G Supinski

Case Western Reserve University, Cleveland, OH, United States

Are you G Supinski?

Claim your profile

Publications (36)194.83 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Lower thoracic spinal cord stimulation (SCS) may be a useful method to restore an effective cough mechanism. In dogs, two groups of studies were performed to evaluate the mechanism of the expiratory muscle activation during stimulation at the T(9)-T(10) level, which results in the greatest changes in airway pressure. In one group, expiratory muscle activation was monitored by evoked muscle compound action potentials (CAPs) from the internal intercostal muscles in the 10th, 11th, and 12th interspaces and from portions of the external oblique innervated by the L(1) and L(2) motor roots. SCS, applied with single shocks, resulted in short-latency CAPs at T(10) but not at more caudal levels. SCS resulted in long-latency CAPs at each of the more caudal caudal recording sites. Bilateral dorsal column sectioning, just below the T(11) spinal cord level, did not affect the short-latency CAPs but abolished the long-latency CAPs and also resulted in a fall in airway pressure generation. In the second group, sequential spinal root sectioning was performed to assess their individual mechanical contribution to pressure generation. Section of the ventral roots from T(8) through T(10) resulted in negligible changes, whereas section of more caudal roots resulted in a progressive reduction in pressure generation. We conclude that 1) SCS at the T(9)-T(10) level results in direct activation of spinal cord roots within two to three segments of the stimulating electrode and activation of more distal roots via spinal cord pathways, and 2) pathway activation of motor roots makes a substantial contribution to pressure generation.
    Journal of Applied Physiology 07/2002; 92(6):2341-6. · 3.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have found that administration of dichloroacetate (DCA), an agent that reduces lactic acid generation, increases limb muscle endurance. The purpose of the present study was to determine if this agent also improves respiratory muscle performance. To examine this issue, we determined the effect of DCA administration on the response to application of a large inspiratory resistive load (32,000 cm H(2)O/L/s) in unanesthetized decerebrate rats. Studies were carried out in four groups of animals: saline unloaded, DCA unloaded, saline loaded, and DCA loaded. DCA was administered as 100 mg/kg, given intravenously over 30 min, prior to respiratory loading. We found that diaphragm lactate levels were higher in saline-treated loaded animals than in unloaded controls and that DCA administration prevented loading-induced increases in diaphragm lactate (p < 0.001). DCA-treated animals tolerated loading poorly, however, with a more rapid reduction in diaphragm pressure generation and a shorter time to respiratory arrest (42 +/- 3 min) than for saline-treated animals (57 +/- 3 min, p < 0.01). These data indicate that DCA administration decreases the tolerance to loaded breathing despite reductions in diaphragm lactate concentrations. We speculate that suppression of lactate formation by DCA may impair metabolic regulation within the diaphragm during resistive loaded breathing.
    American Journal of Respiratory and Critical Care Medicine 11/2001; 164(9):1669-74. · 11.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have indicated that sepsis is associated with enhanced generation of several free-radical species (nitric oxide [NO], superoxide, hydrogen peroxide) in skeletal muscle. It is also known that this enhanced free-radical generation results in reductions in skeletal muscle force-generating capacity, but the precise mechanism(s) by which free radicals exert this effect in sepsis has not been determined. We postulated that free radicals might react directly with the contractile proteins in this condition, altering contractile protein force-generating capacity. To test this theory, we compared the force generation of single Triton-skinned diaphragmatic fibers (Triton skinning exposes the contractile apparatus, permitting direct assessment of contractile protein function) from the following groups of rats: (1) control animals; (2) endotoxin-treated animal; (3) animals given endotoxin plus polyethylene glycol- superoxide dismutase (PEG-SOD), a superoxide scavenger; (4) animals given endotoxin plus N(omega)-nitro-L-arginine methylester (L-NAME), a NO synthase inhibitor; (5 ) animals given only PEG-SOD or L-NAME; and (6 ) animals given endotoxin plus denatured PEG-SOD. We found that endotoxin administration produced both a reduction in the maximum force-generating capacity (Fmax) (i.e., a decrease in Fmax) of muscle fibers and a reduction in fiber calcium sensitivity (i.e., an increase in the Ca2+ concentration required to produce half-maximal activation [Ca50]). L-NAME and PEG-SOD administration preserved Fmax and Ca50 in endotoxin-treated animals; neither drug affected these parameters in non-endotoxin treated animals. Denatured PEG-SOD failed to inhibit endotoxin-related alterations in contractile protein function. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of skinned fibers from endotoxin-treated animals revealed a selective depletion of several proteins; administration of L-NAME or PEG-SOD to endotoxin-treated animals prevented this protein depletion, paralleling the effect of these two agents to prevent a reduction in contractile protein force-generating capacity. These data indicate that free radicals (superoxide, NO, or daughter species of these radicals) play a central role in altering skeletal muscle contractile protein force-generating capacity in endotoxin-induced sepsis.
