Virginia E Papaioannou

University of Cambridge, Cambridge, England, United Kingdom

Are you Virginia E Papaioannou?

Claim your profile

Publications (141)1041.19 Total impact

  • Virginia E Papaioannou
    [Show abstract] [Hide abstract]
    ABSTRACT: The T-box family of transcription factors exhibits widespread involvement throughout development in all metazoans. T-box proteins are characterized by a DNA-binding motif known as the T-domain that binds DNA in a sequence-specific manner. In humans, mutations in many of the genes within the T-box family result in developmental syndromes, and there is increasing evidence to support a role for these factors in certain cancers. In addition, although early studies focused on the role of T-box factors in early embryogenesis, recent studies in mice have uncovered additional roles in unsuspected places, for example in adult stem cell populations. Here, I provide an overview of the key features of T-box transcription factors and highlight their roles and mechanisms of action during various stages of development and in stem/progenitor cell populations.
    Development (Cambridge, England). 10/2014; 141(20):3819-33.
  • Daniel Concepcion, Virginia E Papaioannou
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Mutations in the T-box gene Brachyury have well known effects on invagination of the endomesodermal layer during gastrulation, but the gene also plays a role in the determination of left/right axis determination that is less well studied. Previous work has implicated node morphology in this effect. We use the T(Wis) allele of Brachyury to investigate the molecular and morphological effects of the T locus on axis determination in the mouse. Results: Similar to embryos mutant for the T allele, T(Wis) /T(Wis) embryos have a high incidence of ventral and/or reversed heart looping. In addition, heterotaxia between the direction of heart looping and the direction of embryo turning is common. Scanning electron microscopy reveals defects in node morphology including irregularity, smaller size and a decreased number of cilia, although the cilia appear morphologically normal. Molecular analysis shows a loss of perinodal expression of genes involved in Nodal signaling, namely Cer2, Gdf1 and Nodal itself. There is also loss of Dll1 expression, a key component of the Notch signaling pathway, in the presomitic mesoderm. Conclusions: Morphological abnormalities of the node as well as disruptions of the molecular cascade of left/right axis determination characterize T(Wis) /T(Wis) mutants. Decreased Notch signaling may account for both the morphological defects and the absence of expression of genes in the Nodal signaling pathway. Developmental Dynamics, 2014. © 2014 Wiley Periodicals, Inc.
    Developmental Dynamics 05/2014; · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: The short stature homeodomain transcription factors SHOX and SHOX2 play key roles in limb formation. To gain more insight into genes regulated by Shox2 during limb development, we analysed expression profiles of WT and Shox2(-/-) mouse embryonic limbs and identified the T-Box transcription factor Tbx4 as a potential downstream target. Tbx4 is known to exert essential functions in skeletal and muscular hindlimb development. In humans, haploinsufficiency of TBX4 causes small patella syndrome, a skeletal dysplasia characterised by anomalies of the knee, pelvis and foot. Results: Here, we demonstrate an inhibitory regulatory effect of Shox2 on Tbx4 specifically in the forelimbs. We also show that Tbx4 activates Shox2 expression in fore- and hindlimbs, suggesting Shox2 as a feedback modulator of Tbx4. Using EMSA studies, we find that Tbx4/TBX4 is able to bind to distinct T-box binding sites within the mouse and human Shox2/SHOX2 promoter. Conclusions:; Our data identifies Tbx4 as a novel transcriptional activator of Shox2 during murine fore- and hindlimb development. Tbx4 is also regulated by Shox2 specifically in the forelimb bud possibly via a feedback mechanism. These data extend our understanding of the role and regulation of Tbx4 and Shox2 in limb development and limb associated diseases. Developmental Dynamics, 2013. © 2013 Wiley Periodicals, Inc.
