Anne Bridgeman

University of Oxford, Oxford, England, United Kingdom

Are you Anne Bridgeman?

Claim your profile

Publications (14)72.86 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A likely requirement for a protective vaccine against human immunodeficiency virus type 1 (HIV-1)/AIDS is, in addition to eliciting antibody responses, induction of effective T cells. To tackle HIV-1 diversity by T-cell vaccines, we designed an immunogen HIVconsv derived from the most functionally conserved regions of the HIV-1 proteome and demonstrated its high immunogenicity in humans and rhesus macaques when delivered by regimens combining plasmid DNA, non-replicating simian (chimpanzee) adenovirus ChAdV-63 and non-replicating modified vaccinia virus Ankara (MVA) as vectors. Here, we aimed to increase the decision power for iterative improvements of this vaccine strategy in the BALB/c mouse model. First, we found that prolonging the period after the ChAdV63.HIVconsv prime up to 6 weeks increased the frequencies of HIV-1-specific, IFN-γ-producing T cells induced by the MVA.HIVconsv boost. Induction of strong responses allowed us to map comprehensively the H-2(d)-restricted T-cell responses to these regions and identified 8 HIVconsv peptides, of which three did not contain a previously described epitope and were therefore considered novel. Induced effector T cells were oligofunctional and lysed sensitized targets in vitro. Our study therefore provides additional tools for studying and optimizing vaccine regimens in this commonly used small animal model, which will in turn guide vaccine improvements in more expensive non-human primate and human clinical trials.
    Clinical and vaccine Immunology: CVI 09/2014; · 2.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Virus diversity and escape from immune responses are the biggest challenges to the development of an effective vaccine against HIV-1. We hypothesized that T-cell vaccines targeting the most conserved regions of the HIV-1 proteome, which are common to most variants and bear fitness costs when mutated, will generate effectors that efficiently recognize and kill virus-infected cells early enough after transmission to potentially impact on HIV-1 replication and will do so more efficiently than whole protein-based T-cell vaccines. Here, we describe the first-ever administration of conserved immunogen vaccines vectored using prime-boost regimens of DNA, simian adenovirus and modified vaccinia virus Ankara to uninfected UK volunteers. The vaccine induced high levels of effector T cells that recognized virus-infected autologous CD4(+) cells and inhibited HIV-1 replication by up to 5.79 log10. The virus inhibition was mediated by both Gag- and Pol- specific effector CD8(+) T cells targeting epitopes that are typically subdominant in natural infection. These results provide proof of concept for using a vaccine to target T cells at conserved epitopes, showing that these T cells can control HIV-1 replication in vitro.Molecular Therapy (2013); doi:10.1038/mt.2013.248.
    Molecular Therapy 10/2013; · 7.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SAMHD1 is a host restriction factor for human immunodeficiency virus 1 (HIV-1) in cultured human cells. SAMHD1 mutations cause autoimmune Aicardi-Goutières syndrome and are found in cancers including chronic lymphocytic leukaemia. SAMHD1 is a triphosphohydrolase that depletes the cellular pool of deoxynucleoside triphosphates, thereby preventing reverse transcription of retroviral genomes. However, in vivo evidence for SAMHD1's antiviral activity has been lacking. We generated Samhd1 null mice that do not develop autoimmune disease despite displaying a type I interferon signature in spleen, macrophages and fibroblasts. Samhd1(-/-) cells have elevated deoxynucleoside triphosphate (dNTP) levels but, surprisingly, SAMHD1 deficiency did not lead to increased infection with VSV-G-pseudotyped HIV-1 vectors. The lack of restriction is likely attributable to the fact that dNTP concentrations in SAMHD1-sufficient mouse cells are higher than the KM of HIV-1 reverse transcriptase (RT). Consistent with this notion, an HIV-1 vector mutant bearing an RT with lower affinity for dNTPs was sensitive to SAMHD1-dependent restriction in cultured cells and in mice. This shows that SAMHD1 can restrict lentiviruses in vivo and that nucleotide starvation is an evolutionarily conserved antiviral mechanism.
