Michael B Major

University of North Carolina at Chapel Hill, Chapel Hill, NC, United States

Are you Michael B Major?

Claim your profile

Publications (27)184.49 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we identified Nrf2 as a molecular target of [6]-shogaol (6S), a bioactive compound isolated from ginger, in colon epithelial cells in vitro and in vivo. Following 6S treatment of HCT-116 cells, the intracellular GSH/GSSG ratio was initially diminished but then elevated above the basal level. Intracellular reactive oxygen species (ROS) correlated inversely with the GSH/GSSG ratio. Further analysis using gene microarray showed that 6S up-regulated the expression of Nrf2 target genes (AKR1B10, FTL, GGTLA4 and HMOX1) in HCT-116 cells. Western blotting confirmed up-regulation, phosphorylation and nuclear translocation of Nrf2 protein followed by Keap1 decrease and up-regulation of Nrf2 target genes (AKR1B10, FTL, GGTLA4, HMOX1, and MT1) and glutathione synthesis genes (GCLC, GCLM). Pretreatment of cells with a specific inhibitor of p38 (SB202190), PI3K (LY294002), or MEK1 (PD098059) attenuated these effects of 6S. Using ultrahigh performance liquid chromatography-tandem mass spectrometry, we found that 6S modified multiple cysteine residues of Keap1 protein. In vivo 6S treatment induced Nrf2 nuclear translocation and significantly up-regulated the expression of MT1, HMOX1 and GCLC in the colon of wild-type (WT) mice, but not Nrf2-/- mice. Similar to 6S, a cysteine-conjugated metabolite of 6S (M2), which was previously found to be a carrier of 6S in vitro and in vivo, also activated Nrf2. Our data demonstrated that 6S and its cysteine-conjugated metabolite M2 activate Nrf2 in colon epithelial cells in vitro and in vivo through Keap1-dependent and -independent manners.
    Chemical Research in Toxicology 08/2014; · 3.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: SWI/SNF chromatin remodeling complexes regulate critical cellular processes including cell cycle control, programmed cell death, differentiation, genomic instability and DNA repair. Inactivation of this class of chromatin remodeling complex has been associated with a variety of malignancies, including lung, ovarian, renal, liver and pediatric cancers. In particular, ~10% of primary human lung non-small lung cancers (NSCLC) display attenuations in the BRG1 ATPase, a core factor in SWI/SNF complexes. To evaluate the role of BRG1 attenuation in NSCLC development, we examined the effect of BRG1 silencing in primary and established human NSCLC cells. BRG1 loss altered cellular morphology and increased tumorigenic potential. Gene expression analyses showed reduced expression of genes known to be associated with progression of human NSCLC. We demonstrated that BRG1 losses in NSCLC cells were associated with variations in chromatin structure, including differences in nucleosome positioning and occupancy surrounding transcriptional start sites of disease-relevant genes. Our results offer direct evidence that BRG1 attenuation contributes to NSCLC aggressiveness by altering nucleosome positioning at a wide range of genes, including key cancer-associated genes.
    Cancer research. 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Malignant Rhabdoid Tumors (MRTs), a pediatric cancer that most frequently appears in the kidney and brain, generally lack SNF5 (SMARCB1/INI1), a subunit of the SWI/SNF chromatin-remodeling complex. Recent studies have established that multiple SWI/SNF complexes exist due to the presence or absence of different complex members. Therefore, the effect of SNF5 loss upon SWI/SNF complex formation was investigated in human MRT cells. MRT cells and primary human tumors exhibited reduced levels of many complex proteins. Furthermore, reexpression of SNF5 increased SWI/SNF complex protein levels without concomitant increases in mRNA. Proteomic analysis, using mass spectrometry, of MRT cells before and after SNF5 reexpression indicated the recruitment of different components into the complex along with the expulsion of others. IP-Western blotting confirmed these results and demonstrated similar changes in other MRT cell lines. Finally, reduced expression of SNF5 in normal human fibroblasts led to altered levels of these same complex members. These data establish that SNF5 loss during MRT development alters the repertoire of available SWI/SNF complexes, generally disrupting those associated with cellular differentiation. These findings support a model where SNF5 inactivation blocks the conversion of growth promoting SWI/SNF complexes to differentiation inducing ones. Therefore, restoration of these complexes in tumors cells provides an attractive approach for the treatment of malignant rhabdoid tumors. Implications: SNF5 loss dramatically alters SWI/SNF complex composition and prevents formation of complexes required for cellular differentiation.
