M Buferne

French Institute of Health and Medical Research, Lutetia Parisorum, Île-de-France, France

Are you M Buferne?

Claim your profile

Publications (42)182.04 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The transcription factor NF-κB is central to inflammatory signaling and activation of innate and adaptive immune responses. Activation of the NF-κB pathway is tightly controlled by several negative feedback mechanisms, including A20, an ubiquitin-modifying enzyme encoded by the tnfaip3 gene. Mice with selective deletion of A20 in myeloid, dendritic, or B cells recapitulate some human inflammatory pathology. As we observed high expression of A20 transcripts in dysfunctional CD8 T cells in an autochthonous melanoma, we analyzed the role of A20 in regulation of CD8 T-cell functions, using mice in which A20 was selectively deleted in mature conventional T cells. These mice developed lymphadenopathy and some organ infiltration by T cells but no splenomegaly and no detectable pathology. A20-deleted CD8 T cells had increased sensitivity to antigen stimulation with production of large amounts of IL-2 and IFNγ, correlated with sustained nuclear expression of NF-κB components reticuloendotheliosis oncogene c-Rel and p65. Overexpression of A20 by retroviral transduction of CD8 T cells dampened their intratumor accumulation and antitumor activity. In contrast, relief from the A20 brake in NF-κB activation in adoptively transferred antitumor CD8 T cells led to improved control of melanoma growth. Tumor-infiltrating A20-deleted CD8 T cells had enhanced production of IFNγ and TNFα and reduced expression of the inhibitory receptor programmed cell death 1. As manipulation of A20 expression in CD8 T cells did not result in pathologic manifestations in the mice, we propose it as a candidate to be targeted to increase antitumor efficiency of adoptive T-cell immunotherapy.
    Proceedings of the National Academy of Sciences of the United States of America. 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In adoptive therapy, CD8 T cells expressing active STAT5 (STAT5CA) transcription factors were found to be superior to unmanipulated counterparts in long-term persistence, capacity to infiltrate autochthonous mouse melanomas, thrive in their microenvironment, and induce their regression. However, the molecular mechanisms sustaining these properties were undefined. In this study, we report that STAT5CA induced sustained expression of genes controlling tissue homing, cytolytic granule composition, type 1 CD8 cytotoxic T cell-associated effector molecules granzyme B(+), IFN-γ(+), TNF-α(+), and CCL3(+), but not IL-2, and transcription factors T-bet and eomesodermin (Eomes). Chromatin immunoprecipitation sequencing analyses identified the genes possessing regulatory regions to which STAT5 bound in long-term in vivo maintained STAT5CA-expressing CD8 T cells. This analysis identified 34% of the genes differentially expressed between STAT5CA-expressing and nonexpressing effector T cells as direct STAT5CA target genes, including those encoding T-bet, Eomes, and granzyme B. Additionally, genes encoding the IL-6R and TGFbRII subunits were stably repressed, resulting in dampened IL-17-producing CD8 T cell polarization in response to IL-6 and TGF-β1. The absence of T-bet did not affect STAT5CA-driven accumulation of the T cells in tissue or their granzyme B expression but restored IL-2 secretion and IL-6R and TGFbRII expression and signaling, as illustrated by IL-17 induction. Therefore, concerted STAT5/T-bet/Eomes regulation controls homing, long-term maintenance, recall responses, and resistance to polarization towards IL-17-producing CD8 T cells while maintaining expression of an efficient type 1 CD8 cytotoxic T cell program (granzyme B(+), IFN-γ(+)).
    The Journal of Immunology 09/2013; · 5.52 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Discovery of tumor antigens (TA) recognized by autologous T cells (TCs) in melanoma patients has led to clinical protocols using either vaccination or adoptive transfer of TA-specific TCs. However, efficacy of these treatments has been hampered by inhibitory effects exerted on tumor-infiltrating TCs by tumor-intrinsic mediators or by recruitment of immunosuppressive cells. A mouse model of autochthonous melanoma recapitulates some aspects of inflammatory melanoma development in patients. These include a systemic Th2/Th17-oriented chronic inflammation, recruitment of immunosuppressive myeloid cells and acquisition by tumor-infiltrating TCs of an "exhausted" phenotype characterized by expression of multiple inhibitory receptors including Programmed Death-1 (PD-1), also expressed on patients' melanoma-infiltrating TCs. Rather than using extra-cellular blocking reagents to inhibitory surface molecules on TCs, we sought to dampen negative signaling exerted on them. Adoptively transferred TCs presenting increased cytokine receptor signaling due to expression of an active Stat5 transcription factor were efficient at inducing melanoma regression in the pre-clinical melanoma model. These transferred TCs thrived and retained expression of effector molecules in the melanoma microenvironment, defining a protocol endowing TCs with the ability to resist melanoma-induced immunosuppression. © 2012 John Wiley & Sons A/S.