    Developmental Dynamics 12/2013; · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Primordial germ cells (PGCs) are the founder cells of the germline. Via gametogenesis and fertilisation this lineage generates a new embryo in the next generation. PGCs are also the cell of origin of multilineage teratocarcinomas. In vitro, mouse PGCs can give rise to embryonic germ (EG) cells - pluripotent stem cells that can contribute to primary chimaeras when introduced into pre-implantation embryos. Thus, PGCs can give rise to pluripotent cells in the course of the developmental cycle, during teratocarcinogenesis and by in vitro culture. However, there is no evidence that PGCs can differentiate directly into somatic cell types. Furthermore, it is generally assumed that PGCs do not contribute to chimaeras following injection into the early mouse embryo. However, these data have never been formally published. Here, we present the primary data from the original PGC-injection experiments performed 40 years ago, alongside results from more recent studies in three separate laboratories. These results have informed and influenced current models of the relationship between pluripotency and the germline cycle. Current technologies allow further experiments to confirm and expand upon these findings and allow definitive conclusions as to the developmental potency of PGCs.
    Developmental Biology 11/2013; · 3.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Normal development of germ cells is essential for fertility and mammalian reproduction. Although abnormal development of oocytes or follicles may lead to primary ovarian insufficiency (POI), a disorder that causes infertility in 1% of women less than 40 yr of age, the genes and signaling pathways activated in POI are not as yet fully elucidated. Tbx4, a member of the T-box family of transcription factors, is expressed in embryonic germ cells and postnatal oocytes at all stages of folliculogenesis. To investigate the requirement for Tbx4 in the germline, we analyzed germ cell development in the absence of Tbx4. We show that primordial germ cells (PGCs) are reduced in Tbx4 homozygous null (Tbx4(-/-)) embryos at Embryonic Day (E) 10.0. Tbx4(-/-) embryos die by E10.5; to study later time points in vitro a tamoxifen inducible estrogen receptor Cre recombinase was used to delete Tbx4 conditional mutant alleles. In addition, Gdf9cre and Zp3cre, two oocyte-specific Cre recombinases, were used to delete Tbx4 from postnatal primordial and primary follicles, respectively. We show that in vitro differentiation of the gonad into morphologically distinct testes and ovaries occurs normally when Tbx4 is deleted starting at E11.5. In Gdf9cre; Tbx4(fl/-) and Zp3cre; Tbx4(fl/-) adult females, primordial, primary, secondary, and antral follicles form, ovulation occurs, corpus luteum formation is normal, and the mice are fertile without any evidence of diminished ovarian reserve. Although postnatal deletion of Tbx4 in oocytes does not obviously impair fertility, it is possible that the reduction in PGCs observed in Tbx4 homozygous null mutant embryos could affect long-term fertility in adults.
    Biology of Reproduction 10/2013; · 4.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bmp4 expression is tightly regulated during embryonic tooth development, with early expression in the dental epithelial placode leading to later expression in the dental mesenchyme. Msx1 is among several transcription factors that are induced by epithelial Bmp4 and that, in turn, are necessary for the induction and maintenance of dental mesenchymal Bmp4 expression. Thus, Msx1(-/-) teeth arrest at early bud stage and show loss of Bmp4 expression in the mesenchyme. Ectopic expression of Bmp4 rescues this bud stage arrest. We have identified Tbx2 expression in the dental mesenchyme at bud stage and show that this can be induced by epithelial Bmp4. We also show that endogenous Tbx2 and Msx1 can physically interact in mouse C3H10T1/2 cells. In order to ascertain a functional relationship between Msx1 and Tbx2 in tooth development, we crossed Tbx2 and Msx1 mutant mice. Our data show that the bud stage tooth arrest in Msx1(-/-) mice is partially rescued in Msx1(-/-);Tbx2(+/-) compound mutants. This rescue is accompanied by formation of the enamel knot (EK) and by restoration of mesenchymal Bmp4 expression. Finally, knockdown of Tbx2 in C3H10T1/2 cells results in an increase in Bmp4 expression. Together, these data identify a novel role for Tbx2 in tooth development and suggest that, following their induction by epithelial Bmp4, Msx1 and Tbx2 in turn antagonistically regulate odontogenic activity that leads to EK formation and to mesenchymal Bmp4 expression at the key bud-to-cap stage transition.