    The EMBO Journal 07/2013; · 9.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vaccination using "naked" DNA is a highly attractive strategy for induction of pathogen-specific immune responses; however, it has been only weakly immunogenic in humans. Previously, we constructed DNA-launched Semliki Forest virus replicons (DREP), which stimulate pattern recognition receptors and induce augmented immune responses. Also, in vivo electroporation was shown to enhance immune responses induced by conventional DNA vaccines. Here, we combine these two approaches and show that in vivo electroporation increases CD8(+) T cell responses induced by DREP and consequently decreases the DNA dose required to induce a response. The vaccines used in this study encode the multiclade HIV-1 T cell immunogen HIVconsv, which is currently being evaluated in clinical trials. Using intradermal delivery followed by electroporation, the DREP.HIVconsv DNA dose could be reduced to as low as 3.2 ng to elicit frequencies of HIV-1-specific CD8(+) T cells comparable to those induced by 1 μg of a conventional pTH.HIVconsv DNA vaccine, representing a 625-fold molar reduction in dose. Responses induced by both DREP.HIVconsv and pTH.HIVconsv were further increased by heterologous vaccine boosts employing modified vaccinia virus Ankara MVA.HIVconsv and attenuated chimpanzee adenovirus ChAdV63.HIVconsv. Using the same HIVconsv vaccines, the mouse observations were supported by an at least 20-fold-lower dose of DNA vaccine in rhesus macaques. These data point toward a strategy for overcoming the low immunogenicity of DNA vaccines in humans and strongly support further development of the DREP vaccine platform for clinical evaluation.
    Journal of Virology 02/2012; 86(8):4082-90. · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Administration of synthetic long peptides (SLPs) derived from human papillomavirus to cervical cancer patients resulted in clinical benefit correlated with expansions of tumour-specific T cells. Because vaginal mucosa is an important port of entry for HIV-1, we have explored SLP for HIV-1 vaccination. Using immunogen HIVconsv derived from the conserved regions of HIV-1, we previously showed in rhesus macaques that SLP.HIVconsv delivered as a boost increased the breath of T-cell specificities elicited by single-gene vaccines. Here, we compared and characterized the use of electroporated pSG2.HIVconsv DNA (D) and imiquimod/montanide-adjuvanted SLP.HIVconsv (S) as priming vaccines for boosting with attenuated chimpanzee adenovirus ChAdV63.HIVconsv (C) and modified vaccinia virus Ankara MVA.HIVconsv (M). Prime-boost regimens of DDDCMS, DSSCMS and SSSCMS in rhesus macaques. Animals' blood was analysed regularly throughout the vaccination for HIV-1-specific T-cell and antibody responses. We found that electroporation spares DNA dose, both SLP.HIVconsv and pSG2.HIVconsv DNA primed weakly HIVconsv-specific T cells, regimen DDDCM induced the highest frequencies of oligofunctional, proliferating CD4(+) and CD8(+) T cells, and a subsequent SLP.HIVconsv boost expanded primarily CD4(+) cells. DSS was the most efficient regimen inducing antibodies binding to regions of trimeric HIV-1 Env, which are highly conserved among the four major global clades, although no unequivocal neutralizing activity was detected. The present results encourage evaluation of the SLP.HIVconsv vaccine modality in human volunteers along the currently trialled pSG2.HIVconsv DNA, ChAdV63.HIVconsv and MVA.HIVconsv vaccines. These results are discussed in the context of the RV144 trial outcome.
    AIDS (London, England) 11/2011; 26(3):275-84. · 4.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The desire to induce HIV-1-specific responses soon after birth to prevent breast milk transmission of HIV-1 led us to propose a vaccine regimen which primes HIV-1-specific T cells using a recombinant Mycobacterium bovis bacillus Calmette-Guérin (rBCG) vaccine. Because attenuated live bacterial vaccines are typically not sufficiently immunogenic as stand-alone vaccines, rBCG-primed T cells will likely require boost immunization(s). Here, we compared modified Danish (AERAS-401) and Pasteur lysine auxotroph (222) strains of BCG expressing the immunogen HIVA for their potency to prime HIV-1-specific responses in adult BALB/c mice and examined four heterologous boosting HIVA vaccines for their immunogenic synergy. We found that both BCG.HIVA(401) and BCG.HIVA(222) primed HIV-1-specific CD8(+) T-cell-mediated responses. The strongest boosts were delivered by human adenovirus-vectored HAdV5.HIVA and sheep atadenovirus-vectored OAdV7.HIVA vaccines, followed by poxvirus MVA.HIVA; the weakest was plasmid pTH.HIVA DNA. The prime-boost regimens induced T cells capable of efficient in vivo killing of sensitized target cells. We also observed that the BCG.HIVA(401) and BCG.HIVA(222) vaccines have broadly similar immunologic properties, but display a number of differences mainly detected through distinct profiles of soluble intercellular signaling molecules produced by immune splenocytes in response to both HIV-1- and BCG-specific stimuli. These results encourage further development of the rBCG prime-boost regimen.