    American Journal of Respiratory Cell and Molecular Biology 03/2001; 24(2):210-7. · 4.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Contraction-induced respiratory muscle fatigue and sepsis-related reductions in respiratory muscle force-generating capacity are mediated, at least in part, by reactive oxygen species (ROS). The subcellular sources and mechanisms of generation of ROS in these conditions are incompletely understood. We postulated that the physiological changes associated with muscle contraction (i.e., increases in calcium and ADP concentration) stimulate mitochondrial generation of ROS by a phospholipase A(2) (PLA(2))-modulated process and that sepsis enhances muscle generation of ROS by upregulating PLA(2) activity. To test these hypotheses, we examined H(2)O(2) generation by diaphragm mitochondria isolated from saline-treated control and endotoxin-treated septic animals in the presence and absence of calcium and ADP; we also assessed the effect of PLA(2) inhibitors on H(2)O(2) formation. We found that 1) calcium and ADP stimulated H(2)O(2) formation by diaphragm mitochondria from both control and septic animals; 2) mitochondria from septic animals demonstrated substantially higher H(2)O(2) formation than mitochondria from control animals under basal, calcium-stimulated, and ADP-stimulated conditions; and 3) inhibitors of 14-kDa PLA(2) blocked the enhanced H(2)O(2) generation in all conditions. We also found that administration of arachidonic acid (the principal metabolic product of PLA(2) activation) increased mitochondrial H(2)O(2) formation by interacting with complex I of the electron transport chain. These data suggest that diaphragm mitochondrial ROS formation during contraction and sepsis may be critically dependent on PLA(2) activation.
    Journal of Applied Physiology 08/2000; 89(1):72-80. · 3.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have suggested that the optimum length for force generation of the parasternal intercostal (PS) muscles is well above functional residual capacity (FRC). We further explored this issue by examining the pressure-generating capacity of the PS muscles as a function of lung volume in anaesthetized dogs. Upper thoracic spinal cord stimulation (SCS) was used to electrically activate the PS muscles. Changes in airway pressure and parasternal resting length (LR) during airway occlusion were monitored over a wide range of lung volumes during SCS. To assess the effects of parasternal contraction alone, SCS was performed following phrenicotomy and section of the external intercostal, levator costae and triangularis sterni muscles. With increasing lung volume, there were progressive decrements in the capacity of the PS muscles to produce changes in airway pressure. The relationship between PS pressure generation and lung volume was similar to a previous comparable assessment of the external intercostal muscles. The PS muscles shortened during passive inflation and also shortened further (by > 20 % of LR) during SCS. Total shortening (passive plus active) increased progressively with increasing lung volume. Our results indicate that the capacity of the PS muscles to produce changes in airway pressure (a) falls progressively with increasing lung volume and (b) is similar to that of the external intercostal muscles. We speculate that the fall in PS pressure-generating capacity is related, in part, to progressive reductions in end-inspiratory length.
