Willem J M Mulder

Icahn School of Medicine at Mount Sinai, Manhattan, New York, United States

Are you Willem J M Mulder?

Claim your profile

Publications (107)666.29 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Understanding how leukocytes impact atherogenesis contributes critically to our concept of atherosclerosis development and the identification of potential therapeutic targets. Objectives The study evaluates an in vivo imaging approach to visualize peripheral blood mononuclear cell (PBMC) accumulation in atherosclerotic lesions of cardiovascular (CV) patients using hybrid single-photon emission computed tomography/computed tomography (SPECT/CT). Methods At baseline, CV patients and healthy controls underwent 18fluorodeoxyglucose positron emission tomography-computed tomography and magnetic resonance imaging to assess arterial wall inflammation and dimensions, respectively. For in vivo trafficking, autologous PBMCs were isolated, labeled with technetium-99m, and visualized 3, 4.5, and 6 h post-infusion with SPECT/CT. Results Ten CV patients and 5 healthy controls were included. Patients had an increased arterial wall inflammation (target-to-background ratio [TBR] right carotid 2.00 ± 0.26 in patients vs. 1.51 ± 0.12 in controls; p = 0.022) and atherosclerotic burden (normalized wall index 0.52 ± 0.09 in patients vs. 0.33 ± 0.02 in controls; p = 0.026). Elevated PBMC accumulation in the arterial wall was observed in patients; for the right carotid, the arterial-wall-to-blood ratio (ABR) 4.5 h post-infusion was 2.13 ± 0.35 in patients versus 1.49 ± 0.40 in controls (p = 0.038). In patients, the ABR correlated with the TBR of the corresponding vessel (for the right carotid: r = 0.88; p < 0.001). Conclusions PBMC accumulation is markedly enhanced in patients with advanced atherosclerotic lesions and correlates with disease severity. This study provides a noninvasive imaging tool to validate the development and implementation of interventions targeting leukocytes in atherosclerosis.
    Journal of the American College of Cardiology 09/2014; 64(10):1019–1029. · 14.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Advances in preclinical molecular imaging have generated new opportunities to noninvasively visualize the biodistribution and tumor targeting of nanoparticle therapeutics. Capitalizing on recent achievements in this area, we sought to develop an (89)Zr-based labeling strategy for liposomal nanoparticles that accumulate in tumors via passive targeting mechanisms.
    Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bioengineering provides unique opportunities to better understand and manage atherosclerotic disease. The field is entering a new era that merges the latest biological insights into inflammatory disease processes with targeted imaging and nanomedicine. Preclinical cardiovascular molecular imaging allows the in vivo study of targeted nanotherapeutics specifically directed toward immune system components that drive atherosclerotic plaque development and complication. The first multicenter trials highlight the potential contribution of multimodality imaging to more efficient drug development. This review describes how the integration of engineering, nanotechnology, and cardiovascular immunology may yield precision diagnostics and efficient therapeutics for atherosclerosis and its ischemic complications.
    Science translational medicine 06/2014; 6(239):239sr1. · 10.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammation is a key feature of atherosclerosis and a target for therapy. Statins have potent anti-inflammatory properties but these cannot be fully exploited with oral statin therapy due to low systemic bioavailability. Here we present an injectable reconstituted high-density lipoprotein (rHDL) nanoparticle carrier vehicle that delivers statins to atherosclerotic plaques. We demonstrate the anti-inflammatory effect of statin-rHDL in vitro and show that this effect is mediated through the inhibition of the mevalonate pathway. We also apply statin-rHDL nanoparticles in vivo in an apolipoprotein E-knockout mouse model of atherosclerosis and show that they accumulate in atherosclerotic lesions in which they directly affect plaque macrophages. Finally, we demonstrate that a 3-month low-dose statin-rHDL treatment regimen inhibits plaque inflammation progression, while a 1-week high-dose regimen markedly decreases inflammation in advanced atherosclerotic plaques. Statin-rHDL represents a novel potent atherosclerosis nanotherapy that directly affects plaque inflammation.