    European Journal of Immunology 09/2011; 41(12):3542-52. · 4.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Immunodominance in T cell responses to complex antigens like viruses is still incompletely understood. Some data indicate that the dominant responses to viruses are not necessarily the most protective, while other data imply that dominant responses are the most important. The issue is of considerable importance to the rational design of vaccines, particularly against variable escaping viruses like human immunodeficiency virus type 1 and hepatitis C virus. Here, we showed that sequential inactivation of dominant epitopes up-ranks the remaining subdominant determinants. Importantly, we demonstrated that subdominant epitopes can induce robust responses and protect against whole viruses if they are allowed at least once in the vaccination regimen to locally or temporally dominate T cell induction. Therefore, refocusing T cell immune responses away from highly variable determinants recognized during natural virus infection towards subdominant, but conserved regions is possible and merits evaluation in humans.
    PLoS Pathogens 05/2011; 7(5):e1002041. · 8.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acquired immunodeficiency syndrome and tuberculosis (TB) are two of the world's most devastating diseases. The first vaccine the majority of infants born in Africa receive is Mycobacterium bovis bacillus Calmette-Guérin (BCG) as a prevention against TB. BCG protects against disseminated disease in the first 10 years of life, but provides a variable protection against pulmonary TB and enhancing boost delivered by recombinant modified vaccinia virus Ankara (rMVA) expressing antigen 85A (Ag85A) of M. tuberculosis is currently in phase IIb evaluation in African neonates. If the newborn's mother is positive for human immunodeficiency virus type 1 (HIV-1), the baby is at high risk of acquiring HIV-1 through breastfeeding. We suggested that a vaccination consisting of recombinant BCG expressing HIV-1 immunogen administered at birth followed by a boost with rMVA sharing the same immunogen could serve as a strategy for prevention of mother-to-child transmission of HIV-1 and rMVA expressing an African HIV-1-derived immunogen HIVA is currently in phase I trials in African neonates. Here, we aim to develop a dual neonate vaccine platform against HIV-1 and TB consisting of BCG.HIVA administered at birth followed by a boost with MVA.HIVA.85A. Thus, mMVA.HIVA.85A and sMVA.HIVA.85A vaccines were constructed, in which the transgene transcription is driven by either modified H5 or short synthetic promoters, respectively, and tested for immunogenicity alone and in combination with BCG.HIVA(222). mMVA.HIVA.85A was produced markerless and thus suitable for clinical manufacture. While sMVA.HIVA.85A expressed higher levels of the immunogens, it was less immunogenic than mMVA.HIVA.85A in BALB/c mice. A BCG.HIVA(222)-mMVA.HIVA.85A prime-boost regimen induced robust T cell responses to both HIV-1 and M. tuberculosis. Therefore, proof-of-principle for a dual anti-HIV-1/M. tuberculosis infant vaccine platform is established. Induction of immune responses against these pathogens soon after birth is highly desirable and may provide a basis for lifetime protection maintained by boosts later in life.
    PLoS ONE 01/2011; 6(5):e20067. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated whether vaccination of healthy HIV-seronegative and HIV-1-seropositive antiretroviral therapy-treated subjects with recombinant modified vaccinia virus Ankara expressing an HIV-1 immunogen (MVA.HIVA) induced MVA-specific T cell responses. Using IFN-γ Elispot assays, we observed new or increased responses to MVA virus in 52% of HIV-seronegative subjects and 93% HIV-1 seropositive subjects; MVA-specific T cell frequencies were generally low and correlated poorly with T cell responses to the HIV-1 immunogen. In two vaccinees, responses were mapped to CD8+ T cell epitopes present in replication-competent vaccinia virus. These data support further evaluation of MVA as a viral vector for HIV-1 immunogens.
    Vaccine 10/2010; 28(45):7306-12. · 3.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although major inroads into making antiretroviral therapy available in resource-poor countries have been made, there is an urgent need for an effective vaccine administered shortly after birth, which would protect infants from acquiring human immunodeficiency virus type 1 (HIV-1) through breast-feeding. Bacillus Calmette-Guérin (BCG) is given to most infants at birth, and its recombinant form could be used to prime HIV-1-specific responses for a later boost by heterologous vectors delivering the same HIV-1-derived immunogen. Here, two groups of neonate Indian rhesus macaques were immunized with either novel candidate vaccine BCG.HIVA(401) or its parental strain AERAS-401, followed by two doses of recombinant modified vaccinia virus Ankara MVA.HIVA. The HIVA immunogen is derived from African clade A HIV-1. All vaccines were safe, giving local reactions consistent with the expected response at the injection site. No systemic adverse events or gross abnormality was seen at necropsy. Both AERAS-401 and BCG.HIVA(401) induced high frequencies of BCG-specific IFN-gamma-secreting lymphocytes that declined over 23 weeks, but the latter failed to induce detectable HIV-1-specific IFN-gamma responses. MVA.HIVA elicited HIV-1-specific IFN-gamma responses in all eight animals, but, except for one animal, these responses were weak. The HIV-1-specific responses induced in infants were lower compared to historic data generated by the two HIVA vaccines in adult animals but similar to other recombinant poxviruses tested in this model. This is the first time these vaccines were tested in newborn monkeys. These results inform further infant vaccine development and provide comparative data for two human infant vaccine trials of MVA.HIVA.