    Experimental Physiology 05/2000; 85(3):331-7. · 2.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have suggested that the optimum length for force generation of the parasternal intercostal (PS) muscles is well above functional residual capacity (FRC). We further explored this issue by examining the pressure-generating capacity of the PS muscles as a function of lung volume in anaesthetized dogs. Upper thoracic spinal cord stimulation (SCS) was used to electrically activate the PS muscles. Changes in airway pressure and parasternal resting length (LR) during airway occlusion were monitored over a wide range of lung volumes during SCS. To assess the effects of parasternal contraction alone, SCS was performed following phrenicotomy and section of the external intercostal, levator costae and triangularis sterni muscles. With increasing lung volume, there were progressive decrements in the capacity of the PS muscles to produce changes in airway pressure. The relationship between PS pressure generation and lung volume was similar to a previous comparable assessment of the external intercostal muscles. The PS muscles shortened during passive inflation and also shortened further (by > 20% of LR) during SCS. Total shortening (passive plus active) increased progressively with increasing lung volume. Our results indicate that the capacity of the PS muscles to produce changes in airway pressure (a) falls progressively with increasing lung volume and (b) is similar to that of the external intercostal muscles. We speculate that the fall in PS pressure-generating capacity is related, in part, to progressive reductions in end-inspiratory length.
    Experimental physiology 04/2000; 85(3):331 - 337. · 3.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although protein kinases are known to play a role in modulating a variety of intracellular functions, the direct effect of inhibition of these enzymes on skeletal muscle force production has not been studied. The purpose of the present study was to examine this issue by determining the effects produced on diaphragm force generation by two protein kinase inhibitors: (a) H7, an inhibitor of both cAMP-dependent protein kinase (PKA) and of protein kinase C, and (b) H89, a selective inhibitor of PKA. Experiments (n=15) were performed using isolated, arterially perfused, electrically stimulated rat diaphragms. Perfusate temperature was adjusted to maintain muscle temperature at 27 degrees C and arterial pressure was kept at 150 Torr. Animals were divided into three groups: (a) a control group perfused with Krebs-Henselheit solution equilibrated with 95% O(2)/5% CO(2), (b) a group in which H7 (2 microM) was added to the perfusate, and (c) a group perfused with solution containing H89 (4 microM). In all three groups, we assessed diaphragm twitch kinetics, force-frequency relationships and in vitro fatiguability. We found that both H7 and H89 administration slowed twitch relaxation, augmented force generation in response to low frequency stimulation, and increased the rate of development of fatigue. Specifically, for control, H7 and H89 groups, respectively, we found: (a) 1/2 relaxation time averaged 64+/-2 S.E.M., 87+/-6 and 90+/-2 ms, P<0. 003, (b) force production during 10-Hz stimulation averaged 12.6+/-1. 1, 20.1+/-2.3, and 20.3+/-2.1 N/cm(2), P<0.035, and (c) force fell to 14.3+/-2.0, 9.5+/-0.5 and 8.7+/-0.2% of its initial value after 20 min of fatiguing stimulation, P<0.035. These data show that it is possible to produce large increases in low frequency skeletal muscle force generation by directly inhibiting PKA. We speculate that it may be possible to pharmacologically augment respiratory muscle force and pressure generation in clinical medicine by administration of PKA inhibitors.
    Respiration Physiology 04/2000; 120(2):115-23.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent work indicates that endotoxemia elicits severe reductions in skeletal muscle force-generating capacity. The subcellular alterations responsible for these decrements have not, however, been fully characterized. One possibility is that the contractile proteins per se are altered in endotoxemia and another is that the mechanism by which these proteins are activated is affected. The purpose of the present study was to assess the effects of endotoxin administration on the contractile proteins by examining the maximum calcium-activated force (F(max)) and calcium sensitivity of single Triton-skinned fibers of diaphragm, soleus, and extensor digitorum longus (EDL) muscles taken from control and endotoxin-treated (8 mg/kg) rats. Fibers were mounted on a force transducer and sequentially activated by serial immersion in solutions of increasing Ca(2+) concentration (i.e., pCa 6.0 to pCa 5.0); force vs. pCa data were fit to the Hill equation. All fibers were typed at the conclusion of studies using gel electrophoresis. F(max), the calcium concentration required for half-maximal activation (Ca(50)), and the Hill coefficient were compared as a function of muscle and fiber type for the control and endotoxin-treated animals. Control group F(max) was similar for diaphragm, soleus, and EDL fibers, i.e., 112.34 +/- 2.64, 111.55 +/- 3.66, and 104.05 +/- 4.33 kPa, respectively. Endotoxin administration reduced the average F(max) for fibers from all three muscles to 80.25 +/- 2.30, 72.47 +/- 2.97, and 78.32 +/- 2.43 kPa, respectively (P < 0.001 for comparison of each to control). All fiber types in diaphragm, soleus, and EDL muscles manifested similar endotoxin-related reductions in F(max). The Ca(50) and the Hill coefficient for all fiber types and all muscles were unaffected by endotoxin administration. We speculate that these alterations in the intrinsic properties of the contractile proteins represent a major mechanism by which endotoxemia reduces muscle force-generating capacity.
