pill splitting of 1.0% among 124,300 prescriptions with special oral formulations. Among 35 drugs with special oral formulations in our study, 20 different drugs (57.1%, 20/35) had ever been prescribed to split. Anti-diabetic agents, cardiovascular agents and central nervous system agents were the most common drug classes involved in inappropriate splitting. The rate of inappropriate pill splitting was higher in older (over 65 years of age) patients (1.1%, 832/75,387). Eighty-seven percent (1089/1252) of inappropriate prescriptions were prescribed by internists. The rate of inappropriate pill splitting was highest from endocrinologists (3.4%, 429/12,477), nephrologists (1.3%, 81/6,028) and cardiologists (1.3%, 297/23,531). Multivariate logistic regression analysis revealed that the strongest factor associated with individual specific drug of inappropriate splitting was particular physician specialties. This study provides important insights into the inappropriate prescription of special oral formulation related to pill splitting, and helps to aggregate information that can assist medical professionals in creating processes for reducing inappropriate pill splitting in the future.
    PLoS ONE 01/2013; 8(7):e70113. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Metastasis is the major cause of high mortality in head and neck squamous cell carcinoma (HNSCC), in which HNSCC-derived cancer stem cells (CSCs) may be involved. Several reports have coupled non-viral gene delivery with RNA interference (RNAi) to target specific genes in cancer cells. However, the delivery efficiency of RNAi is limited and remained to be improved. Moreover, the therapeutic effect of non-viral gene delivery approaches on HNSCC-derived CSCs is still uncertain. In this study, we found that EZH2 and Oct4 are upregulated in HNSCC-derived ALDH1+/CD44+ CSC-like cells. Polyurethane-short branch PEI (PU-PEI)-based administration of double-stranded DNA (dsDNA) encoding small interfering RNA (siRNA) against EZH2 and Oct4 (siEZH2/siOct4) led to partial anti-cancer capacity and mild suppression of CSC-like properties. By pre-conjugation of nuclear localization signal (NLS) to siRNA-expressing dsDNA, the anti-cancer efficacy was enhanced due to elevated nuclear delivery. Notably, the NLS-preconjugated siEZH2/siOct4 constructs remarkably repressed epithelial-mesenchymal transdifferentiation (EMT) and radioresistance in ALDH1+/CD44+ CSC-like cells, in which Wnt5A and CyclinD1 may be involved respectively. We furthermore demonstrated that this improved method was capable of reducing tumor growth and metastasis in vivo. Our findings may provide a feasible non-viral gene delivery method to eradicate HNSCC-derived CSCs and improve HNSCC therapy.
    Biomaterials 05/2012; 33(14):3693-709. · 8.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A recent breakthrough demonstrated that ectopic expression of four genes is sufficient to reprogram human fibroblasts into inducible pluripotent stem cells (iPSCs). However, it remains unknown whether human endometrial fibroblasts (EMFs) are capable of being reprogrammed into EMF-derived iPSCs (EMF-iPSCs). EMFs were obtained from donors in their third and fourth decade of life and were reprogrammed into iPSCs using retroviral transduction with Oct-4, Sox2, Klf4, and c-Myc. The EMF-iPSCs displayed the accelerated expression of endogenous Nanog and OCT-4 during reprogramming compared with EMFs. As a result, EMF-iPSC colonies that could be subcultured and propagated were established as early as 12 days after transduction. After 2 weeks of reprogramming, the human endometrial cells yielded significantly higher numbers of iPSC colonies and formed more 3D spheroid bodies than the EMFs. We have shown that human EMF-iPSCs are able to differentiate into neuronal-like cells, adipocytes, and osteocyte-like cells that express specific osteogenic genes. Human EMFs can undergo reprogramming to establish pluripotent stem cell lines in female donors by the retroviral transduction of Oct-4, Sox2, Klf4, and c-Myc.
