J A Andrades

Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Caesaraugusta, Aragon, Spain

Are you J A Andrades?

Claim your profile

Publications (47)126.42 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Keratoconjunctivitis sicca (KCS) or dry eye disease (DED) is an immune-mediated multifactorial disease, with high level of prevalence in humans and dogs. Our aim in this study was to investigate the therapeutic effects of allogeneic adipose-derived mesenchymal stromal cells (Ad-MSCs) implanted around the lacrimal glands in 12 dogs (24 eyes) with KCS, which is refractory to current available treatments. Schirmer tear test (STT) and ocular surface integrity were assessed at 0 (before treatment), 3, 6, and 9 months after treatment. Average STT values and all clinical signs showed a statistically significant change (P < 0.001) during the follow-up with reduction in all ocular parameters scored: ocular discharge, conjunctival hyperaemia, and corneal changes, and there were no signs of regression or worsening. Implanted cells were well tolerated and were effective reducing clinical signs of KCS with a sustained effect during the study period. None of the animals showed systemic or local complications during the study. To our knowledge, this is the first time in literature that implantation of allogeneic Ad-MSCs around lacrimal glands has been found as an effective therapeutic alternative to treat dogs with KCS. These results could reinforce a good effective solution to be extrapolated to future studies in human.
    01/2015; 2015:527926. DOI:10.1155/2015/527926
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study is to investigate the efficacy of hybrid constructs in comparison to bone grafts (autograft and allograft) for posterolateral lumbar fusion (PLF) in sheep, instrumented with transpedicular screws and bars. Hybrid constructs using cultured bone marrow (BM) mesenchymal stem cells (MSCs) have shown promising results in several bone healing models. In particular, hybrid constructs made by calcium phosphate-enriched cells have had similar fusion rates to bone autografts in posterolateral lumbar fusion in sheep. In our study, four experimental spinal fusions in two animal groups were compared in sheep: autograft and allograft (reference group), hydroxyapatite scaffold, and hydroxyapatite scaffold seeded with cultured and osteoinduced bone marrow MSCs (hybrid construct). During the last three days of culture, dexamethasone (dex) and beta-glycerophosphate (β-GP) were added to potentiate osteoinduction. The two experimental situations of each group were tested in the same spinal segment (L4-L5). Spinal fusion and bone formation were studied by clinical observation, X-ray, computed tomography (CT), histology, and histomorphometry. Lumbar fusion rates assessed by CT scan and histology were higher for autograft and allograft (70%) than for mineral scaffold alone (22%) and hybrid constructs (35%). The quantity of new bone formation was also higher for the reference group, quite similar in both (autograft and allograft). Although the hybrid scaffold group had a better fusion rate than the non-hybrid scaffold group, the histological analysis revealed no significant differences between them in terms of quantity of bone formation. The histology results suggested that mineral scaffolds were partly resorbed in an early phase, and included in callus tissues. Far from the callus area the hydroxyapatite alone did not generate bone around it, but the hybrid scaffold did. In nude mice, labeled cells were induced to differentiate in vivo and monitored by bioluminescence imaging (BLI). Although the cultured MSCs had osteogenic potential, their contribution to spinal fusion when seeded in mineral scaffolds, in the conditions disclosed here, remains uncertain probably due to callus interference with the scaffolds. At present, bone autografts are better than hybrid constructs for posterolateral lumbar fusion, but we should continue to seek better conditions for efficient tissue engineering.