    AJP Regulatory Integrative and Comparative Physiology 04/2000; 278(4):R891-6. · 3.28 Impact Factor
  • G Supinski, D Nethery, D Stofan, A DiMarco
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have indicated that free radicals may play an important role in the development of muscle dysfunction in many pathophysiological conditions. Because the degree of muscle dysfunction observed in some of these conditions appears to be both free radical dependent and modulated by extracellular calcium concentrations, we thought that there may be a link between these two phenomena; i.e., the propensity of a muscle to generate free radicals may be dependent on extracellular calcium concentrations. For this reason, we compared formation of reactive oxygen species (ROS; i.e., free radicals) by electrically stimulated rat diaphragms (trains of 20-Hz stimuli for 10 min, train rate 0.25 trains/s) incubated in organ baths filled with physiological solutions containing low (1 mM), normal (2.5 mM), or high (5 mM) calcium levels. Generation of ROS was assessed by measuring the conversion of hydroethidine to ethidium. We found ROS generation with contraction varied with the extracellular calcium level, with low ROS production (3.18 +/- 0.40 ng ethidium/mg tissue) for low-calcium studies and with much higher ROS generation for normal-calcium (18. 90 +/- 2.70 ng/mg) or high-calcium (19.30 +/- 4.50 ng/mg) studies (P < 0.001). Control, noncontracting diaphragms (in 2.5 mM calcium) had little ROS production (3.40 +/- 0.80 ng/mg; P < 0.001). To further investigate this issue, we added nimodipine (20 microM), an L-type calcium channel blocker, to contracting diaphragms (2.5 mM calcium bath) and found that nimodipine also suppressed ROS formation (2.56 +/- 0.85 ng ethidium/mg tissue). These data indicate that ROS generation by the contracting diaphragm is strongly influenced by extracellular calcium concentrations and may be dependent on calcium transport through L-type calcium channels.
    Journal of Applied Physiology 12/1999; 87(6):2177-85. · 3.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lower thoracic spinal cord stimulation (SCS) results in the generation of large positive airway pressures (Paw) and may be a useful method of restoring cough in patients with spinal cord injury. The purpose of the present study was to assess the mechanical contribution of individual respiratory muscles to pressure generation during SCS. In anesthetized dogs, SCS was applied at different spinal cord levels by using a 15-lead multicontact electrode before and after sequential ablation of the external and internal obliques, transversus abdominis (TA), rectus abdominis, and internal intercostal muscles. Paw was monitored after tracheal occlusion. SCS at the T(9) spinal cord level resulted in maximal changes in Paw (60 +/- 3 cmH(2)O). Section of the oblique muscles resulted in a fall in Paw to 29 +/- 2 cmH(2)O. After subsequent section of the rectus abdominis and TA, Paw fell to 25 +/- 2 and 12 +/- 1 cmH(2)O respectively. There was a small remaining Paw (4 +/- 1 cmH(2)O) after section of the internal intercostal nerves. Stimulation with a two-electrode lead system (T(9) + T(13)) resulted in significantly greater pressure generation compared with a single-electrode lead due to increased contributions from the obliques and transversus muscles. In a separate group of animals, Paw generation was monitored after section of the abdominal muscles and again after section of the external intercostal and levator costae muscles. These studies demonstrated that inspiratory intercostal muscle stimulation resulted in only a small opposing inspiratory action (</=3 cmH(2)O). We conclude that, during SCS, 1) contraction of the obliques and TA muscles makes the largest contribution to changes in Paw, and 2) stimulation with a two-electrode lead system results in more complete abdominal muscle activation and enhanced mechanical actions of the obliques and transversus muscles.