    Development 05/2013; · 6.60 Impact Factor
  • Nataki C Douglas, Virginia E Papaioannou
    [Show abstract] [Hide abstract]
    ABSTRACT: TBX2 and TBX3, closely related members of the T-box family of transcription factor genes, are expressed in mammary tissue in both humans and mice. Ulnar mammary syndrome (UMS), an autosomal dominant disorder caused by mutations in TBX3, underscores the importance of TBX3 in human breast development, while abnormal mammary gland development in Tbx2 or Tbx3 mutant mice provides models for experimental investigation. In addition to their roles in mammary development, aberrant expression of TBX2 and TBX3 is associated with breast cancer. TBX2 is preferentially amplified in BRCA1/2-associated breast cancers and TBX3 overexpression has been associated with advanced stage disease and estrogen-receptor-positive breast tumors. The regulation of Tbx2 and Tbx3 and the downstream targets of these genes in development and disease are not as yet fully elucidated. However, it is clear that the two genes play unique, context-dependent roles both in mammary gland development and in mammary tumorigenesis.
    Journal of Mammary Gland Biology and Neoplasia 04/2013; · 7.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Danforth's short tail mutant (Sd) mouse, first described in 1930, is a classic spontaneous mutant exhibiting defects of the axial skeleton, hindgut, and urogenital system. We used meiotic mapping in 1,497 segregants to localize the mutation to a 42.8-kb intergenic segment on chromosome 2. Resequencing of this region identified an 8.5-kb early retrotransposon (ETn) insertion within the highly conserved regulatory sequences upstream of Pancreas Specific Transcription Factor, 1a (Ptf1a). This mutation resulted in up to tenfold increased expression of Ptf1a as compared to wild-type embryos at E9.5 but no detectable changes in the expression levels of other neighboring genes. At E9.5, Sd mutants exhibit ectopic Ptf1a expression in embryonic progenitors of every organ that will manifest a developmental defect: the notochord, the hindgut, and the mesonephric ducts. Moreover, at E 8.5, Sd mutant mice exhibit ectopic Ptf1a expression in the lateral plate mesoderm, tail bud mesenchyme, and in the notochord, preceding the onset of visible defects such as notochord degeneration. The Sd heterozygote phenotype was not ameliorated by Ptf1a haploinsufficiency, further suggesting that the developmental defects result from ectopic expression of Ptf1a. These data identify disruption of the spatio-temporal pattern of Ptf1a expression as the unifying mechanism underlying the multiple congenital defects in Danforth's short tail mouse. This striking example of an enhancer mutation resulting in profound developmental defects suggests that disruption of conserved regulatory elements may also contribute to human malformation syndromes.
    PLoS Genetics 02/2013; 9(2):e1003206. · 8.52 Impact Factor
  • Source
    Svetlana Gavrilov, Richard P Harvey, Virginia E Papaioannou
    [Show abstract] [Hide abstract]
    ABSTRACT: Members of the T-box family of transcription factors are important regulators orchestrating the complex regionalization of the developing mammalian heart. Individual mutations in Tbx20 and Tbx3 cause distinct congenital heart abnormalities in the mouse: Tbx20 mutations result in failure of heart looping, developmental arrest and lack of chamber differentiation, while hearts of Tbx3 mutants progress further, loop normally but show atrioventricular convergence and outflow tract defects. The two genes have overlapping areas of expression in the atrioventricular canal and outflow tract of the heart but their potential genetic interaction has not been previously investigated. In this study we produced compound mutants to investigate potential genetic interactions at the earliest stages of heart development. We find that Tbx20; Tbx3 double heterozygous mice are viable and fertile with no apparent abnormalities, while double homozygous mutants are embryonic lethal by midgestation. Double homozygous mutant embryos display abnormal cardiac morphogenesis, lack of heart looping, expression patterns of cardiac genes and time of death that are indistinguishable from Tbx20 homozygous mutants. Prior to death, the double homozygotes show an overall developmental delay similar to Tbx3 homozygous mutants. Thus the effects of Tbx20 are epistatic to Tbx3 in the heart but Tbx3 is epistatic to Tbx20 with respect to developmental delay.