    Pigment Cell & Melanoma Research 12/2012; · 5.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Central tolerance toward tissue-restricted Ags is considered to rely on ectopic expression in the thymus, which was also observed for tumor Ags encoded by cancer-germline genes. It is unknown whether endogenous expression shapes the T cell repertoire against the latter Ags and explains their weak immunogenicity. We addressed this question using mouse cancer-germline gene P1A, which encodes antigenic peptide P1A(35-43) presented by H-2L(d). We made P1A-knockout (P1A-KO) mice and asked whether their anti-P1A(35-43) immune responses were stronger than those of wild-type mice and whether P1A-KO mice responded to other P1A epitopes, against which wild-type mice were tolerized. We observed that both types of mice mounted similar P1A(35-43)-specific CD8 T cell responses, although the frequency of P1A(35-43)-specific CD8 T cells generated in response to P1A-expressing tumors was slightly higher in P1A-KO mice. This higher reactivity allowed naive P1A-KO mice to reject spontaneously P1A-expressing tumors, which progressed in wild-type mice. TCR-Vβ usage of P1A(35-43)-specific CD8 cells was slightly modified in P1A-KO mice. Peptide P1A(35-43) remained the only P1A epitope recognized by CD8 T cells in both types of mice, which also displayed similar thymic selection of a transgenic TCR recognizing P1A(35-43). These results indicate the existence of a minimal tolerance to an Ag encoded by a cancer-germline gene and suggest that its endogenous expression only slightly affects diversification of the T cell repertoire against this Ag.
    The Journal of Immunology 12/2011; 188(1):111-21. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Immunotherapy based on adoptive transfer of tumor antigen-specific CD8(+) T cell (TC) is generally limited by poor in vivo expansion and tumor infiltration. In this study, we report that activated STAT5 transcription factors (STAT5CA) confer high efficiency on CD8(+) effector T cells (eTC) for host colonization after adoptive transfer. Engineered expression of STAT5CA in antigen-experienced TCs with poor replicative potential was also sufficient to convert them into long-lived antigen-responsive eTCs. In transplanted mastocytoma- or melanoma-bearing hosts, STAT5CA greatly enhanced the ability of eTCs to accumulate in tumors, become activated by tumor antigens, and to express the cytolytic factor granzyme B. Taken together, these properties contributed to an increase in tumor regression by STAT5CA-transduced, as compared with untransduced, TCs including when the latter control cells were combined with infusion of interleukin (IL)-2/anti-IL-2 complexes. In tumors arising in the autochthonous TiRP transgenic model of melanoma associated with systemic chronic inflammation, endogenous CD8(+) TCs were nonfunctional. In this setting, adoptive transfer of STAT5CA-transduced TCs produced superior antitumor effects compared with nontransduced TCs. Our findings imply that STAT5CA expression can render TCs resistant to the immunosuppressive environment of melanoma tumors, enhancing their ability to home to tumors and to maintain high granzyme B expression, as well as their capacity to stimulate granzyme B expression in endogenous TCs.
    Cancer Research 11/2011; 72(1):76-87. · 9.28 Impact Factor
  • Cytokine 01/2011; 56(1):83-83. · 2.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In mice expressing a transgenic T-cell receptor (TCR; TCRP1A) of DBA/2 origin with reactivity towards a cancer-germline antigen P1A, the number of TCRP1A CD8+ T cells in lymphoid organs is lower in DBA/2 than in B10.D2 or B10.D2(x DBA/2)F1 mice. This reduction results from haemopoietic cell autonomous differences in the differentiation of the major histocompatibility complex class I-restricted TCRP1A thymocytes controlled by DBA/2 versus B10.D2-encoded genes. We report here that the lower number of TCRP1A CD8+ T cells in DBA/2 mice correlated with their poor resistance to P1A-expressing mastocytoma solid tumours. Functional potency of CD8+ cytolytic T lymphocytes (CTL) from the above strains was not compromised, but their number after expansion appeared to be influenced by their genetic background. Intriguingly, non-transgenic DBA/ 2 mice resisted P1A+ tumours more efficiently despite poor representation of P1A-specific CTL. This was partly the result of their more heterogeneous TCR repertoire, including reactivity to non-P1A tumour antigens because mice that had rejected a P1A+ tumour became resistant to a P1A) variant of the tumour. Such 'cross-resistance' did not develop in the TCRP1A transgenic mice. Nonetheless, reconstitution of RAGo/o mice with TCRP1A CD8+ T cells, with or without CD4+ T cells, or exclusive representation of TCRP1A CD8+ T cells in RAGo/o TCRP1A transgenic mice efficiently resisted the growth of P1A-expressing tumours. Natural killer cells present at a higher number in RAGo/o mice also contributed to tumour resistance, in part through an NKG2D-dependent mechanism. Hence, in the absence of a polyclonal T-cell repertoire, precursor frequencies of natural killer cells and tumour-specific CTL affect tumour resistance.