    Journal of Applied Physiology 11/1999; 87(4):1433-9. · 3.48 Impact Factor
  • D Nethery, A DiMarco, D Stofan, G Supinski
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent work indicates that free radicals mediate sepsis-induced diaphragmatic dysfunction. These previous experiments have not, however, established the source of the responsible free radical species. In theory, this phenomenon could be explained if one postulates that sepsis elicits an upregulation of contraction-related free radical formation in muscle. The purpose of the present study was to test this hypothesis by examination of the effect of sepsis on contraction-related free radical generation [i.e. , formation of reactive oxygen species (ROS)] by the diaphragm. Rats were killed 18 h after injection with either saline or endotoxin. In vitro hemidiaphragms were then prepared, and ROS generation during electrically induced contractions (20-Hz trains delivered for 10 min) was assessed by measurement of the conversion of hydroethidine to ethidium. ROS generation was negligible in noncontracting diaphragms from both saline- and endotoxin-treated groups (2.0 +/- 0. 6 and 2.8 +/- 1.0 ng ethidium/mg tissue, respectively), but it was marked in contracting diaphragms from saline-treated animals (19.0 +/- 2.8 ng/mg tissue) and even more pronounced (30.0 +/- 2.8 ng/mg tissue) in diaphragms from septic animals (P < 0.01). This enhanced free radical generation occurred despite the fact that the force-time integral (i.e., the area under the curve of force vs. time) for control diaphragms was higher than that for the septic group. In additional studies, in which we altered the stimulation paradigm in control muscles to achieve a force-time integral similar to that achieved in septic muscles, an even greater difference between control and septic muscle ROS formation was observed. These data indicate that ROS formation during contraction is markedly enhanced in diaphragms from endotoxin-treated septic animals. We speculate that ROS generated in this fashion plays a central role in producing sepsis-related skeletal muscle dysfunction.
    Journal of Applied Physiology 11/1999; 87(4):1279-86. · 3.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Free radicals are known to play an important role in modulating the development of respiratory muscle dysfunction during sepsis. Moreover, neutrophil numbers increase in the diaphragm after endotoxin administration. Whether or not superoxide derived from infiltrating white blood cells contributes to muscle dysfunction during sepsis is, however, unknown. The purpose of the present study was to examine the effect of apocynin, an inhibitor of the superoxide-generating neutrophil NADPH complex, on endotoxin-induced diaphragmatic dysfunction. We studied groups of rats given saline, endotoxin, apocynin, or both endotoxin and apocynin. Animals were killed 18 h after injection, a portion of the diaphragm was used to assess force generation, and the remaining diaphragm was used for determination of 4-hydroxynonenal (a marker of lipid peroxidation) and nitrotyrosine levels (a marker of free radical-mediated protein modification). We found that endotoxin reduced diaphragm force generation and that apocynin partially prevented this decrease [e.g., force in response to 20 Hz was 23 +/- 1 (SE), 12 +/- 2, 23 +/- 1, and 19 +/- 1 N/cm(2), respectively, for saline, endotoxin, apocynin, and endotoxin/apocynin groups; P < 0.001]. Apocynin also prevented endotoxin-mediated increases in diaphragm 4-hydroxynonenal and nitrotyrosine levels (P < 0.01). These data suggest that neutrophil-derived free radicals contribute to diaphragmatic dysfunction during sepsis.
    Journal of Applied Physiology 09/1999; 87(2):776-82. · 3.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Peroxynitrite may be generated in and around muscles in several pathophysiological conditions (e.g., sepsis) and may induce muscle dysfunction in these disease states. The effect of peroxynitrite on muscle force generation has not been directly assessed. The purpose of the present study was to assess the effects of peroxynitrite administration on diaphragmatic force-generating capacity in 1) intact diaphragm muscle fiber bundles (to model the effects produced by exposure of muscles to extracellular peroxynitrite) and 2) single skinned diaphragm muscle fibers (to model the effects of intracellular peroxynitrite on contractile protein function) by examining the effects of both peroxynitrite and a peroxynitrite-generating solution, 3-morpholinosydnonimine, on force vs. pCa characteristics. In intact diaphragm preparations, peroxynitrite reduced diaphragm force generation and increased muscle levels of 4-hydroxynonenal (an index of lipid peroxidation). In skinned fibers, both peroxynitrite and 3-morpholinosydnonimine reduced maximum calcium-activated force. These data indicate that peroxynitrite is capable of producing significant diaphragmatic contractile dysfunction. We speculate that peroxynitrite-mediated alterations may be responsible for much of the muscle dysfunction seen in pathophysiological conditions such as sepsis.