    PLoS ONE 01/2013; 8(7):e70149. · 3.53 Impact Factor
  • Source
    Ripla Arora, Ross J Metzger, Virginia E Papaioannou
    [Show abstract] [Hide abstract]
    ABSTRACT: Normal development of the respiratory system is essential for survival and is regulated by multiple genes and signaling pathways. Both Tbx4 and Tbx5 are expressed throughout the mesenchyme of the developing lung and trachea; and, although multiple genes are known to be required in the epithelium, only Fgfs have been well studied in the mesenchyme. In this study, we investigated the roles of Tbx4 and Tbx5 in lung and trachea development using conditional mutant alleles and two different Cre recombinase transgenic lines. Loss of Tbx5 leads to a unilateral loss of lung bud specification and absence of tracheal specification in organ culture. Mutants deficient in Tbx4 and Tbx5 show severely reduced lung branching at mid-gestation. Concordant with this defect, the expression of mesenchymal markers Wnt2 and Fgf10, as well as Fgf10 target genes Bmp4 and Spry2, in the epithelium is downregulated. Lung branching undergoes arrest ex vivo when Tbx4 and Tbx5 are both completely lacking. Lung-specific Tbx4 heterozygous;Tbx5 conditional null mice die soon after birth due to respiratory distress. These pups have small lungs and show severe disruptions in tracheal/bronchial cartilage rings. Sox9, a master regulator of cartilage formation, is expressed in the trachea; but mesenchymal cells fail to condense and consequently do not develop cartilage normally at birth. Tbx4;Tbx5 double heterozygous mutants show decreased lung branching and fewer tracheal cartilage rings, suggesting a genetic interaction. Finally, we show that Tbx4 and Tbx5 interact with Fgf10 during the process of lung growth and branching but not during tracheal/bronchial cartilage development.
    PLoS Genetics 08/2012; 8(8):e1002866. · 8.52 Impact Factor
  • Ripla Arora, Virginia E Papaioannou
    [Show abstract] [Hide abstract]
    ABSTRACT: The allantois is the embryonic precursor of the umbilical cord in mammals and is one of several embryonic regions, including the yolk sac and dorsal aorta, that undergoes vasculogenesis, the de novo formation of blood vessels. Despite its importance in establishing the chorioallantoic placenta and umbilical circulation, the allantois frequently is overlooked in embryologic studies. Nonetheless, recent studies demonstrate that vasculogenesis, vascular remodeling, and angiogenesis are essential allantois functions in the establishment of the chorioallantoic placenta. Here, we review blood vessel formation in the murine allantois, highlighting the expression of genes and involvement of pathways common to vasculogenesis or angiogenesis in other parts of the embryo. We discuss experimental techniques available for manipulation of the allantois that are unavailable for yolk sac or dorsal aorta, and review how this system has been used as a model system to discover new genes and mechanisms involved in vessel formation. Finally, we discuss the potential of the allantois as a model system to provide insights into disease and therapeutics.
    Blood 07/2012; 120(13):2562-72. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: TBX3, a member of the T-box transcription factor gene family, is a transcriptional repressor that is required for the development of the heart, limbs, and mammary glands. Mutations in TBX3 that result in reduced functional protein lead to ulnar-mammary syndrome, a developmental disorder characterized by limb, mammary gland, tooth, and genital abnormalities. Increased levels of TBX3 have been shown to contribute to the oncogenic process, and TBX3 is overexpressed in several cancers, including breast cancer, liver cancer, and melanoma. Despite its important role in development and postnatal life, little is known about the signaling pathways that modulate TBX3 expression. Here we show, using in vitro and in vivo assays, that retinoic acid (RA) activates endogenous TBX3 expression, which is mediated by an RA-receptor complex directly binding and activating the TBX3 promoter, and we provide evidence that this regulation may be functionally relevant in mouse embryonic limb development. Our data identify TBX3 as a direct target of the RA signaling pathway and extend our understanding of the role and regulation of TBX3 in limb development.
