Marcella Devoto

University of Pennsylvania, Filadelfia, Pennsylvania, United States

Are you Marcella Devoto?

Claim your profile

Publications (199)1702.79 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Children with very early-onset inflammatory bowel disease (VEO-IBD), those diagnosed at less than 5 years of age, are a unique population. A subset of these patients present with a distinct phenotype and more severe disease than older children and adults. Host genetics is thought to play a more prominent role in this young population, and monogenic defects in genes related to primary immunodeficiencies are responsible for the disease in a small subset of patients with VEO-IBD. Case Presentation We report a child who presented at 3 weeks of life with very early-onset inflammatory bowel disease (VEO-IBD). He had a complicated disease course and remained unresponsive to medical and surgical therapy. The refractory nature of his disease, together with his young age of presentation, prompted utilization of whole exome sequencing (WES) to detect an underlying monogenic primary immunodeficiency and potentially target therapy to the identified defect. Copy number variation analysis (CNV) was performed using the eXome-Hidden Markov Model. Whole exome sequencing revealed 1,380 nonsense and missense variants in the patient. Plausible candidate variants were not detected following analysis of filtered variants, therefore, we performed CNV analysis of the WES data, which led us to identify a de novo whole gene deletion in XIAP. Conclusion This is the first reported whole gene deletion in XIAP, the causal gene responsible for XLP2 (X-linked lymphoproliferative Disease 2). XLP2 is a syndrome resulting in VEO-IBD and can increase susceptibility to hemophagocytic lymphohistocytosis (HLH). This identification allowed the patient to be referred for bone marrow transplantation, potentially curative for his disease and critical to prevent the catastrophic sequela of HLH. This illustrates the unique etiology of VEO-IBD, and the subsequent effects on therapeutic options. This cohort requires careful and thorough evaluation for monogenic defects and primary immunodeficiencies.
    BMC Gastroenterology 11/2015; 15(1):160. DOI:10.1186/s12876-015-0394-z · 2.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Study hypothesis: Susceptibility to inherited cryptorchidism in the LE/orl rat may be associated with genetic loci that influence developmental patterning of the gubernaculum by the fetal testis. Study finding: Cryptorchidism in the LE/orl rat is associated with a unique combination of homozygous minor alleles at multiple loci, and the encoded proteins are co-localized with androgen receptor (AR) and Leydig cells in fetal gubernaculum and testis, respectively. What is known already: Prior studies have shown aberrant perinatal gubernacular migration, muscle patterning defects and reduced fetal testicular testosterone in the LE/orl strain. In addition, altered expression of androgen-responsive, cytoskeletal and muscle-related transcripts in the LE/orl fetal gubernaculum suggest a role for defective AR signaling in cryptorchidism susceptibility. Study design, samples/materials, methods: The long-term LE/orl colony and short-term colonies of outbred Crl:LE and Crl:SD, and inbred WKY/Ncrl rats were maintained for studies. Animals were intercrossed (LE/orl X WKY/Ncrl), and obligate heterozygotes were reciprocally backcrossed to LE/orl rats to generate 54 F2 males used for genotyping and/or linkage analysis. At least 5 fetuses per gestational time point from 2 or more litters were used for quantitative real time RT-PCR (qRT-PCR) and freshly harvested embryonic (E) day 17 gubernaculum was used to generate conditionally immortalized cell lines. We completed genotyping and gene expression analyses using genome-wide microsatellite markers and single nucleotide polymorphism (SNP) arrays, PCR amplification, direct sequencing, restriction enzyme digest with fragment analysis, whole genome sequencing (WGS), and qRT-PCR. Linkage analysis was performed in Haploview with multiple testing correction, and qRT-PCR data were analyzed using ANOVA after log transformation. Imaging was performed using custom and commercial antibodies directed at candidate proteins in gubernaculum and testis tissues, and gubernaculum cell lines. Main results and the role of chance: LE/orl rats showed reduced fertility and fecundity, and higher risk of perinatal death as compared to Crl:LE rats, but there were no differences in breeding outcomes between normal and unilaterally cryptorchid males. Linkage analysis identified multiple peaks, and with selective breeding of outbred Crl:LE and Crl:SD strains for alleles within two of the most significant (p<0.003) peaks on chromosomes 6 and 16, we were able to generate a non-LE/orl cryptorchid rat. Associated loci contain potentially functional minor alleles (0.25-0.36 in tested rat strains) including an exonic deletion in Syne2, a large intronic insertion in Ncoa4 (an AR coactivator) and potentially deleterious variants in Solh/Capn15, Ankrd28, and Hsd17b2. Existing WGS data indicate that homozygosity for these combined alleles does not occur