    Journal of Applied Physiology 09/1999; 87(2):783-91. · 3.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent work indicates that respiratory muscles generate superoxide radicals during contraction (M. B. Reid, K. E. Haack, K. M. Francik, P. A. Volberg, L. Kabzik, and M. S. West. J. Appl. Physiol. 73: 1797-1804, 1992). The intracellular pathways involved in this process are, however, unknown. The purpose of the present study was to test the hypothesis that contraction-related formation of reactive oxygen species (ROS) by skeletal muscle is linked to activation of the 14-kDa isoform of phospholipase A(2) (PLA(2)). Studies were performed by using an in vitro hemidiaphragm preparation submerged in an organ bath, and formation of ROS in muscles was assessed by using a recently described fluorescent indicator technique. We examined ROS formation in resting and contracting muscle preparations and then determined whether contraction-related ROS generation could be altered by administration of various PLA(2) inhibitors: manoalide and aristolochic acid, both inhibitors of 14-kDa PLA(2); arachidonyltrifluoromethyl ketone (AACOCF(3)), an inhibitor of 85-kDa PLA(2); and haloenol lactone suicide substrate (HELSS), an inhibitor of calcium-independent PLA(2). We found 1) little ROS formation [2.0 +/- 0.8 (SE) ng/mg] in noncontracting control diaphragms, 2) a high level of ROS (20.0 +/- 2.0 ng/mg) in electrically stimulated contracting diaphragms (trains of 20-Hz stimuli for 10 min, train rate 0.25 s(-1)), 3) near-complete suppression of ROS generation in manoalide (3.0 +/- 0.5 ng/mg, P < 0. 001)- and aristolochic acid-treated contracting diaphragms (4.0 +/- 1.0 ng/mg, P < 0.001), and 4) no effect of AACOCF(3) or HELSS on ROS formation in contracting diaphragm. During in vitro studies examining fluorescent measurement of ROS formation in response to a hypoxanthine/xanthine oxidase superoxide-generating solution, manoalide, aristolochic acid, AACOCF(3), and HELSS had no effect on signal intensity. These data indicate that ROS formation by contracting diaphragm muscle can be suppressed by the administration of inhibitors of the 14-kDa isoform of PLA(2) and suggest that this enzyme plays a critical role in modulating ROS formation during muscle contraction.
    Journal of Applied Physiology 09/1999; 87(2):792-800. · 3.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of the present study was to determine whether it is possible to alter the development of fatigue and ablate free radical-mediated lipid peroxidation of the diaphragm during loaded breathing by administering oxypurinol, a xanthine oxidase inhibitor. We studied 1) room-air-breathing decerebrate, unanesthetized rats given either saline or oxypurinol (50 mg/kg) and loaded with a large inspiratory resistance until airway pressure had fallen by 50% and 2) unloaded saline- and oxypurinol-treated room-air-breathing control animals. Additional sets of studies were performed with animals breathing 100% oxygen. Animals were killed at the conclusion of loading, and diaphragmatic samples were obtained for determination of thiobarbituric acid-reactive substances and assessment of in vitro force generation. We found that loading of saline-treated animals resulted in significant diaphragmatic fatigue and thiobarbituric acid-reactive substances formation (P < 0.01). Oxypurinol administration, however, failed to increase load trial time, reduce fatigue development, or prevent lipid peroxidation in either room-air-breathing or oxygen-breathing animals. These data suggest that xanthine oxidase-dependent pathways do not generate physiologically significant levels of free radicals during the type of inspiratory resistive loading examined in this study.