    Molecular biology of the cell 04/2012; 23(12):2362-72. · 5.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Paraxial mesoderm is the tissue which gives rise to the skeletal muscles and vertebral column of the body. A gene regulatory network operating in the formation of paraxial mesoderm has been described. This network hinges on three key factors, Wnt3a, Msgn1 and Tbx6, each of which is critical for paraxial mesoderm formation, since absence of any one of these factors results in complete absence of posterior somites. In this study we determined and compared the spatial and temporal patterns of expression of Wnt3a, Msgn1 and Tbx6 at a time when paraxial mesoderm is being formed. Then, we performed a comparative characterization of mutants in Wnt3a, Msgn1 and Tbx6. To determine the epistatic relationship between these three genes, and begin to decipher the complex interplay between them, we analyzed double mutant embryos and compared their phenotypes to the single mutants. Through the analysis of molecular markers in mutants, our data support the bipotential nature of the progenitor cells for paraxial mesoderm and establish regulatory relationships between genes involved in the choice between neural and mesoderm fates.
    Developmental Biology 04/2012; 367(1):1-14. · 3.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The T-box transcription factor Tbx3 plays multiple roles in normal development and disease. In order to function in different tissues and on different target genes, Tbx3 binds transcription factors or other cofactors specific to temporal or spatial locations. Examining the development of the mammary gland, limbs, and heart as well as the biology of stem cells and cancer provides insights into the diverse and common functions that Tbx3 can perform. By either repressing or activating transcription of target genes in a context-dependent manner, Tbx3 is able to modulate differentiation of immature progenitor cells, control the rate of cell proliferation, and mediate cellular signaling pathways. Because the direct regulators of these cellular processes are highly context-dependent, it is essential that Tbx3 has the flexibility to regulate transcription of a large group of targets, but only become a active on a small cohort of them at any given time or place. Moreover, Tbx3 must be responsive to the variety of different upstream factors that are present in different tissues. Only by understanding the network of genes, proteins, and molecules with which Tbx3 interacts can we hope to understand the role that Tbx3 plays in normal development and how its aberrant expression can lead to disease. Because of its myriad functions in disparate developmental and disease contexts, Tbx3 is an ideal candidate for a systems-based approach to genetic function and interaction. WIREs Syst Biol Med 2012. doi: 10.1002/wsbm.1162 For further resources related to this article, please visit the WIREs website.
    Wiley Interdisciplinary Reviews Systems Biology and Medicine 02/2012; 4(3):273-83. · 3.68 Impact Factor
  • Source
    Nataki C Douglas, Kathleen Heng, Mark V Sauer, Virginia E Papaioannou
    [Show abstract] [Hide abstract]
    ABSTRACT: Tbx2, Tbx3, Tbx4, and Tbx5, members of the Tbx2 subfamily of T-box transcription factor genes, are important for many aspects of embryonic development and mutations in some human TBX2 subfamily genes cause developmental syndromes. In addition, TBX2 and TBX3 are overexpressed in a variety of cancers, including reproductive system cancers. This study characterizes the expression of Tbx2 subfamily genes during development of the reproductive system. We show that these genes are expressed in both the internal and external reproductive systems. Tbx2 is expressed in gonads and genital ducts, the Wolffian and Müllerian ducts, while Tbx3 is only expressed in genital ducts. Tbx4 is expressed in embryonic and postnatal germ cells. All four genes are expressed in mesenchyme in external genitalia, with Tbx3 and Tbx5 expression in the epithelium as well. This study lays the foundation for investigation of functional requirements for Tbx2 subfamily genes in development of the mammalian reproductive system.