    International Journal of Molecular Sciences 12/2014; 15(12):23359-23376. DOI:10.3390/ijms151223359 · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs), small non-coding RNAs, regulate gene expression primarily at the posttranscriptional level. We previously found that miR-335 is critically involved in the regulation and differentiation capacity of human mesenchymal stem cells (hMSCs) in vitro. In this study, we investigated the significance of miR-335 for the therapeutic potential of hMSCs. Analysis of hMSCs in ex vivo culture demonstrated a significant and progressive increase in miR-335 that is prevented by telomerase. Expression levels of miR-335 were also positively correlated with donor age of hMSCs, and were increased by stimuli that induce cell senescence, such as γ-irradiation and standard O2 concentration. Forced expression of miR-335 resulted in early senescence-like alterations in hMSCs, including: increased SA-β-gal activity and cell size, reduced cell proliferation capacity, augmented levels of p16 protein, and the development of a senescent-associated secretory phenotype (SASP). Furthermore, overexpression of miR-335 abolished the in vivo chondro-osseous potential of hMSCs, and disabled their immunomodulatory capacity in a murine experimental model of lethal endotoxemia. These effects were accompanied by a severely reduced capacity for cell migration in response to proinflammatory signals and a marked reduction in Protein Kinase D1 (PRKD1) phosphorylation, resulting in a pronounced decrease of AP-1 activity. Our results demonstrate that miR-335 plays a key role in the regulation of reparative activities of hMSCs and suggests that it might be considered a marker for the therapeutic potency of these cells in clinical applications. Stem Cells 2014
    Stem Cells 08/2014; 32(8). DOI:10.1002/stem.1699 · 7.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transforming growth factor-beta (TGF-β) is involved in processes related to the differentiation and maturation of osteoprogenitor cells into osteoblasts. Rat bone marrow (BM) cells were cultured in a collagen-gel containing 0.5% fetal bovine serum (FBS) for 10 days in the presence of rhTGF (recombinant human TGF)-β1-F2, a fusion protein engineered to include a high-affinity collagen-binding decapeptide derived from von Willebrand factor. Subsequently, cells were moderately expanded in medium with 10% FBS for 4 days and treated with a short pulse of rhBMP (recombinant human bone morphogenetic protein)-2 for 4 h. During the last 2 days, dexamethasone and β-glycerophosphate were added to potentiate osteoinduction. Concomitant with an up-regulation of cell proliferation, DNA synthesis levels were determined. Polymerase chain reaction was performed to reveal the possible stemness of these cells. Osteogenic differentiation was evaluated in terms of alkaline phosphatase activity and mineralized matrix formation as well as by mRNA expression of osteogenic marker genes. Moreover, cells were placed inside diffusion chambers and implanted subcutaneously into the backs of adult rats for 4 weeks. Histological study provided evidence of cartilage and bone-like tissue formation. This experimental procedure is capable of selecting cell populations from BM that, in the presence of rhTGF-β1-F2 and rhBMP-2, achieve skeletogenic potential in vitro and in vivo.
    International Journal of Molecular Sciences 07/2014; 15(7):11255-11274. DOI:10.3390/ijms150711255 · 2.46 Impact Factor
  • Journal of Biomedical Science and Engineering 01/2014; 07(02):49-57. DOI:10.4236/jbise.2014.72008
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cell adhesion processes are governed by the nanoscale arrangement of the extracellular matrix (ECM), being more affected by local rather than global concentrations of cell adhesive ligands. In many cell-based studies, grafting of dendrimers on surfaces has shown the benefits of the local increase in concentration provided by the dendritic configuration, although the lack of any reported surface characterization has limited any direct correlation between dendrimer disposition and cell response. In order to establish a proper correlation, some control over dendrimer surface deposition is desirable. Here, dendrimer nanopatterning has been employed to address arginine-glycine-aspartic acid (RGD) density effects on cell adhesion. Nanopatterned surfaces were fully characterized by atomic force microscopy (AFM), scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS), showing that tunable distributions of cell adhesive ligands on the surface are obtained as a function of the initial dendrimer bulk concentration. Cell experiments showed a clear correlation with dendrimer surface layout: Substrates presenting regions of high local ligand density resulted in a higher percentage of adhered cells and a higher degree of maturation of focal adhesions (FAs). Therefore, dendrimer nanopatterning is presented as a suitable and controlled approach to address the effect of local ligand density on cell response. Moreover, due to the easy modification of dendrimer peripheral groups, dendrimer nanopatterning can be further extended to other ECM ligands having density effects on cells.