in any other sequenced rat strain. We observed a modifying effect of the Syne2(del) allele on expression of other candidate genes, particularly Ncoa4, and for muscle and hormone-responsive transcripts. The selected candidate genes/proteins are highly expressed, androgen-responsive and/or co-localized with developing muscle and AR in fetal gubernaculum, and co-localized with Leydig cells in fetal testis. Limitations, reasons for caution: The present study identified multiple cryptorchidism-associated linkage peaks in the LE/orl rat, containing potentially causal alleles. These are strong candidate susceptibility loci, but further studies are needed to demonstrate functional relevance to the phenotype. Wider implications of the findings: Association data from both human and rat models of spontaneous, nonsyndromic cryptorchidism support a polygenic etiology of the disease. Both the present study and a human genome-wide association study suggest that common variants with weak effects contribute to susceptibility, and may exist in genes encoding proteins that participate in AR signaling in the developing gubernaculum. These findings have potential implications for the gene-environment interaction in the etiology of cryptorchidism. Large scale data: Sequences were deposited in the Rat Genome Database (RGD, Study funding and competing interests: This work was supported by: R01HD060769 from the Eunice Kennedy Shriver National Institute for Child Health and Human Development (NICHD), 2P20GM103446 and P20GM103464 from the National Institute of General Medical Sciences (NIGMS), and Nemours Biomedical Research. The authors have no competing interests to declare.
    Molecular Human Reproduction 10/2015; DOI:10.1093/molehr/gav060 · 3.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: What are the genetic loci that increase susceptibility to nonsyndromic cryptorchidism, or undescended testis? A genome-wide association study (GWAS) suggests that susceptibility to cryptorchidism is heterogeneous, with a subset of suggestive signals linked to cytoskeleton-dependent functions and syndromic forms of the disease. Population studies suggest moderate genetic risk of cryptorchidism and possible maternal and environmental contributions to risk. Previous candidate gene analyses have failed to identify a major associated locus, although variants in insulin-like 3 (INSL3), relaxin/insulin-like family peptide receptor 2 (RXFP2) and other hormonal pathway genes may increase risk in a small percentage of patients. This is a case-control GWAS of 844 boys with nonsyndromic cryptorchidism and 2718 control subjects without syndromes or genital anomalies, all of European ancestry. All boys with cryptorchidism were diagnosed and treated by a pediatric specialist. In the discovery phase, DNA was extracted from tissue or blood samples and genotyping performed using the Illumina HumanHap550 and Human610-Quad (Group 1) or OmniExpress (Group 2) platform. We imputed genotypes genome-wide, and combined single marker association results in meta-analyses for all cases and for secondary subphenotype analyses based on testis position, laterality and age, and defined genome-wide significance as P = 7 × 10(-9) to correct for multiple testing. Selected markers were genotyped in an independent replication group of European cases (n = 298) and controls (n = 324). We used several bioinformatics tools to analyze top (P < 10(-5)) and suggestive (P < 10(-3)) signals for significant enrichment of signaling pathways, cellular functions and custom gene lists after multiple testing correction. In the full analysis, we identified 20 top loci, none reaching genome-wide significance, but one passing this threshold in a subphenotype analysis of proximal testis position (rs55867206, near SH3PXD2B, odds ratio = 2.2 (95% confidence interval 1.7, 2.9), P = 2 × 10(-9)). An additional 127 top loci emerged in at least one secondary analysis, particularly of more severe phenotypes. Cytoskeleton-dependent molecular and cellular functions were prevalent in pathway analysis of suggestive signals, and may implicate loci encoding cytoskeletal proteins that participate in androgen receptor signaling. Genes linked to human syndromic cryptorchidism, including hypogonadotropic hypogonadism, and to hormone-responsive and/or differentially expressed genes in normal and cryptorchid rat gubernaculum, were also significantly overrepresented. No tested marker showed significant replication in an independent population. The results suggest heterogeneous, multilocus and potentially multifactorial susceptibility to nonsyndromic cryptorchidism. The present study failed to identify genome-wide significant markers associated with cryptorchidism that could be replicated in an independent population, so further studies are required to define true positive signals among suggestive loci. As the only GWAS to date of nonsyndromic cryptorchidism, these data will provide a basis for future efforts to understand genetic susceptibility to this common reproductive anomaly and the potential for additive risk from environmental exposures. This work was supported by R01HD060769 (the Eunice Kennedy Shriver National Institute for Child Health and Human Development (NICHD)), P20RR20173 (the National Center for Research Resources (NCRR), currently P20GM103464 from the National Institute of General Medical Sciences (NIGMS)), an Institute Development Fund to the Center for Applied Genomics at The Children's Hospital of Philadelphia, and Nemours Biomedical Research. The authors have no competing interests to declare. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email:
    Human Reproduction 07/2015; 30(10). DOI:10.1093/humrep/dev180 · 4.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Very early onset inflammatory bowel disease (VEO-IBD), IBD diagnosed ≤5 y of age, frequently presents with a different and more severe phenotype than older-onset IBD. We investigated whether patients with VEO-IBD carry rare or novel variants in genes associated with immunodeficiencies that might contribute to disease development. Patients with VEO-IBD and parents (when available) were recruited from the Children's Hospital of Philadelphia from March 2013 through July 2014. We analyzed DNA from 125 patients with VEO-IBD (ages 3 weeks to 4 y) and 19 parents, 4 of whom also had IBD. Exome capture was performed by Agilent SureSelect V4, and sequencing was performed using the Illumina HiSeq platform. Alignment to human genome GRCh37 was achieved followed by post-processing and variant calling. Following functional annotation, candidate variants were analyzed for change in protein function, minor allele frequency <0.1%, and scaled combined annotation dependent depletion scores ≤10. We focused on genes associated with primary immunodeficiencies and related pathways. An additional 210 exome samples from patients with pediatric IBD (n=45) or adult-onset Crohn's disease (n=20) and healthy individuals (controls, n=145) were obtained from the University of Kiel, Germany and used as control groups. Four-hundred genes and regions associated with primary immunodeficiency, covering approximately 6500 coding exons totaling > 1 Mbp of coding sequence, were selected from the whole exome data. Our analysis revealed novel and rare variants within these genes that could contribute to the development of VEO-IBD, including rare heterozygous missense variants in IL10RA and previously unidentified variants in MSH5 and CD19. In an exome sequence analysis of patients with VEO-IBD and their parents, we identified variants in genes that regulate B- and T-cell functions and could contribute to pathogenesis. Our analysis could lead to the identification of previously unidentified IBD-associated variants. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.
    Gastroenterology 07/2015; 149(6). DOI:10.1053/j.gastro.2015.07.006 · 16.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: New genomic strategies can now be applied to identify a diagnosis in patients and families with previously undiagnosed rare genetic conditions. The large family evaluated in the present study was described in 1966 and now expands the phenotype of a known neuromuscular gene. To determine the genetic cause of a slowly progressive, autosomal dominant, scapuloperoneal neuromuscular disorder by using linkage and exome sequencing. Fourteen affected individuals in a 6-generation family with a progressive scapuloperoneal disorder were evaluated. Participants were examined at pediatric, neuromuscular, and research clinics from March 1, 2005, to May 31, 2014. Exome and linkage were performed in genetics laboratories of research institutions. Examination and evaluation by magnetic resonance imaging, ultrasonography, electrodiagnostic studies, and muscle biopsies (n = 3). Genetic analysis included linkage analysis (n = 17) with exome sequencing (n = 7). Clinical findings included progressive muscle weakness in an initially scapuloperoneal and distal distribution, including wrist extensor weakness, finger and foot drop, scapular winging, mild facial weakness, Achilles tendon contractures, and diminished or absent deep tendon reflexes. Both age at onset and progression of the disease showed clinical variability within the family. Muscle biopsy specimens demonstrated type I fiber atrophy and trabeculated fibers without nemaline rods. Analysis of exome sequences within the linkage region (4.8 megabases) revealed missense mutation c.591C>A p.Glu197Asp in a highly conserved residue in exon 4 of ACTA1. The mutation cosegregated with disease in all tested individuals and was not present in unaffected individuals. This family defines a new scapuloperoneal phenotype associated with an ACTA1 mutation. A highly conserved protein, ACTA1 is implicated in multiple muscle diseases, including nemaline myopathy, actin aggregate myopathy, fiber-type disproportion, and rod-core myopathy. To our knowledge, mutations in Glu197 have not been reported previously. This residue is highly conserved and located in an exposed position in the protein; the mutation affects the intermolecular and intramolecular electrostatic interactions as shown by structural modeling. The mutation in this residue does not appear to lead to rod formation or actin accumulation in vitro or in vivo, suggesting a different molecular mechanism from that of other ACTA1 diseases.