    Immunology 01/2010; 129(1):41-54. · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Innate immunity is considered to initiate adaptive antitumor responses. We demonstrate that monoclonal CD8 T lymphocytes reactive to tumor Ag P1A on P815 mastocytoma cells provide essential "help" to NK cells for rejection of P1A-deficient tumors. RAG-deficient mice have normal NK cells but do not reject either tumor. Reconstitution of these mice with P1A-specific T cells conferred resistance to both P1A-expressing and -deficient tumor cells provided they were present at the same site. Elimination of Ag-negative tumor variants required both activated T and NK cells. Gene expression profiling of NK cells infiltrating P1A-positive tumors in mice with specific CD8 T cells demonstrated an activated effector phenotype. However, CD8 T cell help to NK cells appeared ineffective for P1A-negative variants separated from the P1A-positive tumor. Local tumor Ag-specific T cell-NK cell collaboration results in the elimination of tumor cells whether they express or not the T cell tumor Ag epitope, thus containing the emergence of tumor escape variants before metastasis.
    The Journal of Immunology 12/2007; 179(10):6651-62. · 5.52 Impact Factor
  • Annals of the New York Academy of Sciences 12/2006; 532(1):33 - 43. · 4.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD8(+) cytotoxic T lymphocyte (CTL) clones are able to exert both perforin- and Fas-dependent cytotoxicity. We show in the present work that phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and LY294002 prevent TCR/CD3-induced functional Fas ligand (FasL) expression, but not perforin-dependent cytotoxicity. The specific inhibitor of classical protein kinase C (PKC) isoforms, Gö6976, completely inhibited perforin-dependent cytotoxicity and only affected slightly TCR/CD3-induced FasL expression, while the opposite was observed using rottlerin, an inhibitor with higher specificity for PKCtheta. To address further the dependence of FasL expression on PI3K, a luciferase reporter controlled by the FasL promoter was used. Reporter gene induction by anti-CD3 mAb was abolished in cells transfected with dominant-negative PI3K (PI3K-DN) and increased in cells transfected with constitutively active PI3K (PI3K*). Transfection with constitutively active mutants (A/E) of PKCepsilon, and especially of PKCtheta, improved anti-CD3 mAb-induced reporter expression and completely abolished inhibition by wortmannin, while transfection with dominant-negative (K/R) PKCtheta prevented the induction of the reporter. Finally, transfection with PKCalpha A/E, but not with PKCtheta A/E, cooperated with ionomycin to induce degranulation in the CTL line 1.3E6SN. Altogether, the results suggest that TCR/CD3-induced FasL gene transcription is controlled by PI3K and PKCtheta activation, while this signaling pathway is not implicated in CTL degranulation, which is rather dependent on the activation of classical PKC isoforms.
    International Immunology 01/2004; 15(12):1441-50. · 3.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We studied cytotoxic T lymphocyte (CTL) clones expressing cytoplasmic domain-deleted CD3delta and CD3gamma chains. These cells retained efficient antigen-specific cytolysis. Because the cytoplasmic domains of native CD3delta and CD3gamma chains contain a dileucine-based and a tyrosine-based motif thought to be important for receptor endocytosis, we compared TCR-CD3 down-modulation on the CTL clones expressing or not these domains. We found that antigen-induced TCR-CD3 down-modulation was not dependent on either the CD3delta or CD3gamma cytoplasmic domains. This contrasts with phorbol ester- and anti-CD3 mAb (soluble or plastic-coated)-induced TCR-CD3 down-modulation, that are respectively dependent on CD3gamma and on either CD3delta or CD3gamma cytoplasmic domains, suggesting that differences may exist between the mechanisms of TCR-CD3 down-modulation in response to the three stimuli. TCR-CD3 down-modulation in response to antigen was demonstrated by confocal microscopy to be associated with TCRbeta chain internalization, whether CD3delta and CD3gamma were native or truncated. Inhibition by the protein tyrosine kinase inhibitor PP1 of TCR-CD3 down-modulation in response to antigen was also similar whether CD3delta and CD3gamma cytoplasmic domains were present or not. These properties of receptor down-modulation are discussed with respect to the requirements for TCR engagement on antigen-presenting cells.