    Nano Research 12/2013; DOI:10.1007/s12274-014-0406-2 · 6.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In vivo testing is a mandatory last step in scaffold development. Agile longitudinal non-invasive real time monitoring of stem cell behaviour in biomaterials implanted in live animals should facilitate the development of scaffolds for tissue engineering. We report on a non-invasive bioluminescence imaging (BLI) procedure for simultaneous monitoring of changes in the expression of multiple genes to evaluate scaffold performance in vivo. Adipose tissue derived stromal mensenchymal cells were dually labelled with Renilla-RFP and Firefly-GFP chimeric reporters regulated by CMV and tissue specific promoters, respectively. Labelled cells were induced to differentiate in vitro and in vivo, by seeding in demineralised bone matrixes (DBMs) and monitored by BLI. Imaging results were validated by RT-PCR and histological procedures. The proposed approach improves molecular imaging and measurement of changes in gene expression of cells implanted in live animals. This procedure, applicable to the simultaneous analysis of multiple genes from cells seeded in DBMs should facilitate engineering of scaffolds for tissue repair.
    Tissue Engineering Part A 09/2012; 19(5-6). DOI:10.1089/ten.TEA.2012.0073 · 4.64 Impact Factor
  • Revista Española de Cirugía Ortopédica y Traumatología 05/2012; 56(3):227-244. DOI:10.1016/j.recot.2012.01.003
  • [Show abstract] [Hide abstract]
    ABSTRACT: Spinal arthrodesis consists of a combination of a system of mechanical stabilisation of one or more vertebral segments with a biological substance that promotes osteoneogenesis, with aim of achieving the permanent fusion between areas more or less the same size of these segments. In spinal arthrodesis, the biological support par excellence is the autograft. However, obtaining this involves a high incidence of morbidity and, in cases of arthrodesis of more than one intervertebral space, the quantity available is usually insufficient. The extraction and implantation time prolongs the surgery, increasing the exposure to and risk of bleeding and infection. For these reasons, there is a search for substances that possess the properties of the autograft, avoiding the morbidity and added surgical time required to extract the autograft. The biomechanical-biological interaction in vertebral arthrodesis has been studied in this article.
    Revista Espanola de Cirugia Ortopedica y Traumatologia 05/2012; 56(3):227-44. DOI:10.1016/j.recote.2012.01.002
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Articular cartilage (AC) is an avascular tissue with precise polarity and organization. The three distinct zones are: surface, middle and deep. The production and accumulation of the superficial zone protein (SZP), also known as lubricin, by the surface zone is a characteristic feature of AC. To date, there is a wealth of evidence showing differentiation of AC from mesenchymal stem cells. Most studies that described chondrogenic differentiation did not focus on AC with characteristic surface marker SZP/lubricin. The present investigation was initiated to determine the induction of SZP/lubricin in skeletal muscle-derived mesenchymal stem/progenitor cells (MDMSCs) by transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-7 (BMP-7). MDMSCs were cultured as a monolayer at a density of 1 × 105 cells/well in 12-well tissue culture plates. Cell cultures were treated for 3, 7 and 10 days with TGF-β1 and BMP-7. The medium was analyzed for SZP. The cells were used to isolate RNA for RT-PCR assays for SZP expression. The SZP/lubricin increased in a time-dependent manner on Days 3, 7 and 10 in the medium. As early as Day 3, there was a three-fold increase in response to 3 ng/ml of TGF-β1 and 300 ng/ml of BMP-7. This was confirmed by immunochemical localization of SZP as early as Day 3 after treatment with TGF-β1. The expression of SZP mRNA was enhanced by TGF-β1. The present investigation demonstrated the efficient and reproducible induction of SZP/lubricin accumulation by TGF-β1 and BMP-7 in skeletal MDMSCs. Optimization of the experimental conditions may permit the utility of MDMSCs in generating surface zone-like cells with phenotypic markers of AC and, therefore, constitute a promising cell source for tissue engineering approaches of superficial zone cartilage.