    05/2015; 72(6). DOI:10.1001/jamaneurol.2015.37
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The 22q11.2 deletion syndrome (22q11DS; velocardiofacial/DiGeorge syndrome; VCFS/DGS) is the most common microdeletion syndrome and the phenotypic presentation is highly variable. Approximately 65% of individuals with 22q11DS have a congenital heart defect (CHD), mostly of the conotruncal type, and/or an aortic arch defect. The etiology of this phenotypic variability is not currently known. We hypothesized that copy-number variants (CNVs) outside the 22q11.2 deleted region might increase the risk of being born with a CHD in this sensitized population. Genotyping with Affymetrix SNP Array 6.0 was performed on two groups of subjects with 22q11DS separated by time of ascertainment and processing. CNV analysis was completed on a total of 949 subjects (cohort 1, n = 562; cohort 2, n = 387), 603 with CHDs (cohort 1, n = 363; cohort 2, n = 240) and 346 with normal cardiac anatomy (cohort 1, n = 199; cohort 2, n = 147). Our analysis revealed that a duplication of SLC2A3 was the most frequent CNV identified in the first cohort. It was present in 18 subjects with CHDs and 1 subject without (p = 3.12 × 10(-3), two-tailed Fisher's exact test). In the second cohort, the SLC2A3 duplication was also significantly enriched in subjects with CHDs (p = 3.30 × 10(-2), two-tailed Fisher's exact test). The SLC2A3 duplication was the most frequent CNV detected and the only significant finding in our combined analysis (p = 2.68 × 10(-4), two-tailed Fisher's exact test), indicating that the SLC2A3 duplication might serve as a genetic modifier of CHDs and/or aortic arch anomalies in individuals with 22q11DS. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
    The American Journal of Human Genetics 04/2015; 96(5). DOI:10.1016/j.ajhg.2015.03.007 · 10.93 Impact Factor

  • Gastroenterology 04/2015; 148(4):S-71. DOI:10.1016/S0016-5085(15)30248-1 · 16.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biliary atresia (BA) is a pediatric cholangiopathy with unknown etiology occurring in isolated and syndromic forms. Laterality defects affecting the cardiovascular and gastrointestinal systems are the most common features present in syndromic BA. Most cases are sporadic, although reports of familial cases have led to the hypothesis of genetic susceptibility in some patients. We identified a child with BA, malrotation, and interrupted inferior vena cava whose father presented with situs inversus, polysplenia, panhypopituitarism, and mildly dysmorphic facial features. Chromosomal microarray analysis demonstrated a 277kb heterozygous deletion on chromosome 20 which included a single gene, FOXA2, in the proband and her father. This deletion was confirmed to be de novo in the father. The proband and her father share a common diagnosis of heterotaxy, but they also each presented with a variety of other issues. Further genetic screening revealed that the proband carried an additional protein-altering polymorphism (rs1904589; p.His165Arg) in the NODAL gene that is not present in the father, and this variant has been shown to decrease expression of the gene. As FOXA2 can be a regulator of NODAL expression, we propose that haploinsufficiency for FOXA2 combined with a decreased expression of NODAL is the likely cause for syndromic BA in this proband. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
    Human Mutation 03/2015; 36(6). DOI:10.1002/humu.22786 · 5.14 Impact Factor