    Nature Communications 01/2014; 5:3065. · 10.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Therapeutic and diagnostic nanomaterials are being intensely studied for several diseases, including cancer and atherosclerosis. However, the exact mechanism by which nanomedicines accumulate at targeted sites remains a topic of investigation, especially in the context of atherosclerotic disease. Models to accurately predict transvascular permeation of nanomedicines are needed to aid in design optimization. Here we show that an endothelialized microchip with controllable permeability can be used to probe nanoparticle translocation across an endothelial cell layer. To validate our in vitro model, we studied nanoparticle translocation in an in vivo rabbit model of atherosclerosis using a variety of preclinical and clinical imaging methods. Our results reveal that the translocation of lipid-polymer hybrid nanoparticles across the atherosclerotic endothelium is dependent on microvascular permeability. These results were mimicked with our microfluidic chip, demonstrating the potential utility of the model system.
    Proceedings of the National Academy of Sciences 01/2014; · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lipid coated nanocrystal assemblies are among the most extensively investigated nanoparticle platforms for biomedical imaging and therapeutic purposes. However, very few efforts have been addressed to the lipid coating exchange dynamics in such systems, which is key to our understanding of the nanoparticles' coating stability and their interactions with the environment. Here, we apply the Förster resonance energy transfer (FRET) from quantum dot (QD) core to Cy5.5 dye labeled lipids at the surface to monitor the lipid exchange dynamics in situ and to study its dependence on concentration, temperature and solvent. A kinetic model is developed to describe the experimental data, allowing the rate constants and the activation energy for lipid exchange to be determined. The activation energy for lipid exchange on QD micelles is 155 kJ/mol in saline environment and 130 kJ/mol in pure water. The findings presented here provide basic knowledge on these self-assembled structures and contribute to understanding their performance and to further design of nanomedicine.
    Small 12/2013; · 7.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the current study we show the dissociation and tumor accumulation dynamics of dual-labeled near-infrared quantum dot core self-assembled lipidic nanoparticles (SALNPs) in a mouse model upon intravenous administration. Using advanced in vivo fluorescence energy transfer imaging techniques, we observed swift exchange with plasma protein components in the blood and progressive SALNP dissociation and subsequent trafficking of individual SALNP components following tumor accumulation. Our results suggest that upon intravenous administration SALNPs quickly transform, which may affect their functionality. The presented technology provides a modular in vivo tool to visualize SALNP behavior in real time and may contribute to improving the therapeutic outcome or molecular imaging signature of SALNPs.
    ACS Nano 10/2013; · 12.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Low density lipoprotein (LDL) plays a critical role in cholesterol transport and is closely linked to the progression of several diseases. This motivates the development of methods to study LDL behavior from the microscopic to whole-body level. We have developed an approach to efficiently load LDL with a range of diagnostically active nanocrystals or hydrophobic agents. We performed focused experiments on LDL labeled with gold nanocrystals (Au-LDL). The labeling procedure had minimal effect on LDL size, morphology or composition. Biological function was found to be maintained from both in vitro and in vivo experiments. Tumor bearing mice were injected intravenously with LDL, DiR-LDL, Au-LDL or a gold-loaded nanoemulsion. LDL accumulation in the tumors was detected with whole body imaging methods, such as computed tomography (CT), spectral CT and fluorescence imaging. Cellular localization was studied with transmission electron microscopy (TEM) and fluorescence techniques. In conclusion, this LDL labeling procedure should permit the study of lipoprotein biointeractions in unprecedented detail.
    ACS Nano 10/2013; · 12.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: High-density lipoprotein (HDL) is a natural nanoparticle that transports peripheral cholesterol to the liver. Reconstituted high-density lipoprotein (rHDL) exhibits anti-atherothrombotic properties and is being considered as a natural treatment for cardiovascular diseases. Furthermore, HDL nanoparticle platforms have been created for targeted delivery of therapeutic and diagnostic agents. The current methods for HDL reconstitution involve lengthy procedures that are challenging to scale up. A central need in the synthesis of rHDL, and multifunctional nanomaterials in general, is to establish large-scale production of reproducible and homogeneous batches in a simple and efficient fashion. Here, we present a large-scale microfluidics-based manufacturing method for single-step synthesis of HDL-mimicking nanomaterials (μHDL). μHDL is shown to have the same properties (e.g. size, morphology, bioactivity) as conventionally rHDL and native HDL. In addition, we were able to incorporate simvastatin (a hydrophobic drug) into μHDL, as well as gold, iron oxide, quantum dot nanocrystals or fluorophores to enable its detection by computed tomography (CT), magnetic resonance imaging (MRI), or fluorescence microscopy, respectively. Our approach may contribute to effective development and optimization of lipoprotein-based nanomaterials for medical imaging and drug delivery.