    Arthritis research & therapy 04/2012; 14(2):R72. DOI:10.1186/ar3793 · 4.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stem cell transplantation therapy using mesenchymal stem cells (MSCs) is considered a useful strategy. Although MSCs are commonly isolated by exploiting their plastic adherence, several studies have suggested that there are other populations of stem and/or osteoprogenitor cells which are removed from primary culture during media replacement. Therefore, we developed a three-dimensional (3D) culture system in which adherent and non-adherent stem cells are selected and expanded. Here, we described the characterization of 3D culture-derived cell populations in vitro and the capacity of these cells to differentiate into bone and/or cartilage tissue when placed inside of demineralized bone matrix (DBM) cylinders, implanted subcutaneously into the backs of rat for 2, 4 and 8 weeks. Our results demonstrates that 3D culture cells were a heterogeneous population of uncommitted cells that express pluripotent, hematopoietic, mesenchymal and endothelial specific markers in vitro and can undergo osteogenic differentiation in vivo.
    Cell Transplantation 04/2012; 21(9). DOI:10.3727/096368912X636939 · 3.57 Impact Factor
  • Source
    Regenerative Medicine and Tissue Engineering - Cells and Biomaterials, 08/2011; , ISBN: 978-953-307-663-8
  • A Hari Reddi, José Becerra, José A Andrades
    [Show abstract] [Hide abstract]
    ABSTRACT: Osteoarthritis (OA) is a major clinical and scientific challenge. The degradation of articular cartilage in the joints is a common manifestation of painful arthritis. The regeneration of articular cartilage in OA is an unmet clinical need. The assembly of articular cartilage by tissue engineering toward complete regeneration is the goal of most scientists and surgeons. The key ingredients for regeneration are signals, stem cells, and scaffolds. This brief review focuses on the scaffold, with special emphasis on hydrogels and nanomaterials for the assembly of tissue-engineered cartilage, and ultimately leading to the total regeneration of articular cartilage in the joints.
    Tissue Engineering Part B Reviews 05/2011; 17(5):301-5. DOI:10.1089/ten.TEB.2011.0141 · 4.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Articular cartilage (AC) has no or very low ability of self-repair, and untreated lesions may lead to the development of osteoarthritis. One method that has been proven to result in long-term repair or isolated lesions is autologous chondrocyte transplantation. However, first generation of these cells' implantation has limitations, and introducing new effective cell sources can improve cartilage repair. AC provides a resilient and compliant articulating surface to the bones in diarthrodial joints. It protects the joint by distributing loads applied to it, so preventing potentially damaging stress concentrations on the bone. At the same time it provides a low-friction-bearing surface to enable free movement of the joint. AC may be considered as a visco- or poro-elastic fiber-composite material. Fibrils of predominantly type II collagen provide tensile reinforcing to a highly hydrated proteoglycan gel. The tissue typically comprises 70% water and it is the structuring and retention of this water by the proteoglycans and collagen that is largely responsible for the remarkable ability of the tissue to support compressive loads.
    Tissue Engineering Part B Reviews 12/2010; 16(6):617-27. DOI:10.1089/ten.TEB.2010.0191 · 4.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The utility of recombinant human bone morphogenetic protein-2 (rhBMP-2) in inducing bone formation in fractures of bone is well known. However, the influence of the mechanical environment on the actions of rhBMP-2 on fracture healing is not clear. An experimental model of fractures of the tibia in rabbits was developed and utilized to investigate the role of mechanical environment on rhBMP-2 action. A 1 mm osteotomy gap was stabilized by either a low- or high-stiffness fixator (LSF or HSF, respectively), and local treatment with rhBMP-2 in an absorbable collagen sponge (ACS) was evaluated. The results of the investigation were analysed by both histomorphometry and biomechanics. The LSF caused an increase in mineralized periosteal callus compared to HSF, the rhBMP-2 in ACS accelerated fracture healing only in the LSF group but not in the HSF group. The area of mineralized tissue in interfragmentary callus was determined by fixation stiffness and not by BMP treatment. rhBMP-2 caused higher bone resorption in the endosteal callus during the late stages of fracture healing, but these histological differences did not affect the mechanical properties. Biomechanical evaluation showed only differences at 3 weeks between LSF-rhBMP-2 and LSF-ACS. The bending and torsional properties were higher in the rhBMP-2/ACS group compared to ACS alone at 3 weeks.