  • American Journal of Medical Genetics Part A 03/2015; 167(4). DOI:10.1002/ajmg.a.36946 · 2.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Based on a genome-wide association study of testicular dysgenesis syndrome showing a possible association with TGFBR3, we analyzed data from a larger, phenotypically restricted cryptorchidism population for potential replication of this signal. Materials and methods: We excluded samples based on strict quality control criteria, leaving 844 cases and 2,718 controls of European ancestry that were analyzed in 2 separate groups based on genotyping platform (ie Illumina® HumanHap550, version 1 or 3, or Human610-Quad, version 1 BeadChip in group 1 and Human OmniExpress 12, version 1 BeadChip platform in group 2). Analyses included genotype imputation at the TGFBR3 locus, association analysis of imputed data with correction for population substructure, subsequent meta-analysis of data for groups 1 and 2, and selective genotyping of independent cases (330) and controls (324) for replication. We also measured Tgfbr3 mRNA levels and performed TGFBR3/betaglycan immunostaining in rat fetal gubernaculum. Results: We identified suggestive (p ≤ 1× 10(-4)) association of markers in/near TGFBR3, including rs9661103 (OR 1.40; 95% CI 1.20, 1.64; p = 2.71 × 10(-5)) and rs10782968 (OR 1.58; 95% CI 1.26, 1.98; p = 9.36 × 10(-5)) in groups 1 and 2, respectively. In subgroup analyses we observed strongest association of rs17576372 (OR 1.42; 95% CI 1.24, 1.60; p = 1.67 × 10(-4)) with proximal and rs11165059 (OR 1.32; 95% CI 1.15, 1.38; p = 9.42 × 10(-4)) with distal testis position, signals in strong linkage disequilibrium with rs9661103 and rs10782968, respectively. Association of the prior genome-wide association study signal (rs12082710) was marginal (OR 1.13; 95% CI 0.99, 1.28; p = 0.09 for group 1), and we were unable to replicate signals in our independent cohort. Tgfbr3/betaglycan was differentially expressed in wild-type and cryptorchid rat fetal gubernaculum. Conclusions: These data suggest complex or phenotype specific association of cryptorchidism with TGFBR3 and the gubernaculum as a potential target of TGFβ signaling.
    The Journal of Urology 10/2014; 193(5). DOI:10.1016/j.juro.2014.10.097 · 4.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The genetic etiology of sporadic neuroblastoma is still largely obscure. In a genome-wide association study, we identified single nucleotide polymorphisms (SNP) associated with neuroblastoma at the LINC00340, BARD1, LMO1, DUSP12, HSD17B12, HACE1 and LIN28B gene loci, but these explain only a small fraction of neuroblastoma heritability. Other neuroblastoma susceptibility genes are likely hidden among signals discarded by the multiple testing corrections. In this study, we evaluated 8 additional genes selected as candidates for further study based on proven involvement in neuroblastoma differentiation. SNP at these candidate genes were tested for association with disease susceptibility in 2101 cases and 4202 controls, with the associations found replicated in an independent cohort of 459 cases and 809 controls. Replicated associations were further studied for cis-effect using gene expression, transient overexpression, silencing and cellular differentiation assays. The neurofilament gene NEFL harbored three SNP associated with neuroblastoma (rs11994014; Pcombined=0.0050; OR=0.88, rs2979704; Pcombined=0.0072; OR=0.87, rs105911; Pcombined=0.0049; OR=0.86). The protective allele of rs1059111 correlated with increased NEFL expression. Biological investigations showed that ectopic overexpression of NEFL inhibited cell growth specifically in neuroblastoma cells carrying the protective allele. NEFL overexpression also enhanced differentiation and impaired the proliferation and anchorage-independent growth of cells with protective allele and basal NEFL expression, while impairing invasiveness and proliferation of cells homozygous for the risk genotype. Clinically, high levels of NEFL expression in primary neuroblastoma specimens was associated with better overall survival (P=0.03; HR=0.68). Our results show that common variants of NEFL influence neuroblastoma susceptibility and they establish that NEFL expression influences disease initiation and progression.