    Journal of Virology 08/2010; 84(15):7815-21. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A novel T-cell vaccine strategy designed to deal with the enormity of HIV-1 variation is described and tested for the first time in macaques to inform and complement approaching clinical trials. T-cell immunogen HIVconsv, which directs vaccine-induced responses to the most conserved regions of the HIV-1, proteome and thus both targets diverse clades in the population and reduces the chance of escape in infected individuals, was delivered using six different vaccine modalities: plasmid DNA (D), attenuated human (A) and chimpanzee (C) adenoviruses, modified vaccinia virus Ankara (M), synthetic long peptides, and Semliki Forest virus replicons. We confirmed that the initial DDDAM regimen, which mimics one of the clinical schedules (DDDCM), is highly immunogenic in macaques. Furthermore, adjuvanted synthetic long peptides divided into sub-pools and delivered into anatomically separate sites induced T-cell responses that were markedly broader than those elicited by traditional single-open-reading-frame genetic vaccines and increased by 30% the overall response magnitude compared with DDDAM. Thus, by improving both the HIV-1-derived immunogen and vector regimen/delivery, this approach could induce stronger, broader, and theoretically more protective T-cell responses than vaccines previously used in humans.
    European Journal of Immunology 05/2010; 40(7):1973-84. · 4.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ovine adenovirus type 7 (OAdV) is the prototype member of the genus Atadenovirus. No immunity to the virus has so far been detected in human sera. We describe the construction and evaluation of a candidate HIV-1 vaccine based on OAdV and its utilisation alone and in combination with plasmid-, human adenovirus type 5 (HAdV5; a Mastadenovirus)-, and modified vaccinia Ankara (MVA)-vectored vaccines. All vectors expressed HIVA, an immunogen consisting of HIV-1 clade A consensus Gag-derived protein coupled to a T cell polyepitope. OAdV.HIVA was genetically stable, grew well and expressed high levels of protein from the Rous sarcoma virus promoter. OAdV.HIVA was highly immunogenic in mice and efficiently primed and boosted HIV-1-specific T cell responses together with heterologous HIVA-expressing vectors. There were significant differences between OAdV and HAdV5 vectors in priming of naïve CD8(+) T cell responses to HIVA and in the persistence of MHC class I-restricted epitope presentation in the local draining lymph nodes. OAdV.HIVA primed T cells more rapidly but was less persistent than AdV5.HIVA and thus induced a qualitatively distinct T cell response. Nevertheless, both vectors primed a response in mice that reduced viral titres in a surrogate challenge model by three to four orders of magnitude. Thus, OAdV is a novel, underexplored vaccine vector with potential for further development for HIV-1 and other vaccines. The data are discussed in the context of the latest HIV-1 vaccine developments.
    Vaccine 10/2009; 28(2):474-83. · 3.77 Impact Factor
  • Source
    Retrovirology 01/2009; 6. · 5.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: One of the big roadblocks in development of HIV-1/AIDS vaccines is the enormous diversity of HIV-1, which could limit the value of any HIV-1 vaccine candidate currently under test. To address the HIV-1 variation, we designed a novel T cell immunogen, designated HIV(CONSV), by assembling the 14 most conserved regions of the HIV-1 proteome into one chimaeric protein. Each segment is a consensus sequence from one of the four major HIV-1 clades A, B, C and D, which alternate to ensure equal clade coverage. The gene coding for the HIV(CONSV) protein was inserted into the three most studied vaccine vectors, plasmid DNA, human adenovirus serotype 5 and modified vaccine virus Ankara (MVA), and induced HIV-1-specific T cell responses in mice. We also demonstrated that these conserved regions prime CD8(+) and CD4(+) T cell to highly conserved epitopes in humans and that these epitopes, although usually subdominant, generate memory T cells in patients during natural HIV-1 infection. Therefore, this vaccine approach provides an attractive and testable alternative for overcoming the HIV-1 variability, while focusing T cell responses on regions of the virus that are less likely to mutate and escape. Furthermore, this approach has merit in the simplicity of design and delivery, requiring only a single immunogen to provide extensive coverage of global HIV-1 population diversity.
    PLoS ONE 02/2007; 2(10):e984. · 3.53 Impact Factor