    International Immunology 12/1999; 11(11):1731-8. · 3.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: TCR engagement leads to down-modulation of TCR/CD3 complexes from the T cell surface. The importance of this effect in T cell physiology is unknown. Here, we characterized a CTL clone deficient in TCR/CD3 surface expression that had lost both CD3delta and CD3gamma mRNA, allowing us to address the role of these chains in the assembly, signaling, and dynamics of the TCR/CD3 complex. Expression of either CD3delta or CD3gamma alone failed to reconstitute surface expression of the TCR/CD3 complex, but reconstitution with a cytoplasmically truncated CD3delta (delta t) and a native (gamma) or cytoplasmically truncated (gamma t) human CD3gamma led to reexpression of TCR/CD3 complexes in both cases. This indicated that CD3delta and CD3gamma assume specific functions in TCR/CD3 assembly independently of their cytoplasmic domains. The delta t gamma t variant specifically killed target cells, expressed the IFN-gamma gene in response to Ag, and produced TNF-alpha in response to anti-CD3 mAb, but it was affected in CD3 ligand-induced TCR/CD3 down-modulation. Both PMA- and CD3 ligand-induced TCR/CD3 down-modulation were defective in the delta t gamma t variant, whereas the delta t gamma variants were unaffected, and previously described delta gamma t variants were affected only in PMA-induced down-modulation. Specific protein kinase C (PKC) inhibitors indicated that PMA- but not CD3 ligand-induced down-modulation was dependent on PKC activity. Thus, amino acid sequences present in either the CD3delta or CD3gamma cytoplasmic domain control ligand-induced TCR/CD3 down-modulation, and neither these sequences nor this property are required for cytolysis and IFN-gamma gene expression in response to Ag.
    The Journal of Immunology 06/1997; 158(9):4162-70. · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As shown previously, a given cytotoxic T lymphocyte (CTL) clone (KB5.C20) could be induced to express the Fas ligand (FasL) by either T cell receptor (TCR) engagement or phorbol 12-myristate 13-acetate (PMA)/ionomycin stimulation. In contrast, another CTL clone (BM3.3) has now been found to exert Fas-based cytotoxicity only after TCR engagement, but not after PMA/ionomycin stimulation. This suggested the existence of a PMA-insensitive, antigen-induced pathway leading to FasL expression. The inability of PMA to promote Fas-based cytotoxicity in BM3.3 cells was correlated with a defect in expression of the classical protein kinase C (PKC) isoforms alpha and beta I. In KB5.C20 cells depleted of PMA-sensitive PKC isoforms and thus no longer responsive to PMA, Fas-based cytotoxicity could still be induced via the TCR/CD3 pathway. On the other hand, a requirement for phosphatidylinositol-3 kinase (PI3K) selectively in this TCR/CD3-induced pathway was demonstrated by specific inhibition with wortmannin. These results suggest that FasL expression when induced via the TCR/CD3 involves PI3K, and when induced by PMA/ionomycin requires the expression of PMA-sensitive PKC isoforms absent in clone BM3.3. Additional data suggest that in neither case was NF-kappa B activation implicated in FasL expression.
    European Journal of Immunology 01/1996; 25(12):3381-7. · 4.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The origin of autoreactive CD4-CD8- T cells is largely unknown. In TCR transgenic (Tg) mice expressing the cognate class I MHC antigen, CD4-CD8- T cells differed depending on characteristics of Tg-TCR/antigen interaction. Tg-TCR/CD3lo CD4-CD8- T cells expressing the NK1.1 marker were observed only for a Tg-TCR whose stimulation by antigen was independent of CD8. Unlike normal T cells, which have essentially TCR-associated zeta homodimers, these cells had a high proportion of TCR-associated zeta-Fc epsilon RI gamma heterodimers. They were also characterized by an unusually high content of Fc epsilon RI gamma mRNA and low content of mRNA encoding CD3 epsilon, CD3 gamma, CD3 delta, and zeta. Based on their phenotype and selection requirements, it is proposed that CD4-CD8- thymic precursor cells can be driven along the CD4-CD8-NK1.1+ pathway following coreceptor-independent TCR signaling at an intrathymic stage when Fc epsilon RI gamma and CD3 components are coexpressed.