    Developmental Dynamics 02/2012; 241(2):365-75. · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Loss of Tbx4 results in absence of chorio-allantoic fusion and failure of formation of the primary vascular plexus of the allantois leading to embryonic death at E10.5. We reviewed the literature for genes implicated in chorio-allantoic fusion, cavitation and vascular plexus formation, processes affected in Tbx4 mutant allantoises. Using this candidate gene approach, we identified a number of genes downstream of Tbx4 in the allantois including extracellular matrix molecules Vcan, Has2, and Itgα5, transcription factors Snai1 and Twist, and signaling molecules Bmp2, Bmp7, Notch2, Jag1 and Wnt2. In addition, we show that the canonical Wnt signaling pathway contributes to the vessel-forming potential of the allantois. Ex vivo, the Tbx4 mutant phenotype can be rescued using agonists of the Wnt signaling pathway and, in wildtype allantoises, an inhibitor of the canonical Wnt signaling pathway disrupts vascular plexus formation. In vivo, Tbx4 and Wnt2 double heterozygous placentas show decreased vasculature suggesting interactions between Tbx4 and the canonical Wnt signaling pathway in the process of allantois-derived blood vessel formation.
    PLoS ONE 01/2012; 7(8):e43581. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The 22q11.2 deletion syndrome (22q11.2DS) is the most common microdeletion disorder and is characterized by abnormal development of the pharyngeal apparatus and heart. Cardiovascular malformations (CVMs) affecting the outflow tract (OFT) are frequently observed in 22q11.2DS and are among the most commonly occurring heart defects. The gene encoding T-box transcription factor 1 (Tbx1) has been identified as a major candidate for 22q11.2DS. However, CVMs are generally considered to have a multigenic basis and single-gene mutations underlying these malformations are rare. The T-box family members Tbx2 and Tbx3 are individually required in regulating aspects of OFT and pharyngeal development. Here, using expression and three-dimensional reconstruction analysis, we show that Tbx1 and Tbx2/Tbx3 are largely uniquely expressed but overlap in the caudal pharyngeal mesoderm during OFT development, suggesting potential combinatorial requirements. Cross-regulation between Tbx1 and Tbx2/Tbx3 was analyzed using mouse genetics and revealed that Tbx1 deficiency affects Tbx2 and Tbx3 expression in neural crest-derived cells and pharyngeal mesoderm, whereas Tbx2 and Tbx3 function redundantly upstream of Tbx1 and Hh ligand expression in pharyngeal endoderm and bone morphogenetic protein- and fibroblast growth factor-signaling in cardiac progenitors. Moreover, in vivo, we show that loss of two of the three genes results in severe pharyngeal hypoplasia and heart tube extension defects. These findings reveal an indispensable T-box gene network governing pharyngeal and OFT development and identify TBX2 and TBX3 as potential modifier genes of the cardiopharyngeal phenotypes found in TBX1-haploinsufficient 22q11.2DS patients.
    Human Molecular Genetics 11/2011; 21(6):1217-29. · 7.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: FoxO1 integrates multiple metabolic pathways. Nutrient levels modulate FoxO1 acetylation, but the functional consequences of this posttranslational modification are unclear. To answer this question, we generated mice bearing alleles that encode constitutively acetylated and acetylation-defective FoxO1 proteins. Homozygosity for an allele mimicking constitutive acetylation (Foxo1(KQ/KQ)) results in embryonic lethality due to cardiac and angiogenesis defects. In contrast, mice homozygous for a constitutively deacetylated Foxo1 allele (Foxo1(KR/KR)) display a unique metabolic phenotype of impaired insulin action on hepatic glucose metabolism but decreased plasma lipid levels and low respiratory quotient that are consistent with a state of preferential lipid usage. Moreover, Foxo1(KR/KR) mice show a dissociation between weight gain and insulin resistance in predisposing conditions (high fat diet, diabetes, and insulin receptor mutations), possibly due to decreased cytokine production in adipose tissue. Thus, acetylation inactivates FoxO1 during nutrient excess whereas deacetylation selectively potentiates FoxO1 activity, protecting against excessive catabolism during nutrient deprivation.