    Taiwanese journal of obstetrics & gynecology 03/2012; 51(1):35-42.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anaplastic thyroid cancer (ATC) is a lethal solid tumor with poor prognosis because of its invasiveness and its resistance to current therapies. Recently, ATC-CD133+ cells were found to have cancer stem cell (CSC) properties and were suggested to be important contributors to tumorigenicity and cancer metastasis. However, the molecular pathways and therapeutic targets in thyroid cancer-related CSCs remain undetermined. In this study, ATC-CD133+ cells were isolated and found to have increased tumorigenicity, radioresistance, and higher expression of both embryonic stem cell-related and drug resistance-related genes compared with ATC-CD133 cells. Microarray bioinformatics analysis suggested that the signal transducer and activator of transcription 3 (STAT3) pathway could be important in regulating the stemness signature in ATC-CD133+ cells; therefore, the effect of the potent STAT3 inhibitor cucurbitacin I in ATC-CD133+ cells was evaluated in this study. Treatment of ATC-CD133+ cells with cucurbitacin I diminished their CSC-like abilities, inhibited their stemness gene signature, and facilitated their differentiation into ATC-CD133⁻ cells. Of note, treatment of ATC-CD133+ cells with cucurbitacin I up-regulated the expression of thyroid-specific genes and significantly enhanced radioiodine uptake. Furthermore, cucurbitacin I treatment increased the sensitivity of ATC-CD133+ cells to radiation and chemotherapeutic drugs through apoptosis. Finally, xenotransplantation experiments revealed that cucurbitacin I plus radiochemotherapy significantly suppressed tumorigenesis and improved survival in immunocompromised mice into which ATC-CD133+ cells were transplanted. In summary, these results show that the STAT3 pathway plays a key role in mediating CSC properties in ATC-CD133+ cells. Targeting STAT3 with cucurbitacin I in ATC may provide a new approach for therapeutic treatment in the future.
    Journal of Pharmacology and Experimental Therapeutics 02/2012; 341(2):410-23. · 3.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The only curative treatment for hepatic failure is liver transplantation. Unfortunately, this treatment has several major limitations, as for example donor organ shortage. A previous report demonstrated that transplantation of induced pluripotent stem cells without reprogramming factor c-Myc (3-genes iPSCs) attenuates thioacetamide-induced hepatic failure with minimal incidence of tumorigenicity. In this study, we investigated whether 3-genes iPSC transplantation is capable of rescuing carbon tetrachloride (CCl(4))-induced fulminant hepatic failure and hepatic encephalopathy in mice. Firstly, we demonstrated that 3-genes iPSCs possess the capacity to differentiate into hepatocyte-like cells (iPSC-Heps) that exhibit biological functions and express various hepatic specific markers. 3-genes iPSCs also exhibited several antioxidant enzymes that prevented CCl(4)-induced reactive oxygen species production and cell death. Intraperitoneal transplantation of either 3-genes iPSCs or 3-genes iPSC-Heps significantly reduced hepatic necrotic areas, improved hepatic functions, and survival rate in CCl(4)-treated mice. CCl(4)-induced hepatic encephalopathy was also improved by 3-genes iPSC transplantation. Hoechst staining confirmed the successful engraftment of both 3-genes iPSCs and 3-genes iPSC-Heps, indicating the homing properties of these cells. The most pronounced hepatoprotective effect of iPSCs appeared to originate from the highest antioxidant activity of 3-gene iPSCs among all transplanted cells. In summary, our findings demonstrated that 3-genes iPSCs serve as an available cell source for the treatment of an experimental model of acute liver diseases.
    International Journal of Molecular Sciences 01/2012; 13(3):3598-617. · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oct4, a member of the POU-domain transcription factor family, has been implicated in the cancer stem cell (CSC)-like properties of various cancers. However, the precise role of Oct4 in colorectal CSC initiation remains uncertain. Numerous studies have demonstrated a strong link between inflammation and tumorigenesis in colorectal cancers. In this study, we demonstrated that Oct4 overexpression enhances CSC-like properties of colorectal cancer cells (CRCs), including sphere formation, cell colony formation, cell migration, invasiveness, and drug resistance. In addition, putative CSC markers, stemness genes, drug-resistant genes, as well as interleukin (IL)-8 and IL-32 were upregulated. Microarray-based bioinformatics of CRCs showed higher expression levels of embryonic stem cell-specific genes in cells that overexpressed Oct4. Neutralization of either IL-8 or IL-32 with specific antibodies partially blocked the tumorigenic effects induced by either Oct4 overexpression or by the addition of conditioned media from Oct4-overexpressing CRCs. In addition, the presence of Oct4-overexpressing CRCs enhanced the tumorigenic potential of parental CRCs in vivo. In summary, these data suggest that IL-8 and IL-32 play a role in regulating the CSC-like properties that promote tumorigenesis of CRCs in both autocrine and paracrine manners.