    ACS Nano 09/2013; · 12.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the past two decades advances in the development of targeted nanoparticles have facilitated their application as molecular imaging agents and targeted drug delivery vehicles. Nanoparticle-enhanced molecular imaging of the angiogenic tumor vasculature has been of particular interest. Not only because angiogenesis plays an important role in various pathologies, but also since endothelial cell surface receptors are directly accessible for relatively large circulating nanoparticles. Typically, nanoparticle targeting towards these receptors is studied by analyzing the contrast distribution on tumor images acquired before and at set time points after administration. Although several exciting proof-of-concept studies demonstrated qualitative assessment of relative target concentration and distribution, these studies did not provide quantitative information on the nanoparticle targeting kinetics. These kinetics will not only depend on nanoparticle characteristics, but also on receptor binding and recycling. In this study, we monitored the in vivo targeting kinetics of αvβ3-integrin specific nanoparticles with intravital microscopy and dynamic contrast enhanced magnetic resonance imaging, and using compartment modeling we were able to quantify nanoparticle targeting rates. As such, this approach can facilitate optimization of targeted nanoparticle design and it holds promise for providing more quantitative information on in vivo receptor levels. Interestingly, we also observed a periodicity in the accumulation kinetics of αvβ3-integrin targeted nanoparticles and hypothesize that this periodicity is caused by receptor binding, internalization and recycling dynamics. Taken together, this demonstrates that our experimental approach provides new insights in in vivo nanoparticle targeting, which may proof useful for vascular targeting in general.
    Angiogenesis 08/2013; · 4.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: For advanced treatment of diseases such as cancer, multi-component, multi-functional nanoparticles hold great promise. In the current study we report the synthesis of a complex nanoparticle (NP) system with dual drug loading as well as diagnostic properties. To that aim we present a methodology where chemically modified poly(lactic-co-glycolic) acid (PLGA) polymer is formulated into a polymer-lipid NP that contains a cytotoxic drug doxorubicin (DOX) in the polymeric core and an anti-angiogenic drug sorafenib (SRF) in the lipidic corona. The NP core also contains gold nanocrystals (AuNCs) for imaging purposes and cyclodextrin molecules to maximize the DOX encapsulation in the NP core. In addition, a near infrared (NIR) Cy7 dye was incorporated in the coating. To fabricate the NP we used a microfluidics-based technique that offers unique NP synthesis conditions, which allowed for encapsulation and fine tuning of optimal ratios of all the NP components. NP phantoms could be visualized with computed tomography (CT) and near infrared (NIR) fluorescence imaging. We observed timed release of the encapsulated drugs, with fast release of the corona drug SRF and delayed release of a core drug DOX. In tumor bearing mice intravenously administered NPs were found to accumulate at the tumor site by fluorescence imaging.
    Bioconjugate Chemistry 08/2013; · 4.58 Impact Factor
  • Proceedings of the National Academy of Sciences 07/2013; · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a multifunctional nanoparticle platform that has targeting moieties shielded by a matrix metalloproteinase-2 (MMP2) cleavable PEG coating. Upon incubation with MMP2 this surface-switchable coating is removed and the targeting ligands become available for binding. The concept was evaluated in vitro using biotin and αvβ3-integrin-specific RGD-peptide functionalized nanoparticles.
    Chemical Communications 07/2013; · 6.38 Impact Factor
  • Source
    Willem J M Mulder, Michael T McMahon, Klaas Nicolay
    [Show abstract] [Hide abstract]
    ABSTRACT: Watch a video introduction to this special issue.