    Journal of Applied Physiology 09/1999; 87(3):1123-31. · 3.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Large positive airway pressures (Paws) can be generated by lower thoracic spinal cord stimulation (SCS), which may be a useful method of restoring cough in spinal cord-injured patients. Optimal electrode placement, however, requires an assessment of the pattern of current spread during SCS. Studies were performed in anesthetized dogs to assess the pattern of expiratory muscle recruitment during SCS applied at different spinal cord levels. A multicontact stimulating electrode was positioned over the surface of the lower thoracic and upper lumbar spinal cord. Recording electromyographic electrodes were placed at several locations in the abdominal and internal intercostal muscles. SCS was applied at each lead, in separate trials, with single shocks of 0.2-ms duration. The intensity of stimulation was adjusted to determine the threshold for development of the compound action potential at each electrode lead. The values of current threshold for activation of each muscle formed parabolas with minimum values at specific spinal root levels. The slopes of the parabolas were relatively steep, indicating that the threshold for muscle activation increases rapidly at more cephalad and caudal sites. These results were compared with the effectiveness of SCS (50 Hz; train duration, 1-2 s) at different spinal cord levels to produce changes in Paw. Stimulation at the T9 and T10 spinal cord level resulted in the largest positive Paws with a single lead. At these sites, threshold values for activation of the internal intercostal (7-11th interspaces) upper portions of external oblique, rectus abdominis, and transversus abdominis were near their minimum. Threshold values for activation of the caudal portions of the abdominal muscles were high (>50 mA). Our results indicate that 1) activation of the more cephalad portions of the abdominal muscles is more important than activation of caudal regions in the generation of positive Paws and 2) it is not possible to achieve complete activation of the expiratory muscles with a single electrode lead by using modest current levels. In support of this latter conclusion, a two-electrode lead system results in more uniform expiratory muscle activation and significantly greater changes in Paw.
    Journal of Applied Physiology 06/1999; 86(6):1881-9. · 3.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent work indicates that free radical-mediated lipid peroxidation takes place within the diaphragm on strenuous contraction. This phenomenon has only been demonstrated using fairly artificial experimental models and has not been studied during the type of sustained respiratory loading typically seen in patients with lung disease. The purpose of the present study was to measure the levels of several biochemical markers of protein oxidation (protein carbonyl levels) and lipid peroxidation (8-isoprostane, reduced glutathione, and oxidized glutathione levels) in diaphragms of rats subjected to chronic respiratory loading. Respiratory loading was accomplished by tracheal banding; groups of animals were loaded for 4, 8, or 12 days, and a group of sham-operated unloaded animals was used as controls. After loading, animals were killed, diaphragm contractility was assessed in vitro by using a portion of the excised diaphragm, and the remaining diaphragm and the soleus muscles were used for biochemical analysis. We found diminished force generation in diaphragms from all groups of banded animals compared with muscles from controls. For example, twitch force averaged 7.8 +/- 0.8 (SE) N/cm2 in unloaded animals and 4.0 +/- 0.4, 3.0 +/- 0.4, and 3.4 +/- 0.4 N/cm2 in animals loaded for 4, 8, and 12 days, respectively (P < 0.0001). Loading also elicited increases in diaphragmatic protein carbonyl concentrations (P < 0.001), and the time course of alterations in carbonyl levels paralleled loading-induced alterations in the diaphragm force-frequency relationship. Although loading was also associated with increases in diaphragmatic 8-isoprostane levels (P < 0.003) and reductions in diaphragm reduced glutathione levels (P < 0.003), the time course of changes in these latter parameters did not correspond to alterations in force. Soleus glutathione and carbonyl levels were not altered by banding. We speculate that respiratory loading-induced alterations in diaphragmatic force generation may be related to free radical-mediated protein oxidation, but not to free radical-induced lipid peroxidation.
    Journal of Applied Physiology 03/1999; 86(2):651-8. · 3.48 Impact Factor
  • G Supinski
    [Show abstract] [Hide abstract]
    ABSTRACT: It is now recognized that respiratory muscle fatigue contributes to the development of respiratory failure in some patients with lung disease. This observation has prompted an examination into the mechanisms of development of muscle fatigue, with the understanding that an elucidation of these processes may lead to new therapeutic approaches to the treatment of these patients. A series of recent studies examining this issue have, moreover, discovered that oxygen-derived free radicals generated during strenuous contraction may modulate respiratory muscle contractile function and contribute to the development of muscle fatigue. The data supporting this concept include: (a) direct (e.g. EPR, ESR studies) and indirect (evidence of lipid peroxidation, protein carbonyl formation, glutathione oxidation) evidence that there is heightened free radical production in contracting muscle, (b) evidence that pharmacologic depletion of muscle antioxidant stores increases degree of muscle fatigue present after a period of exercise, and (c) evidence that administration of agents that act as free radical scavengers retard the development muscle fatigue. Free radicals may produce these changes in muscle force generating capacity by interacting with and altering the function of a number of intracellular-biophysical processes (i.e. sarcolemmal action potential propagation, sarcoplasmic reticulum calcium handling, mitochondrial function, contractile protein interactions).