    Journal of Tissue Engineering and Regenerative Medicine 10/2010; 4(7):543-52. DOI:10.1002/term.271 · 4.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent advances in stem cell research have highlighted the role played by such cells and their environment (the stem cell niche) in tissue renewal and homeostasis. The control and regulation of stem cells and their niche are remaining challenges for cell therapy and regenerative medicine on several tissues and organs. These advances are important for both, the basic knowledge of stem cell regulation, and their practical translational applications into clinical medicine. This article is primarily concerned with the mesenchymal stem cells (MSCs) and it reviews the current aspects of their own niche. We discuss on the need for a deeper understanding of the identity of this cell type and its microenvironment in order to improve the effectiveness of any cell therapy for regenerative medicine. Ex vivo reproduction of the conditions of the natural stem cell niche, when necessary, would provide success to tissue engineering. The first challenge of regenerative medicine is to find cells able to replace and/or repair the lost function of tissues and organs by disease or aging and the trophic and immunomodulatory effects recently found for MSCs open up for new opportunities. If MSCs are pericytes, as it has been proposed, perhaps it may explain the ubiquity of these cells and their possible role in miscellaneous repairs throughout the body opening for new chances for extensive tissue repair.
    Stem cell reviews 10/2010; 7(2):248-55. DOI:10.1007/s12015-010-9195-5 · 3.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the spinal results of the use of bone morphogenetic protein (BMP-7) and pluripotent stem cells differentiated to the osteogenic lineage. The results of this randomized, controlled clinical trial show that BMP-7 achieved similar bone formation to the use of autograft. Equally, in another controlled prospective cohort, greater bone formation was found when BMP-7 was used with allograft compared with allograft alone. No adverse effects were found. Experimental studies of cell therapy show promising results. The current foundations of cell therapy are discussed.
    Revista Española de Cirugía Ortopédica y Traumatología 05/2010; 54:11-18. DOI:10.1016/S1888-4415(10)70003-5
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bone maintenance requires a continuous source of osteoblasts throughout life. Its remodeling and regeneration during fracture repair is ensured by osteoprogenitor stem cells which are part of the stroma of the bone marrow (BM). Many investigators have reported that in cultured BM stromal cells there is a cell population that will differentiate along an osteogenic lineage if stimulated by the addition of osteogenic inducers, such as dexamethasone (dex), beta-glycerophosphate (beta-GP), transforming growth factor beta-1 (TGF-beta 1) and bone morphogenetic protein-2 (BMP-2). Here we report the effects of demineralized bone matrix (DBM) on the osteogenic differentiation of BM stromal cells in vitro, using morphological criteria, alkaline phosphatase (AP) activity, and calcium accumulation. DBM and DBM-conditioned medium (DBMcm) enhanced bone formation in the presence of dex and beta-GP, whereas DBM particles caused changes in the cell phenotype. Temporal expression of total and skeletal AP by BM stromal cells from 4-week-old rats showed a biphasic pattern enhanced by DBM and suggesting the presence of two cell populations. In one population, AP synthesis reaches a maximum during the first week in culture, following which cells either die or loose their ability to synthesize AP. A second, less abundant population begins to proliferate and synthesize AP during the second and third weeks. The synthesis of AP, which often decreases by the third week, can be maintained at high levels only if DBM is added to the cultures. BM stromal cells isolated from 24- and 48-week-old rats showed a decrease or loss of this biphasic AP expression pattern compared with cells isolated from 4-week-old rats. The addition of DBM to cultures derived from 24- and 48-week-old rats stimulated mostly the second cell population to synthesize AP, suggesting that DBM contains a factor(s) that acts on a specific bone marrow cell population by increasing the proliferation of active cells or inducing the differentiation of dormant cells.