    Cell metabolism 11/2011; 14(5):587-97. · 17.35 Impact Factor
  • Source
    L A Naiche, Ripla Arora, Artur Kania, Mark Lewandoski, Virginia E Papaioannou
    [Show abstract] [Hide abstract]
    ABSTRACT: T-box gene Tbx4 is critical for the formation of the umbilicus and the initiation of the hindlimb. Previous studies show broad expression in the allantois, hindlimb, lung and proctodeum. We have examined the expression of Tbx4 in detail and used a Tbx4-Cre line to trace the fates of Tbx4-expressing cells. Tbx4 expression and lineage reveal that various distinct appendages, such as the allantois, hindlimb, and external genitalia, all arise from a single mesenchymal expression domain. Additionally, although Tbx4 is associated primarily with the hindlimb, we find two forelimb expression domains. Most notably, we find that, despite the requirement for Tbx4 in allantoic vasculogenesis, the presumptive endothelial cells of the allantois do not express Tbx4 and lineage tracing reveals that the umbilical vasculature never expresses Tbx4. These results suggest that endothelial lineages are segregated before the onset of vasculogenesis, and demonstrate a role for the peri-vascular tissue in vasculogenesis.
    Developmental Dynamics 10/2011; 240(10):2290-300. · 2.59 Impact Factor
  • Source
    Salma Begum, Virginia E Papaioannou
    [Show abstract] [Hide abstract]
    ABSTRACT: Tbx2 and Tbx3 are closely related members of the T-box family of transcription factors that are important regulators during normal development as well as major contributors to human developmental syndromes when mutated. Although there is evidence for the involvement of Tbx2 and Tbx3 in pancreatic cancer, so far there are no reports characterizing the normal expression pattern of these genes in the pancreas. In this study, we examined spatial and temporal expression of Tbx2 and Tbx3 in mouse pancreas during development and in the adult using in situ hybridization and immunohistochemistry. Our results show that Tbx2 and Tbx3 are both expressed in the pancreatic mesenchyme throughout development beginning at embryonic day (E) 9.5. In addition, Tbx2 is expressed in pancreatic vasculature during development and in epithelial-derived endocrine and ductal cells during late fetal stages, postnatal development and in adult pancreas. In contrast, Tbx3 is expressed in exocrine tissue in the postnatal and adult pancreas. Further our results demonstrate that Tbx2 and Tbx3 are expressed in tumor-derived endocrine and exocrine cell lines, respectively. These dynamic changes in the expression pattern of these transcription factors lay the foundation for investigation of potential roles in pancreas development.
    Gene Expression Patterns 08/2011; 11(8):476-83. · 1.64 Impact Factor

Publication Stats

10k Citations
1,041.19 Total Impact Points


  • 2005–2013
    • University of Cambridge
      • Department of Physiology, Development and Neuroscience
      Cambridge, England, United Kingdom
    • Cancer Research UK Cambridge Institute
      Cambridge, England, United Kingdom
  • 1996–2013
    • Columbia University
      • • Department of Obstetrics and Gynecology
      • • Department of Genetics and Development
      • • College of Physicians and Surgeons
      New York City, NY, United States
  • 2011
    • Leidos Biomedical Research
      Maryland, United States
  • 2008
    • Memorial Sloan-Kettering Cancer Center
      • Division of Developmental Biology
      New York City, NY, United States
  • 1995–2006
    • CUNY Graduate Center
      New York City, New York, United States
  • 1987–1996
    • Tufts University
      • Department of Neuroscience
      Medford, MA, United States
  • 1992–1995
    • Harvard Medical School
      • Department of Cell Biology
      Boston, MA, United States
    • Massachusetts Institute of Technology
      Cambridge, Massachusetts, United States
    • Harvard University
      • Department of Molecular and Cell Biology
      Boston, MA, United States
  • 1994
    • University of Massachusetts Boston
      • Department of Biology
      Boston, MA, United States
  • 1989–1993
    • Dana-Farber Cancer Institute
      Boston, Massachusetts, United States