    Biochemical and Biophysical Research Communications 11/2011; 415(2):245-51. · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastomas (GBMs) are the most common primary brain tumors with poor prognosis. CD133 has been considered a putative marker of cancer stem cells (CSCs) in malignant cancers, including GBMs. MicroRNAs (miRNAs), highly conserved small RNA molecules, may target oncogenes and have potential as a therapeutic strategy against cancer. However, the role of miRNAs in GBM-associated CSCs remains mostly unclear. In this study, our miRNA/mRNA-microarray and RT-PCR analysis showed that the expression of miR145 (a tumor-suppressive miRNA) is inversely correlated with the levels of Oct4 and Sox2 in GBM-CD133(+) cells and malignant glioma specimens. We demonstrated that miR145 negatively regulates GBM tumorigenesis by targeting Oct4 and Sox2 in GBM-CD133(+). Using polyurethane-short branch polyethylenimine (PU-PEI) as a therapeutic-delivery vehicle, PU-PEI-mediated miR145 delivery to GBM-CD133(+) significantly inhibited their tumorigenic and CSC-like abilities and facilitated their differentiation into CD133(-)-non-CSCs. Furthermore, PU-PEI-miR145-treated GBM-CD133(+) effectively suppressed the expression of drug-resistance and anti-apoptotic genes and increased the sensitivity of the cells to radiation and temozolomide. Finally, the in vivo delivery of PU-PEI-miR145 alone significantly suppressed tumorigenesis with stemness, and synergistically improved the survival rate when used in combination with radiotherapy and temozolomide in orthotopic GBM-CD133(+)-transplanted immunocompromised mice. Therefore, PU-PEI-miR145 is a novel therapeutic approach for malignant brain tumors.
    Biomaterials 11/2011; 33(5):1462-76. · 8.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cationic polyurethane, a biodegradable non-viral vector, protects DNA from nuclease degradation and helps to deliver genes efficiently. Oct4, a POU-domain transcription factor, is highly expressed in maintaining pluripotency and cellular reprogramming process in stem cells. SirT1, a NAD-dependent histone deacetylase, is an essential mediator of cellular longevity. Herein we demonstrated that both Oct4 and SirT1 (Oct4/SirT1) expression was decreased in an age-dependent manner in retina with aged-related macular degeneration and retinal pigment epithelium cells (RPEs). To investigate the possible rescuing role of Oct4/SirT1, polyurethane-short branch polyethylenimine (PU-PEI) was used to deliver Oct4/SirT1 into aged RPEs (aRPEs) or light-injured rat retinas. Oct4/SirT1 overexpression increased the expression of several progenitor-related genes and the self-renewal ability of aRPEs. Moreover, Oct4/SirT1 overexpression resulted in the demethylation of the Oct4 promoter and enhanced the expression of antioxidant enzymes, which was accompanied by a decrease in intracellular ROS production and hydrogen peroxide-induced oxidative stress. Importantly, PU-PEI-mediated Oct4/SirT1 gene transfer rescued retinal cell loss and improved electroretinographic responses in light-injured rat retinas. In summary, these data suggest that PU-PEI-mediated delivery of Oct4/SirT1 reprograms aRPEs into a more primitive state and results in cytoprotection by regulating the antioxidative capabilities of these cells.