    Molecular and Cellular Biochemistry 02/1998; 179(1-2):99-110. · 2.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Respiratory muscle strength during acute upper respiratory tract infection (URI) was assessed in patients with various forms of neuromuscular disease. Vital capacity (VC), oxygen saturation, end-tidal PCO2, maximal inspiratory pressure (MIP), and maximal expiratory pressure (MEP) were determined in 25 stable patients with various forms of neuromuscular disease. Thirteen episodes of URI developed in 10 patients. Respiratory parameters were reassessed within 24-36 h following the onset of symptoms in each patient. In patients with URI, mean baseline VC, MIP, and MEP were 1.16 L +/- 0.14, 49.2 cm H2O +/- 6.8, and 35.5 cm H2O +/- 3.8 and fell to 1.01 L +/- 0.15, 37.1 cm H2O +/- 6.2, and 25.5 cm H2O +/- 3.0 during URI (p < 0.05 for each), respectively. Mean baseline PCO2 and oxygen saturation were 39.1 mm Hg +/- 1.1 and 95.1% +/- 1.0, and during URI, 43.9 mm Hg +/- 2.1 (p < 0.05) and 95.0% +/- 1.0 (NS), respectively. Five episodes of significant hypercapnia were observed in 4 patients. All parameters returned to near baseline values following recovery. We conclude that patients with various forms of neuromuscular disease develop reductions in respiratory muscle strength in association with URI. Unlike normal subjects, however, these decrements in respiratory muscle function may result in symptoms of shortness of breath, reductions in vital capacity, and acute hypercapnia in this patient population.
    American Journal of Respiratory and Critical Care Medicine 08/1997; 156(2 Pt 1):659-64. · 11.04 Impact Factor
  • G Supinski, D Nethery, D Stofan, A DiMarco
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have suggested that free radical scavenger administration reduces the rate of development of diaphragm fatigue. Much of this work has been done, however, using in vitro muscle preparations; the purpose of the present study was to assess the effect of scavengers on in vivo diaphragm contractile function. To accomplish this, we compared the rate of development of fatigue of the electrically stimulated diaphragm in four groups of dogs: (1) animals given intravenous polyethylene glycol adsorbed superoxide dismutase (PEG-SOD, 2,000 units/kg) 1 h before a fatigue trial; (2) a group given intravenous dimethylsulfoxide (DMSO, 0.5 ml/kg of a 50% solution) before fatigue; (3) a group given saline before fatigue; and (4) a group treated with denatured PEG-SOD (2,000 units/kg) before fatigue. We measured diaphragmatic concentrations of thiobarbituric acid reactive substances (TBAR), a marker of free radical-mediated lipid peroxidation, on muscle samples taken at the conclusion of fatigue trials. As a control, we also measured TBAR concentrations for muscle samples taken from nonfatigued diaphragm. We found that the rate of development of diaphragm fatigue was much greater in saline and denatured PEG-SOD-treated groups than for animals pretreated with either PEG-SOD or DMSO, with force falling to 23 +/- 4, 21 +/- 4, 50 +/- 7, and 47 +/- 6% of its initial value, respectively, over a 2-h period of electrophrenic stimulation in these four groups of animals (p < 0.01). TBAR concentrations in fatigued diaphragm from saline and denatured PEG-SOD-treated animals were significantly higher than levels for either nonfatigued fresh diaphragm or fatigued diaphragm taken from PEG-SOD- or DMSO-treated animals (p < 0.01). These data suggest that diaphragm fatigue resulting from repetitive low-frequency stimulation is associated with lipid peroxidation within this muscle and that pretreatment with free radical scavengers prevents lipid peroxidation and reduces the rate of development of fatigue.
    American Journal of Respiratory and Critical Care Medicine 02/1997; 155(2):622-9. · 11.04 Impact Factor