    NMR in Biomedicine 07/2013; 26(7):725-7. · 3.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The important role of monocytes and macrophages in diseases like cancer and atherosclerosis has started to get uncovered in the last decade. In addition, subsets of these cell types are believed to participate in the initiation and aggravation of several diseases including cancer and cardiovascular disease. For this reason, monocytes and macrophages have recently been identified as interesting targets for both diagnosis and treatment of the aforementioned pathologies. Compared with free therapeutic or imaging agents, nanoparticle formulations provide several advantages that improve the pharmacokinetics and bioavailability of these agents. In addition, the possibility of surface functionalization creates numerous ways to optimize nanoparticle delivery. Recent advances in nanomedicine have led to the development of multifunctional nanoparticles that allow simultaneous diagnosis and treatment of monocytes and macrophages with high specificity. Relying on the inherent ability of monocytes and macrophages to easily take up foreign particles, the use of nanoparticles provides a precious opportunity for the management of several inflammatory diseases.
    Expert Review of Molecular Diagnostics 07/2013; 13(6):567-80. · 4.09 Impact Factor
  • Source
    Willem J M Mulder, Michael T McMahon, Klaas Nicolay
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have previously reported enhancing the imaging of atherosclerotic plaques in mice using reconstituted high density lipoproteins (HDL) as nano-carriers for the MRI contrast agent gadolinium (Gd). This study focuses on the underlying mechanisms of Gd delivery to atherosclerotic plaques. HDL, LDL and VLDL particles containing Gd chelated to phosphatidyl ethanolamine (DTPA-DMPE) and a lipidic fluorophore, were used to demonstrate the transfer of Gd-phospholipids among plasma lipoproteins in vitro and in vivo. To determine the basis of this transfer, the roles of phospholipid transfer protein (PLTP) and lipoprotein lipase (LpL) in mediating the migration of Gd-DTPA-DMPE among lipoproteins were investigated. The results indicated that neither was an important factor, suggesting that spontaneous transfer of Gd-DTPA-DMPE was the most probable mechanism. Finally, two independent mouse models were used to quantify the relative contributions of HDL and LDL reconstituted with Gd-DTPA-DMPE to plaque imaging enhancement by MR. Both sets of results suggested that Gd-DTPA-DMPE originally associated with LDL was about twice as effective as that injected in the form of Gd-HDL, and that some of Gd-HDL's effectiveness in vivo is indirect through transfer of the imaging agent to LDL. In conclusion, the fate of Gd-DTPA-DMPE associated with a particular lipoprotein species is complex, and includes its transfer to other lipoprotein species, which are then cleared from the plasma into tissues.
    Bioconjugate Chemistry 04/2013; · 4.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVES: This study sought to develop magnetic resonance contrast agents based on high-density lipoprotein (HDL) nanoparticles to noninvasively visualize intraplaque macrophages and collagen content in mouse atherosclerotic plaques. BACKGROUND: Macrophages and collagen are important intraplaque components that play central roles in plaque progression and/or regression. In a Reversa mouse model, plaque regression with compositional changes (from high macrophage, low collagen to low macrophage, high collagen) can be induced. METHODS: This study labeled HDL nanoparticles with amphiphilic gadolinium chelates to enable target-specific imaging of intraplaque macrophages. To render HDL nanoparticles specific for the extracellular matrix, labeled HDL nanoparticles were functionalized with collagen-specific EP3533 peptides (EP3533-HDL) via poly(ethylene glycol) spacers embedded in the HDL lipid layers. The association of nanoparticles with collagen was examined in vitro by optical methods. The in vivo magnetic resonance efficacy of these nanoparticles was evaluated in a Reversa mouse model of atherosclerosis regression. Ex vivo confocal microscopy was applied to corroborate the in vivo findings and to evaluate the fate of the different HDL nanoparticles. RESULTS: All nanoparticles had similar sizes (10 ± 2 nm) and longitudinal relaxivity r(1) (9 ± 1 s(-1) mmol/l(-1)). EP3533-HDL showed strong association with collagen in vitro. After 28 days of plaque regression in Reversa mice, EP3533-HDL showed significantly increased (p < 0.05) in vivo magnetic resonance signal in aortic vessel walls (normalized enhancement ratio [NER(w)] = 85 ± 25%; change of contrast-to-noise ratio [ΔCNR(w)] = 17 ± 5) compared with HDL (NER(w) = -7 ± 23%; ΔCNR(w) = -2 ± 4) and nonspecific control EP3612-HDL (NER(w) = 4 ± 24%; ΔCNR(w) = 1 ± 6) at 24 h after injection. Ex vivo confocal images revealed the colocalization of EP3533-HDL with collagen. Immunohistostaining analysis confirmed the changes of collagen and macrophage contents in the aortic vessel walls after regression. CONCLUSIONS: This study shows that the HDL nanoparticle platform can be modified to monitor in vivo plaque compositional changes in a regression environment, which will facilitate understanding plaque regression and the search for therapeutic interventions.