    Biomaterials 09/2011; 32(34):9077-88. · 8.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Induced pluripotent stem cells (iPSCs) with four reprogramming factors (Oct-4/Sox2/Klf-4/c-Myc) have been shown to differentiate into hepatic lineages. However, it was unclear whether obviation of the c-Myc oncogene in iPSCs affected hepatic differentiation or inhibited in vivo tumor formation. In this study, we demonstrated that iPSCs without c-Myc had the capacity to differentiate into hepatocyte-like cells (iPSC-Heps) with biological functions. As detected using planar-radionuclide imaging and Hoechst labeling assays, these iPSCs and iPSC-Heps tended to mobilize to the injured liver area in thioacetamide (TAA)-treated mice. Intravenous transplantation of both iPSCs and iPSC-Heps but not mouse embryonic fibroblasts (MEFs) reduced the hepatic necrotic area, improved liver functions, and rescued TAA-treated mice from lethal acute hepatic failure (AHF). In addition, microarray-based bioinformatics and quantitative RT-PCR showed high expression of antioxidant genes in iPSCs and iPSC-Heps compared to MEFs. In vivo and in vitro studies of NAC pretreatment confirmed that iPSCs and iPSC-Heps potentially suppressed ROS production and activated antioxidant enzymes in TAA-injured livers. Six months after transplantation in TAA-treated mice, tumor formation was not seen in non-c-Myc iPSC grafts. Therefore, reprogramming adult somatic cells without c-Myc may prevent oxidative stress-induced damage and provide a safer alternative for hepatic regeneration in AHF.
    Biomaterials 06/2011; 32(26):5994-6005. · 8.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease (PD) is a neurodegenerative disorder characterized by the degeneration of dopaminergic (DA) neurons in the midbrain. Induced pluripotent stem (iPS) cells have shown potential for differentiation and may become a resource of functional neurons for the treatment of PD. However, teratoma formation is a major concern for transplantation-based therapies. This study examined whether functional neurons could be efficiently generated from iPS cells using a five-step induction procedure combined with docosahexaenoic acid (DHA) treatment. We demonstrated that DHA, a ligand for the RXR/Nurr1 heterodimer, significantly activated expression of the Nurr1 gene and the Nurr1-related pathway in iPS cells. DHA treatment facilitated iPS differentiation into tyrosine hydroxylase (TH)-positive neurons in vitro and in vivo and functionally increased dopamine release in transplanted grafts in PD-like animals. Furthermore, DHA dramatically upregulated the endogenous expression levels of neuroprotective genes (Bcl-2, Bcl-xl, brain-derived neurotrophic factor, and glial cell-derived neurotrophic factor) and protected against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced apoptosis in iPS-derived neuronal precursor cells. DHA-treated iPS cells significantly improved the behavior of 6-hydroxydopamine (6-OHDA)-treated PD-like rats compared to control or eicosapentaenoic acid-treated group. Importantly, the in vivo experiment suggests that DHA induces the differentiation of functional dopaminergic precursors and improves the abnormal behavior of 6-OHDA-treated PD-like rats by 4 months after transplantation. Furthermore, we found that DHA treatment in iPS cell-grafted rats significantly downregulated the mRNA expression of embryonic stem cell-specific genes (Oct-4 and c-Myc) in the graft and effectively blocked teratoma formation. Importantly, 3 Tesla-magnetic resonance imaging and ex vivo green fluorescence protein imaging revealed that no teratomas were present in transplanted grafts of DHA-treated iPS-derived DA neurons 4 months after implantation. Therefore, our data suggest that DHA plays a crucial role in iPS differentiation into functional DA neurons and that this approach could provide a novel therapeutic approach for PD treatment.
    Cell Transplantation 06/2011; 21(1):313-32. · 4.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor. Patients diagnosed with GBM have a poor prognosis, and it has been reported that tumor malignancy and GBM recurrence are promoted by STAT3 signaling. As resveratrol (RV), a polyphenol in grapes, is reported to be a potent and non-toxic cancer-preventive compound, the aim of this study was to investigate the therapeutic effect and molecular mechanisms of RV on GBM-derived radioresistant tumor initiating cells (TIC). Firstly, our results showed that primary GBM-CD133(+) TIC presented high tumorigenic and radiochemoresistant properties as well as increased protein levels of phosphorylated STAT3. We consistently observed that treatment with shRNA-STAT3 (sh-STAT3) or AG490, a STAT3 inhibitor, significantly inhibited the cancer stem-like cell properties and radioresistance of GBM-CD133(+) in vitro and in vivo. Furthermore, treatment of GBM-CD133(+) with 100 µM RV induced apoptosis and enhanced radiosensitivity by suppressing STAT3 signaling. Microarray results suggested that RV or AG490 inhibited the stemness gene signatures of GBM-CD133(+) and facilitated the differentiation of GBM-CD133(+) into GBM-CD133(-) or astrocytoma cells. Finally, xenotransplant experiments indicated that RV or sh-STAT3 therapy could significantly improve the survival rate and synergistically enhance the radiosensitivity of radiation-treated GBM-TIC. In summary, RV can reduce in vivo tumorigenicity and enhance the sensitivity of GBM-TIC to radiotherapies through the STAT3 pathway.