    Journal of Bone and Mineral Research 11/2009; 11(11):1703-14. DOI:10.1002/jbmr.5650111114 · 6.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-invasive bioluminescence imaging (BLI) to monitor changes in gene expression of cells implanted in live animals should facilitate the development of biomaterial scaffolds for tissue regeneration. We show that, in vitro, induction of chondrogenic differentiation in mouse bone marrow stromal cell line (CL1) and human adipose tissue derived mesenchymal stromal cells (hAMSCs), permanently transduced with a procollagen II (COL2A1) promoter driving a firefly luciferase gene reporter (PLuc) (COL2A1p.PLuc), induces PLuc expression in correlation with increases in COL2A1 and Sox9 mRNA expression and acquisition of chondrocytic phenotype. To be able to simultaneously monitor in vivo cell differentiation and proliferation, COL2A1p.PLuc labelled cells were also genetically labelled with a renilla luciferase (RLuc) gene driven by a constitutively active cytomegalovirus promoter, and then seeded in demineralized bone matrix (DBM) subcutaneously implanted in SCID mice. Non-invasive BLI monitoring of the implanted mice showed that the PLuc/RLuc ratio reports on gene expression changes indicative of cell differentiation. Large (CL1) and moderated (hAMSCs) changes in the PLuc/RLuc ratio over a 6 week period, revealed different patterns of in vivo chondrogenic differentiation for the CL1 cell line and primary MSCs, in agreement with in vitro published data and our results from histological analysis of DBM sections. This double bioluminescence labelling strategy together with BLI imaging to analyze behaviour of cells implanted in live animals should facilitate the development of progenitor cell/scaffold combinations for tissue repair.
    Biomaterials 07/2009; 30(28):4986-95. DOI:10.1016/j.biomaterials.2009.05.056 · 8.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Regeneration takes place in the body at a moment or another throughout life. Bone, cartilage, and tendons (the key components of the structure and articulation in the body) have a limited capacity for self-repair and, after traumatic injury or disease, the regenerative power of adult tissue is often insufficient. When organs or tissues are irreparably damaged, they may be replaced by an artificial device or by a donor organ. However, the number of available donor organs is considerably limited. Generation of tissue-engineered replacement organs by extracting stem cells from the patient, growing them and modifying them in clinical conditions after re-introduction in the body represents an ideal source for corrective treatment. Mesenchymal stem cells (MSCs) are the multipotential progenitors that give rise to skeletal cells, vascular smooth muscle cells, muscle (skeletal and cardiac muscle), adipocytes (fat tissue) and hematopoietic (blood)-supportive stromal cells. MSCs are found in multiple connective tissues, in adult bone marrow, skeletal muscles and fat pads. The wide representation in adult tissues may be related to the existence of a circulating blood pool or that MSCs are associated to the vascular system.
    Cellular and molecular biology (Noisy-le-Grand, France) 02/2008; 54(1):40-51. · 1.46 Impact Factor

Publication Stats

636 Citations
126.42 Total Impact Points

Institutions

  • 2010–2015
    • Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
      Caesaraugusta, Aragon, Spain
  • 1994–2014
    • University of Malaga
      • • Faculty of Science
      • • Department of Cellular Biology, Genetics and Physiology
      Málaga, Andalusia, Spain
  • 2011
    • University of California, Davis
      • Department of Orthopaedic Surgery
      Davis, CA, United States
  • 1996–2009
    • Children's Hospital Los Angeles
      Los Angeles, California, United States
  • 1999
    • University of Southern California
      • Department of Medicine
      Los Angeles, California, United States