    Molecular cancer research : MCR. 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Wnt/β-catenin signaling is of significant interest due to the roles it plays in regulating development, tissue regeneration and disease. Transcriptional reporters have been widely employed to study Wnt/β-catenin signal transduction in live cells and whole organisms and have been applied to understanding embryonic development, exploring oncogenesis and developing therapeutics. Polyclonal heterogeneity in reporter cell lines has historically been seen as a challenge to be overcome in the development of novel cell lines and reporter-based assays, and monoclonal reporter cell lines are commonly employed to reduce this variability. A375 cell lines infected with a reporter for Wnt/β-catenin signaling were screened over short (<6) and long (>25) generational timescales. To characterize phenotypic divergence over these time-scales, a microfabricated cell array-based screen was developed enabling characterization of 1119 clonal colonies in parallel. This screen revealed phenotypic divergence after <6 generations at a similar scale to that observed in monoclonal cell lines cultured for >25 generations. Not only were reporter dynamics observed to diverge widely, but monoclonal cell lines were observed with seemingly opposite signaling phenotypes. Additionally, these observations revealed a generational-dependent trend in Wnt signaling in A375 cells that provides insight into the pathway's mechanisms of positive feedback and self-inhibition.
    Integrative biology : quantitative biosciences from nano to macro. 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: NRF2 is a transcription factor that mediates stress responses. Oncogenic mutations in NRF2 localize to one of its two binding interfaces with KEAP1, an E3 ubiquitin ligase that promotes proteasome-dependent degradation of NRF2. Somatic mutations in KEAP1 occur commonly in human cancer, where KEAP1 may function as a tumor suppressor. These mutations distribute throughout the KEAP1 protein but little is known about their functional impact. In this study, we characterized 18 KEAP1 mutations defined in a lung squamous cell carcinoma tumor set. Four mutations behaved as wild-type KEAP1, thus are likely passenger events. R554Q, W544C, N469fs, P318fs, and G333C mutations attenuated binding and suppression of NRF2 activity. The remaining mutations exhibited hypomorphic suppression of NRF2, binding both NRF2 and CUL3. Proteomic analysis revealed that the R320Q, R470C, G423V, D422N, G186R, S243C, and V155F mutations augmented the binding of KEAP1 and NRF2. Intriguingly, these 'super-binder' mutants exhibited reduced degradation of NRF2. Cell-based and in vitro biochemical analyses demonstrated that despite its inability to suppress NRF2 activity, the R320Q 'superbinder' mutant maintained the ability to ubiquitinate NRF2. These data strengthen the genetic interactions between KEAP1 and NRF2 in cancer and provide new insight into KEAP1 mechanics.
    Cancer Research 12/2013; · 9.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Developmental and cancer models show Wnt/β-catenin-dependent signaling mediates diverse phenotypic outcomes in the pancreas that are dictated by context, duration and strength of activation. While generally assumed to be pro-tumorigenic, it is unclear to what extent dysregulation of Wnt/β-catenin signaling impacts tumor progression in pancreatic adenocarcinoma (PDAC). In the present study, Wnt/β-catenin activity was characterized across a spectrum of PDAC cell lines and primary tumors. Reporter and gene expression-based assays revealed wide heterogeneity in Wnt/β-catenin transcriptional activity across PDAC cell lines and patient tumors, as well as variable responsiveness to exogenous Wnt ligand stimulation. An experimentally generated, pancreas-specific gene expression signature of Wnt/β-catenin transcriptional activation was used to stratify pathway activation across a cohort of resected, early-stage PDAC tumors (N=41). In this cohort, higher Wnt/β-catenin activation was found to significantly correlate with lymphvascular invasion and worse disease-specific survival (median survival time 20.3 versus 43.9 months, log-rank P=0.03). Supporting the importance of Wnt ligand in mediating autocrine Wnt signaling, Wnt/β-catenin activity was significantly inhibited in PDAC cell lines by WLS gene silencing and the small-molecule inhibitor IWP-2, both of which functionally block Wnt ligand processing and secretion. Transcriptional profiling revealed elevated expression of WNT7B occurred in PDAC cell lines with high levels of cell autonomous Wnt/β-catenin activity. Gene-knockdown studies in AsPC-1 and HPAF-2 cell lines confirmed WNT7B-mediated cell autonomous Wnt/β-catenin activation, as well as an anchorage-independent growth phenotype. Our findings indicate WNT7B can serve as a primary determinant of differential Wnt/β-catenin activation in PDAC. Disrupting the interaction between Wnt ligands and their receptors may be a particularly suitable approach for therapeutic modulation of Wnt/β-catenin signaling in PDAC and other cancer contexts where Wnt activation is mediated by ligand expression rather than mutations in canonical pathway members.Oncogene advance online publication, 18 February 2013; doi:10.1038/onc.2013.23.