    Journal of Cellular Physiology 04/2011; 227(3):976-93. · 4.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Signal transducer and activator of transcription 3 (STAT3) signaling reportedly promotes tumor malignancy and recurrence in nonsmall cell lung cancer (NSCLC). It was demonstrated previously that the STAT3 pathway maintains the tumorigenicity and therapeutic resistance of malignant tumors as well as cancer stem cells (CSCs). The objective of the current study was to investigate the effect of the strong STAT3 inhibitor, cucurbitacin I, in prominin-1 (CD133)-positive lung cancer cells. CD133-positive and CD133-negative NSCLC-derived cells were isolated from 7 patients with NSCLC. CD133-positive NSCLC cells that were treated with or without cucurbitacin I were evaluated for their expression of phosphorylated STAT3 (p-STAT3), tumorigenicity, stemness properties, and resistance to chemotherapeutic drugs and ionizing radiation. Compared with parental or CD133-negative NSCLC cells, CD133-positive NSCLC cells had greater tumorigenicity, greater radioresistance, and higher expression of octamer-binding transcription factor 4 (Oct-4), Nanog homeobox, and sex-determining region Y, box 2 (Sox2) at high p-STAT3 levels. Cucurbitacin I treatment at 100 nM effectively abrogated STAT3 activation, tumorigenic capacity, sphere formation ability, radioresistance, and chemoresistance in CD133-positive NSCLC cells. Microarray data suggested that cucurbitacin I inhibited the stemness gene signature of CD133-positive NSCLC cells and facilitated the differentiation of CD133-positive NSCLC cells into CD133-negative NSCLC cells. It is noteworthy that 150 nM cucurbitacin I effectively blocked STAT3 signaling and downstream survival targets, such as B-cell chronic lymphocytic leukemia/lymphoma 2 (Bcl-2) and Bcl-2-like 1 (Bcl-xL) expression and induced apoptosis in CD133-positive NSCLC cells. Finally, xenotransplantation experiments revealed that cucurbitacin I plus radiotherapy or chemotherapeutic drugs significantly suppressed tumorigenesis and improved survival in NSCLC-CD133-positive-transplanted, immunocompromised mice. Targeting STAT3 signaling in CD133-positive NSCLC cells with cucurbitacin I suppressed CSC-like properties and enhanced chemoradiotherapy response. The potential of cucurbitacin I should be verified further in future anti-CSC therapy.
    Cancer 01/2011; 117(13):2970-85. · 5.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Induced pluripotent stem cells formed by the introduction of only three factors, Oct4/Sox2/Klf4 (3-gene iPSCs), may provide a safer option for stem cell-based therapy than iPSCs conventionally introduced with four-gene iPSCs. Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) plays an important role during brown fat development. However, the potential roles of PGC-1α in regulating mitochondrial biogenesis and the differentiation of iPSCs are still unclear. Here, we investigated the effects of adenovirus-mediated PGC-1α overexpression in 3-gene iPSCs. PGC-1α overexpression resulted in increased mitochondrial mass, reactive oxygen species production, and oxygen consumption. Microarray-based bioinformatics showed that the gene expression pattern of PGC-1α-overexpressing 3-gene iPSCs resembled the expression pattern observed in adipocytes. Furthermore, PGC-1α overexpression enhanced adipogenic differentiation and the expression of several brown fat markers, including uncoupling protein-1, cytochrome C, and nuclear respiratory factor-1, whereas it inhibited the expression of the white fat marker uncoupling protein-2. Furthermore, PGC-1α overexpression significantly suppressed osteogenic differentiation. These data demonstrate that PGC-1α directs the differentiation of 3-gene iPSCs into adipocyte-like cells with features of brown fat cells. This may provide a therapeutic strategy for the treatment of mitochondrial disorders and obesity.