    Cancer Research 10/2014; 74(23). DOI:10.1158/0008-5472.CAN-14-0431 · 9.33 Impact Factor

  • Gastroenterology 05/2014; 146(5):S-27. DOI:10.1016/S0016-5085(14)60095-0 · 16.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: TP53 is the most frequently mutated gene in human malignancies; however, de novo somatic mutations in childhood embryonal cancers such as neuroblastoma are rare. We report on the analysis of three independent case-control cohorts comprising 10290 individuals and demonstrate that rs78378222 and rs35850753, rare germline variants in linkage disequilibrium that map to the 3' untranslated region (UTR) of TP53 and 5' UTR of the Δ133 isoform of TP53, respectively, are robustly associated with neuroblastoma (rs35850753: odds ratio [OR] = 2.7, 95% confidence interval [CI] = 2.0 to 3.6, P combined = 3.43×10(-12); rs78378222: OR = 2.3, 95% CI = 1.8 to 2.9, P combined = 2.03×10(-11)). All statistical tests were two-sided. These findings add neuroblastoma to the complex repertoire of human cancers influenced by the rs78378222 hypomorphic allele, which impairs proper termination and polyadenylation of TP53 transcripts. Future studies using whole-genome sequencing data are likely to reveal additional rare variants with large effect sizes contributing to neuroblastoma tumorigenesis.
    Journal of the National Cancer Institute 03/2014; 106(4). DOI:10.1093/jnci/dju047 · 12.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Collagen VI-related myopathies are disorders of connective tissue presenting with an overlap phenotype combining clinical involvement from the muscle and from the connective tissue. Not all patients displaying related overlap phenotypes between muscle and connective tissue have mutations in collagen VI. Here, we report a homozygous recessive loss of function mutation and a de novo dominant mutation in collagen XII (COL12A1) as underlying a novel overlap syndrome involving muscle and connective tissue. Two siblings homozygous for a loss of function mutation showed widespread joint hyperlaxity combined with weakness precluding independent ambulation, while the patient with the de novo missense mutation was more mildly affected, showing improvement including the acquisition of walking. A mouse model with inactivation of the Col12a1 gene showed decreased grip strength, a delay in fiber-type transition and a deficiency in passive force generation while the muscle seems more resistant to eccentric contraction induced force drop, indicating a role for a matrix-based passive force-transducing elastic element in the generation of the weakness. This new muscle connective tissue overlap syndrome expands on the emerging importance of the muscle extracellular matrix in the pathogenesis of muscle disease.
    Human Molecular Genetics 12/2013; 23(9). DOI:10.1093/hmg/ddt627 · 6.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Developmental Dysplasia of the Hip (DDH) is a debilitating condition characterized by incomplete formation of the acetabulum leading to dislocation of the femur, suboptimal joint function, and accelerated wear of the articular cartilage resulting in arthritis. DDH affects 1 in 1000 newborns in the United States with well defined "pockets" of high prevalence in Japan, Italy and other Mediterranean countries. Although reasonably accurate for detecting gross forms of hip dysplasia, existing techniques fail to find milder forms of dysplasia. Undetected hip dysplasia is the leading cause of osteoarthritis of the hip in young individuals causing over 40% of cases in this age group. A sensitive and specific test for DDH has remained a desirable yet elusive goal in orthopaedics for a long time. A 72 member, four generation affected family has been recruited, and DNA from its members retrieved. Genome-wide linkage analysis revealed a 2.61 Mb candidate region (38.7-41.31 Mb from the p term of chromosome 3) co-inherited by all affected members with a maximum LOD score of 3.31. Whole exome sequencing and analysis of this candidate region in four severely affected family members revealed one shared variant, rs3732378, that causes a threonine (polar) to methionine (non-polar) alteration at position 280 in the trans-membrane domain of CX3CR1. This mutation is predicted to have a deleterious effect on its encoded protein which functions as a receptor for the ligand fractalkine. By Sanger sequencing this variant was found to be present in the DNA of all affected individuals and obligate heterozygotes. CX3CR1 mediates cellular adhesive and migratory functions and is known to be expressed in mesenchymal stem cells destined to become chondrocytes. A genetic risk factor that might to be among the etiologic factors for the family in this study has been identified, along with other possible aggravating mutations shared by 4 severely affected family members. These findings might illuminate the molecular pathways affecting chondrocyte maturation and bone formation.
    Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 12/2013; 28(12). DOI:10.1002/jbmr.1999 · 6.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the United States, biliary atresia (BA) is the most frequent indication for liver transplantation in pediatric patients. BA is a complex disease, with suspected environmental and genetic risk factors. A genome-wide association study in Chinese patients identified association to the 10q24.2 (hg18) genomic region. This signal was upstream of two genes, XPNPEP1 and ADD3, both expressed in intrahepatic bile ducts. We tested association to this region in 171 BA patients and 1,630 controls of European descent and found the strongest signal to be at rs7099604 (p = 2.5 × 10(-3)) in intron 1 of the ADD3 gene. Moreover, expression data suggest that ADD3, but not XPNPEP1, is differentially expressed in BA patients. The role of ADD3 in biliary development is unclear, but our findings suggest that this gene may be functionally relevant for the development of BA.
    Human Genetics 10/2013; 133(2). DOI:10.1007/s00439-013-1368-2 · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In a small proportion of patients with an Ullrich-like clinical phenotype no mutations in the collagen VI genes are detected. Here we report on a novel muscle and tendon collagenopathy caused by mutations in COL12A1. In a consanguineous family with hypotonia, weakness and significant joint hyperlaxity we identified a homozygous frame shifting mutation in COL12A1 in the two affected children, causing complete absence of collagen XII in muscle and fibroblasts. Patients were unable to walk and developed scoliosis and respiratory insufficiency. In the second family the proband presented with milder hypotonia, motor delay, hyperlaxity and incomplete deficiency of collagen XII. We identified a de novo, presumably dominantly acting missense mutation. COL12A1 encodes collagen XII. Collagen XII is a homotrimer found in association with collagen I and acts as a cross-bridge between collagen fibrils while also interacting with tenascin X (TNX), heparin and decorin. We next investigated the muscle phenotype in a Col12a1 KO mouse, which showed age dependent weakness. At 9 months of age there was no significant difference in muscle fiber size, but the overall weight of the muscles was less with an altered slow-to-fast fiber type transition in both soleus and tibilias anterior muscles. Physiological measurements on isolated EDL showed protection from eccentric force drop and a decrease in passive force, suggesting an increased compliance of the matrix as well as decreased lateral and longitudinal force transmission to the matrix and tendon. We hypothesize that the functional abnormalities seen in muscle force measurement in COL12 KO mice originate at least partly from an underlying tendon and matrix pathology caused by the absence of collagen XII.
    Neuromuscular Disorders 10/2013; 23(s 9–10):739–740. DOI:10.1016/j.nmd.2013.06.380 · 2.64 Impact Factor

  • Cancer Research 04/2013; 73(8 Supplement):3811-3811. DOI:10.1158/1538-7445.AM2013-3811 · 9.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This report describes a three generation family with late onset bilateral sensorineural hearing impairment (BLSNHI) and tinnitus in which a novel mutation in the COCH gene was identified after a genome-wide linkage approach. The COCH gene is one of the few genes clinically examined when investigating the etiology of autosomal dominant late onset hearing impairment. Initially mutations in the COCH gene were only reported in exons 4 and 5, coding for the LCCL protein domain. More recently, additional mutations have been identified in exon 12, the only mutations identified outside of the LCCL domain. Currently clinical genetic testing for the COCH gene primarily focuses on identifying mutations in these three exons. In this study, we identify a novel mutation in the COCH gene in exon 11, which, like the exon 12 mutations, falls within the vWFA2 protein domain. This finding reinforces the need for clinical genetic screening of the COCH gene to be expanded beyond the current limited exon screening, as there is now more evidence to support that mutations in other areas of this gene are also causative of a similar form of late onset BLSNHI.