    Oncogene 02/2013; · 8.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Somatic mutations in the KEAP1 ubiquitin ligase or its substrate NRF2 (NFE2L2) commonly occur in human cancer, resulting in constitutive NRF2-mediated transcription of cytoprotective genes. However, many tumors display high NRF2 activity in the absence of mutation, supporting alternative mechanisms of pathway activation. Previously, we and others discovered that via a competitive binding mechanism, the proteins WTX (AMER1), PALB2 and SQSTM1 bind KEAP1 to activate NRF2. Proteomic analysis of the KEAP1 protein interaction network revealed a significant enrichment of associated proteins containing an ETGE amino acid motif, which matches the KEAP1 interaction motif found in NRF2. Like WTX, PALB2, and SQSTM1, we found that the dipeptidyl peptidase 3 (DPP3) protein binds KEAP1 via an 'ETGE' motif to displace NRF2, thus inhibiting NRF2 ubiquitination and driving NRF2-dependent transcription. Comparing the spectrum of KEAP1 interacting proteins with the genomic profile of 178 squamous cell lung carcinomas characterized by The Cancer Genome Atlas revealed amplification and mRNA over-expression of the DPP3 gene in tumors that have high NRF2 activity but lacking NRF2 stabilizing mutations. We further show that tumor-derived mutations in KEAP1 are hypomorphic with respect to NRF2 inhibition and that DPP3 over-expression in the presence of these mutants further promotes NRF2 activation. Collectively, our findings support the competition model of NRF2 activation and suggest that 'ETGE'-containing proteins like DPP3 contribute to NRF2 activity in cancer.
    Cancer Research 02/2013; · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The inability of targeted BRAF inhibitors to produce long-lasting improvement in the clinical outcome of melanoma highlights a need to identify additional approaches to inhibit melanoma growth. Recent studies have shown that activation of the Wnt/β-catenin pathway decreases tumor growth and cooperates with ERK/MAPK pathway inhibitors to promote apoptosis in melanoma. Therefore, the identification of Wnt/β-catenin regulators may advance the development of new approaches to treat this disease. In order to move towards this goal we performed a large scale small-interfering RNA (siRNA) screen for regulators of β-catenin activated reporter activity in human HT1080 fibrosarcoma cells. Integrating large scale siRNA screen data with phosphoproteomic data and bioinformatics enrichment identified a protein, FAM129B, as a potential regulator of Wnt/β-catenin signaling. Functionally, we demonstrated that siRNA-mediated knockdown of FAM129B in A375 and A2058 melanoma cell lines inhibits WNT3A-mediated activation of a β-catenin-responsive luciferase reporter and inhibits expression of the endogenous Wnt/β-catenin target gene, AXIN2. We also demonstrate that FAM129B knockdown inhibits apoptosis in melanoma cells treated with WNT3A. These experiments support a role for FAM129B in linking Wnt/β-catenin signaling to apoptosis in melanoma.
    F1000Research. 01/2013; 2.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA double-strand breaks (DSBs) represent one of the most deleterious forms of DNA damage to a cell. In cancer therapy, induction of cell death by DNA DSBs by ionizing radiation (IR) and certain chemotherapies is thought to mediate the successful elimination of cancer cells. However, cancer cells often evolve to evade the cytotoxicity induced by DNA DSBs, thereby forming the basis for treatment resistance. As such, a better understanding of the DSB DNA damage response (DSB-DDR) pathway will facilitate the design of more effective strategies to overcome chemo- and radioresistance. To identify novel mechanisms that protect cells from the cytotoxic effects of DNA DSBs, we performed a forward genetic screen in zebrafish for recessive mutations that enhance the IR-induced apoptotic response. Here, we describe radiosensitizing mutation 7 (rs7), which causes a severe sensitivity of zebrafish embryonic neurons to IR-induced apoptosis and is required for the proper development of the central nervous system. The rs7 mutation disrupts the coding sequence of ccdc94, a highly conserved gene that has no previous links to the DSB-DDR pathway. We demonstrate that Ccdc94 is a functional member of the Prp19 complex and that genetic knockdown of core members of this complex causes increased sensitivity to IR-induced apoptosis. We further show that Ccdc94 and the Prp19 complex protect cells from IR-induced apoptosis by repressing the expression of p53 mRNA. In summary, we have identified a new gene regulating a dosage-sensitive response to DNA DSBs during embryonic development. Future studies in human cancer cells will determine whether pharmacological inactivation of CCDC94 reduces the threshold of the cancer cell apoptotic response.
    PLoS Genetics 08/2012; 8(8):e1002922. · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: WTX is a tumor suppressor protein that is lost or mutated in up to 30% of cases of Wilms tumor. Among its known functions, WTX interacts with the β-transducin repeat containing family of ubiquitin ligase adaptors and promotes the ubiquitination and degradation of the transcription factor β-catenin, a key control point in the WNT/β-catenin signaling pathway. Here, we report that WTX interacts with a second ubiquitin ligase adaptor, KEAP1, which functions to regulate the ubiquitination of the transcription factor NRF2, a key control point in the antioxidant response. Surprisingly, we find that unlike its ability to promote the ubiquitination of β-catenin, WTX inhibits the ubiquitination of NRF2. WTX and NRF2 compete for binding to KEAP1, and thus loss of WTX leads to rapid ubiquitination and degradation of NRF2 and a reduced response to cytotoxic insult. These results expand our understanding of the molecular mechanisms of WTX and reveal a novel regulatory mechanism governing the antioxidant response.