    Immunity 11/1995; 3(4):427-38. · 19.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The origin of autoreactive CD4−CD8− T cells is largely unknown. In TCR transgenic (Tg) mice expressing the cognate class I MHCantigen, CD4−CD8−T cells differed depending on characteristics of Tg-TCR/antigen interaction. Tg-TCRJCD3lo CD4−CD8− T cells expressing the NK1.1 marker were observed only for a Tg-TCR whose stimulation by antigen was independent of CD8. Unlike normal T cells, which have essentially TCR-associated ζ homodimers, these cells had a high proportion of TCR-associated ζ-FcϵRlγ heterodimers. They were also characterized by an unusually high content of FcϵRlγ mRNA and low content of mRNA encoding CD3ϵ, CD3γ, CD3δ, and ζ. Based on their phenotype and selection requirements, it is proposed that CD4−CD8− thymic precursor cells can be driven along the CD4−CD8−NK1.1+ pathway following coreceptor-independent TCR signaling at an intrathymic stage when FcϵRlγ and CD3 components are coexpressed.
    Immunity. 01/1995;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fas/APO-1 is a member of the tumor necrosis factor receptor family of proteins that induces apoptosis when cross-linked with monoclonal antibody (mAb) or with its physiological ligand. Recently, both a perforin-based and a Fas-based mechanism have been proposed to account for T cell-mediated cytotoxicity. In the present study we used a murine CD8+ cytotoxic T lymphocyte (CTL) clone (KB5 C20) specific for H-2Kb and a T cell receptor (TcR)-negative variant of the same clone (2005-D4) to test (i) whether the same cell can exert both cytotoxic effector mechanisms and (ii) the role of TcR engagement in the induction of Fas-based cytotoxicity. We demonstrate that both the TcR+ and TcR- clones were able to express the Fas ligand after stimulation with phorbol 12-myristate 13-acetate (PMA)/ionomycin, and that TcR engagement of the KB5.C20 clone by means of antigen-bearing cells or of its anticlonotypic mAb (Désiré-1), which leads to Ca(2+)-dependent, presumably perforin-based, cytotoxicity, was also able to induce Fas-based cytotoxicity. In addition, using inhibitors we investigated the signal transduction pathway(s) involved in the induction of Fas-based cytotoxicity and expression of the Fas ligand mRNA in the CTL clones. The involvement of src-like protein tyrosine kinases (PTK) in Fas ligand induction through TcR engagement, was strongly suggested by inhibition with the src-like PTK inhibitor herbimycin A. Inhibition of Fas ligand induction by genistein, a more general TPK inhibitor, even upon stimulation by PMA plus ionomycin, suggested the possible involvement of PTK activities downstream of protein kinase C (PKC) in Fas ligand induction in CTL. Finally, the implication of the Ca2+/calmodulin-dependent protein phosphatase calcineurin in Fas ligand induction was demonstrated by the partial inhibition of Fas ligand induction with cyclosporin A. Thus, in CTL clones, Fas ligand expression is inducible by TcR engagement through a pathway similar to that involved in expression of some lymphokine genes.
    European Journal of Immunology 11/1994; 24(10):2469-76. · 4.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Triggering of the TCR/CD3 complex can lead to its internalization and modulation from the cell surface. In the present study, we address the question of the dependence of internalization on protein tyrosine kinase (PTK) activation. With use of an activating anti-clonotypic (anti-Ti) mAb on a CTL clone, we have shown that the PTK inhibitors genistein and tyrphostin 25 delayed anti-Ti-induced internalization, but did not affect fluid phase protein uptake or transferrin receptor cycling. Confocal microscopy with use of fluorescent anti-Ti mAb revealed that the inhibition of TCR internalization corresponded to the induction of large patches that were localized in cell membrane areas depleted of polymerized actin, the formation of which was dependent on the combined action of the anti-Ti mAb and the PTK inhibitors. In contrast to the effect of these PTK inhibitors, depletion of Src-like PTKs by T cell pretreatment with herbimycin A led to an increased rate of anti-Ti-induced internalization. Internalization induced by the monovalent Fab fraction of anti-Ti mAb was similarly affected by the PTK inhibitors, although the extent of induced internalization was less by approximately one-half. An analysis of substrates phosphorylated in kinase assays on TCR/CD3 immunoprecipitates of the CTL, which were activated by anti-Ti mAb in both the absence and presence of genistein, identified protein bands in which phosphorylation or association with CD3 was inhibited in the presence of genistein. Thus, a genistein-sensitive PTK activity seems to control ligand-induced TCR/CD3 complex redistribution and internalization.