    International Journal of Molecular Sciences 01/2011; 12(11):7554-68. · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stem cells, a special subset of cells derived from embryo or adult tissues, are known to present the characteristics of self-renewal, multiple lineages of differentiation, high plastic capability, and long-term maintenance. Recent reports have further suggested that neural stem cells (NSCs) derived from the adult hippocampal and subventricular regions possess the utilizing potential to develop the transplantation strategies and to screen the candidate agents for neurogenesis, neuroprotection, and neuroplasticity in neurodegenerative diseases. In this article, we review the roles of NSCs and other stem cells in neuroprotective and neurorestorative therapies for neurological and psychiatric diseases. We show the evidences that NSCs play the key roles involved in the pathogenesis of several neurodegenerative disorders, including depression, stroke, and Parkinson’s disease. Moreover, the potential and possible utilities of induced pluripotent stem cells, reprogramming from adult fibroblasts with ectopic expression of four embryonic genes, are also reviewed and further discussed. An understanding of the biophysiology of stem cells could help us elucidate the pathogenicity and develop new treatments for neurodegenerative disorders. In contrast to cell transplantation therapies, the application of stem cells can further provide a platform for drug discovery and small molecular testing, including Chinese herbal medicines. In addition, the high-throughput stem cell-based systems can be used to elucidate the mechanisms of neuroprotective candidates in translation medical research for neurodegenerative diseases.
    Hydrometallurgy 01/2011; 2(1):1-6. · 2.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Embryonic stem (ES) cell transplantation represents a potential means for the treatment of degenerative diseases and injuries. As appropriate distribution of transplanted ES cells in the host tissue is critical for successful transplantation, the exploration of efficient strategies to enhance ES cell migration is warranted. In this study we investigated ES cell migration under the influence of various extracellular matrix (ECM) proteins, which have been shown to stimulate cell migration in various cell models with unclear effects on ES cells. Using two mouse ES (mES) cell lines, ESC 26GJ9012-8-2 and ES-D3 GL, to generate embryoid bodies (EBs), we examined the migration of differentiating cells from EBs that were delivered onto culture surfaces coated with or without collagen I, collagen IV, Matrigel, fibronectin, and laminin. Among these ECM proteins, collagen IV exhibited maximal migration enhancing effect. mES cells expressed α2 and β1 integrin subunits and the migration enhancing effect of collagen IV was prevented by RGD peptides as well as antibodies against α2 and β1 integrins, indicating that the enhancing effect of collagen IV on cell migration was mediated by α2β1 integrin. Furthermore, staining of actin cytoskeleton that links to integrins revealed well-developed stress fibers and long filopodia in mES cells cultured on collagen IV, and the actin-disrupting cytochalasin D abolished the collagen IV-enhanced cell migration. In addition, pretreatment of undifferentiated or differentiated mES cells with collagen IV resulted in improved engraftment and growth after transplantation into the subcutaneous tissue of nude mice. Finally, collagen IV pretreatment of osteogenically differentiated mES cells increased osteogenic differentiation-like tissue and decreased undifferentiation-like tissue in the grafts grown after transplantation. Our results demonstrated that collagen IV significantly enhanced the migration of differentiating ES cells through α2β1 integrin-mediated actin remodeling and could promote ES cell transplantation efficiency, which may be imperative to stem cell therapy.
    Cell Transplantation 12/2010; 20(6):893-907. · 4.42 Impact Factor

Publication Stats

760 Citations
137.29 Total Impact Points

Institutions

  • 2006–2014
    • National Yang Ming University
      • • Institute of Emergency and Critical Care Medicine
      • • Institute of Clinical Medicine
      • • Department of Anesthesiology
      T’ai-pei, Taipei, Taiwan
  • 2005–2011
    • Taipei Veterans General Hospital
      • • Department of Pharmacy
      • • Department of Medical Research and Education
      T’ai-pei, Taipei, Taiwan