    American journal of otolaryngology 01/2013; 34(3). DOI:10.1016/j.amjoto.2012.11.002 · 0.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background & aims: Biliary atresia (BA) is a progressive fibroinflammatory disorder of infants involving the extrahepatic and intrahepatic biliary tree. Its etiology is unclear but is believed to involve exposure of a genetically susceptible individual to certain environmental factors. BA occurs exclusively in the neonatal liver, so variants of genes expressed during hepatobiliary development could affect susceptibility. Genome-wide association studies previously identified a potential region of interest at 2q37. We continued these studies to narrow the region and identify BA susceptibility genes. Methods: We searched for copy number variants that were increased among patients with BA (n = 61) compared with healthy individuals (controls; n = 5088). After identifying a candidate gene, we investigated expression patterns of orthologues in zebrafish liver and the effects of reducing expression, with morpholino antisense oligonucleotides, on biliary development, gene expression, and signal transduction. Results: We observed a statistically significant increase in deletions at 2q37.3 in patients with BA that resulted in deletion of one copy of GPC1, which encodes glypican 1, a heparan sulfate proteoglycan that regulates Hedgehog signaling and inflammation. Knockdown of gpc1 in zebrafish led to developmental biliary defects. Exposure of the gpc1 morphants to cyclopamine, a Hedgehog antagonist, partially rescued the gpc1-knockdown phenotype. Injection of zebrafish with recombinant Sonic Hedgehog led to biliary defects similar to those of the gpc1 morphants. Liver samples from patients with BA had reduced levels of apical GPC1 in cholangiocytes compared with samples from controls. Conclusions: Based on genetic analysis of patients with BA and zebrafish, GPC1 appears to be a BA susceptibility gene. These findings also support a role for Hedgehog signaling in the pathogenesis of BA.
    Gastroenterology 01/2013; 144(5). DOI:10.1053/j.gastro.2013.01.022 · 16.72 Impact Factor

Publication Stats

9k Citations
1,702.79 Total Impact Points


  • 2013-2015
    • University of Pennsylvania
      • Department of Biostatistics and Epidemiology
      Filadelfia, Pennsylvania, United States
  • 2006-2015
    • The Children's Hospital of Philadelphia
      • • Department of Neurology
      • • Department of Pediatrics
      • • Center for Applied Genomics
      • • Department of Ophthalmology
      Filadelfia, Pennsylvania, United States
  • 2005-2015
    • Sapienza University of Rome
      • • Department of Molecular Medicine
      • • Department of Experimental Medicine
      Roma, Latium, Italy
  • 2008-2011
    • William Penn University
      Filadelfia, Pennsylvania, United States
  • 1990-2005
    • Università degli Studi di Genova
      • Dipartimento di Medicina sperimentale (DIMES)
      Genova, Liguria, Italy
    • Università degli Studi di Torino
      Torino, Piedmont, Italy
  • 2001
    • CRO Centro di Riferimento Oncologico di Aviano
      Aviano, Friuli Venezia Giulia, Italy
    • Johns Hopkins University
      Baltimore, Maryland, United States
    • Università degli studi di Foggia
      Foggia, Apulia, Italy
  • 1994-2001
    • Baylor College of Medicine
      Houston, Texas, United States
  • 1997-2000
    • The Rockefeller University
      New York, New York, United States
  • 1996
    • Columbia University
      • Department of Psychiatry
      New York City, New York, United States
  • 1995
    • Universität Heidelberg
      • Department of Nephrology
      Heidelberg, Baden-Wuerttemberg, Germany
  • 1988-1995
    • National Institute of Molecular Genetics (INGM)
      Milano, Lombardy, Italy
    • Istituto di Genetica Molecolare
      Ticinum, Lombardy, Italy
  • 1993-1994
    • New York State Psychiatric Institute
      New York City, New York, United States
    • Massachusetts General Hospital
      • Department of Neurology
      Boston, Massachusetts, United States
  • 1989-1994
    • IRCCS Istituto G. Gaslini
      Genova, Liguria, Italy
  • 1992
    • Institute of Molecular Biology, SAS
      Presburg, Bratislavský, Slovakia
  • 1991
    • Istituti Clinici di Perfezionamento
      Milano, Lombardy, Italy
    • University of Milan
      Milano, Lombardy, Italy
  • 1985-1986
    • University of Bologna
      • Urology Clinic
      Bolonia, Emilia-Romagna, Italy