    The Journal of Immunology 08/1994; 153(1):63-72. · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since TCR/CD3 modulation may be involved in induction of T cell tolerance to self antigens, we compared ligand-induced TCR/CD3 internalization by a CTL clone and by immature thymocytes and mature T cells from mice bearing the same TCR alpha beta as transgene. The ligand used is a monoclonal antibody (mAb) specific for the receptor expressed by the clone and transgenic mice (anti-Ti mAb). CD8+ splenocytes triggered by anti-Ti mAb internalize the ligand-TCR/CD3 complex at a low rate, through a mechanism inhibited by the protein tyrosine kinase (PTK) inhibitor genistein and by staurosporine, a potent but non selective protein kinase C (PKC) inhibitor. This pattern of inhibition was similar to that observed in the CTL clone. Anti-Ti mAb induced TCR/CD3 internalization in CD4+CD8+ thymocytes at a high rate, through a mechanism which was insensitive to either genistein or staurosporine. In the CTL clone, genistein was shown to inhibit TCR/CD3 surface redistribution preceeding internalization. To characterize the PTK possibly involved in this step, we analyzed TCR/CD3 associated kinases in mature T splenocytes and thymocytes. Kinase activities present in anti-Ti mAb immunoprecipitates phosphorylated the CD3 components gamma, delta, epsilon, and zeta in both cell types although the intensity was stronger in splenic than in thymocyte extracts, whereas the phosphorylation of 70, 14 and 12kD substrates was more pronounced in thymocytes than in splenocytes. Comparable amounts of CD3 components were coprecipitated with and phosphorylated by p56lck and p59fyn respectively, in both cell types.
    Thymus 02/1994; 23(1):15-25.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The TCR is composed of two chains (alpha/beta) containing variable regions associated at the cell surface with invariant chains (CD3 gamma-, delta-, epsilon-, and zeta/eta chains). The latter control assembly and surface expression of the TCR/CD3 complex, as well as its cytoplasmic association with signal transduction relays. In differentiated CTL, stimulation through the TCR leads to the transcriptional activation of genes coding secreted cytokines such as gamma-IFN as well as transcription-independent activation of the lytic machinery. It is not known which of the CD3 components is necessary to transduce the required signals. CD3 gamma- and delta-chains have high sequence homology, in particular in their cytoplasmic domain, and it has been proposed that alpha beta gamma epsilon zeta and alpha beta delta, epsilon zeta may be expressed and function in signal transduction independently. Here, we characterize a CTL clone that has selectively lost expression of the CD3 delta mRNA. This results in expression of partial CD3 complexes devoid of TCR alpha beta chains at the surface of the clone, which are not functional for activation of cytolysis or for gamma-IFN production. Transfection of the clone with either the native or a cytoplasmic exon-deleted CD3 delta gene restores full TCR/CD3 surface expression as well as Ag- or CD3-mediated activation for killing and for gamma-IFN production, indicating that the CD3 delta chain is essential for surface expression of the TCR alpha beta, but that the CD3 delta cytoplasmic portion is not required either for complex assembly or for signal transduction involved in the functions studied.
    The Journal of Immunology 03/1992; 148(3):657-64. · 5.52 Impact Factor

Publication Stats

726 Citations
182.04 Total Impact Points

Institutions

  • 1992–2014
    • French Institute of Health and Medical Research
      Lutetia Parisorum, Île-de-France, France
  • 2012–2013
    • French National Centre for Scientific Research
      Lutetia Parisorum, Île-de-France, France
  • 2007–2013
    • Aix-Marseille Université
      • • Centre d'Immunologie de Marseille-Luminy (UMR_S 1104 UMR 7280 CIML)
      • • Faculté des Sciences
      Marseille, Provence-Alpes-Cote d'Azur, France
  • 2011
    • Unité Inserm U1077
      Caen, Lower Normandy, France
  • 1984–2011
    • Centre d'Immunologie de Marseille-Luminy
      Marsiglia, Provence-Alpes-Côte d'Azur, France