    JACC. Cardiovascular imaging 02/2013; · 14.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE: Magnetic resonance imaging (MRI) with targeted contrast agents provides a promising means for diagnosis and treatment monitoring after cerebrovascular injury. Our goal was to demonstrate the feasibility of this approach to detect the neuroinflammatory biomarker intercellular adhesion molecule-1 (ICAM-1) after stroke and to establish a most efficient imaging procedure. PROCEDURES: We compared two types of ICAM-1-functionalized contrast agent: T (1)-shortening gadolinium chelate-containing liposomes and T (2) (()*())-shortening micron-sized iron oxide particles (MPIO). Binding efficacy and MRI contrast effects were tested in cell cultures and a mouse stroke model. RESULTS: Both ICAM-1-targeted agents bound effectively to activated cerebrovascular cells in vitro, generating significant MRI contrast-enhancing effects. Direct in vivo MRI-based detection after stroke was only achieved with ICAM-1-targeted MPIO, although both contrast agents showed similar target-specific vascular accumulation. CONCLUSIONS: Our study demonstrates the potential of in vivo MRI of post-stroke ICAM-1 upregulation and signifies target-specific MPIO as most suitable contrast agent for molecular MRI of cerebrovascular inflammation.
    Molecular imaging and biology: MIB: the official publication of the Academy of Molecular Imaging 02/2013; · 2.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lipoproteins are natural nanoparticles composed of phospholipids and apolipoproteins that transport lipids throughout the body. As key effectors of lipid homeostasis, the functions of lipoproteins have been demonstrated to be crucial during the development of cardiovascular diseases. Therefore various strategies have been used to study their biology and detect them in vivo. A recent approach has been the production of lipoprotein biomimetic particles loaded with diagnostically active nanocrystals in their core. These include, but are not limited to: quantum dots, iron oxide or gold nanocrystals. Inclusion of these nanocrystals enables the utilization of lipoproteins as probes for a variety of imaging modalities (computed tomography, magnetic resonance imaging, fluorescence) while preserving their biological activity. Furthermore as some lipoproteins naturally accumulate in atherosclerotic plaque or specific tumor tissues, nanocrystal core lipoprotein biomimetics have been developed as contrast agents for early diagnosis of these diseases.
    Current Cardiovascular Imaging Reports 02/2013; 6(1):45-54.

Publication Stats

3k Citations
666.29 Total Impact Points

Institutions

  • 2007–2014
    • Icahn School of Medicine at Mount Sinai
      • Department of Radiology
      Manhattan, New York, United States
    • Maastricht University
      • Pathologie
      Maastricht, Provincie Limburg, Netherlands
  • 2013
    • Leibniz-Institut für Molekulare Pharmakologie
      Berlín, Berlin, Germany
    • Academisch Medisch Centrum Universiteit van Amsterdam
      • Department of Radiology
      Amsterdam, North Holland, Netherlands
    • University of Pennsylvania
      • Department of Radiology
      Philadelphia, PA, United States
    • VU University Medical Center
      Amsterdamo, North Holland, Netherlands
    • Hospital of the University of Pennsylvania
      • Department of Radiology
      Philadelphia, PA, United States
    • Carnegie Mellon University
      • Pittsburgh NMR Center for Biomedical Research
      Pittsburgh, PA, United States
    • Massachusetts General Hospital
      • Center for Systems Biology
      Boston, MA, United States
  • 2012–2013
    • University Medical Center Utrecht
      • Image Sciences Institute
      Utrecht, Provincie Utrecht, Netherlands
  • 2008–2013
    • Universiteit Utrecht
      • Division of Condensed Matter and Interfaces
      Utrecht, Utrecht, Netherlands
  • 2007–2010
    • Mount Sinai Hospital
      New York City, New York, United States
  • 2004–2010
    • Technische Universiteit Eindhoven
      • Department of Biomedical Engineering
      Eindhoven, North Brabant, Netherlands