    Journal of Biological Chemistry 01/2012; 287(9):6539-50. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The FAM123 gene family comprises three members: FAM123A, the tumor suppressor WTX (also known as FAM123B), and FAM123C. WTX is required for normal development and causally contributes to human disease, in part through its regulation of β-catenin-dependent WNT signaling. The roles of FAM123A and FAM123C in signaling, cell behavior, and human disease remain less understood. We defined and compared the protein-protein interaction networks for each member of the FAM123 family by affinity purification and mass spectrometry. Protein localization and functional studies suggest that the FAM123 family members have conserved and divergent cellular roles. In contrast to WTX and FAM123C, we found that microtubule-associated proteins were enriched in the FAM123A protein interaction network. FAM123A interacted with and tracked with the plus end of dynamic microtubules. Domain interaction experiments revealed a "SKIP" amino acid motif in FAM123A that mediated interaction with the microtubule tip tracking proteins end-binding protein 1 (EB1) and EB3-and therefore with microtubules. Cells depleted of FAM123A showed compartment-specific effects on microtubule dynamics, increased actomyosin contractility, larger focal adhesions, and decreased cell migration. These effects required binding of FAM123A to and inhibition of the guanine nucleotide exchange factor ARHGEF2, a microtubule-associated activator of RhoA. Together, these data suggest that the SKIP motif enables FAM123A, but not the other FAM123 family members, to bind to EB proteins, localize to microtubules, and coordinate microtubule dynamics and actomyosin contractility.
    Science Signaling 01/2012; 5(240):ra64. · 7.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Wnt/ß-catenin signaling pathway controls important cellular events during development and often contributes to disease when dysregulated. Using high throughput screening we have identified a new small molecule inhibitor of Wnt/ß-catenin signaling, WIKI4. WIKI4 inhibits expression of ß-catenin target genes and cellular responses to Wnt/ß-catenin signaling in cancer cell lines as well as in human embryonic stem cells. Furthermore, we demonstrate that WIKI4 mediates its effects on Wnt/ß-catenin signaling by inhibiting the enzymatic activity of TNKS2, a regulator of AXIN ubiquitylation and degradation. While TNKS has previously been shown to be the target of small molecule inhibitors of Wnt/ß-catenin signaling, WIKI4 is structurally distinct from previously identified TNKS inhibitors.
    PLoS ONE 01/2012; 7(12):e50457. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: High-throughput siRNA screens are now widely used for identifying novel drug targets and mapping disease pathways. Despite their popularity, there remain challenges related to data variability, primarily due to measurement errors, biological variance, uneven transfection efficiency, the efficacy of siRNA sequences, or off-target effects, and consequent high false discovery rates. Data variability can be reduced if siRNA screens are performed in replicate. Running a large-scale siRNA screen in replicate is difficult, however, because of the technical challenges related to automating complicated steps of siRNA transfection, often with multiplexed assay readouts, and controlling environmental humidity during long incubation periods. Small-molecule screens have greatly benefited in the past decade from assay miniaturization to high-density plates such that 1,536-well nanoplate screenings are now a routine process, allowing fast, efficient, and affordable operations without compromising underlying biology or important assay characteristics. Here, we describe the development of a 1,536-well nanoplate siRNA transfection protocol that utilizes the instruments commonly found in small-molecule high throughput screening laboratories. This protocol was then successfully demonstrated in a triplicate large-scale siRNA screen for the identification of regulators of the Wnt/beta-catenin pathway.
    Assay and Drug Development Technologies 06/2010; 8(3):286-94. · 1.90 Impact Factor
  • Jason D Berndt, Randall T Moon, Michael B Major
    [Show abstract] [Hide abstract]
    ABSTRACT: Numerous studies have pointed to interactions between the tumor suppressor von Hippel-Lindau (VHL) and the oncogenic Wnt-beta-catenin signaling cascade; however, the mechanism of this crosstalk has remained elusive. Among other roles, VHL can promote the stabilization of Jade-1. Now, recent findings provide compelling evidence that Jade-1 ubiquitylates beta-catenin, leading to its degradation. Thus, the loss of VHL, as seen in clear cell renal cell carcinoma, could lead to tumor formation through beta-catenin de-repression.
    Trends in Biochemical Sciences 03/2009; 34(3):101-4. · 13.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: High-throughput genetic screens have exponentially increased the functional annotation of the genome over the past 10 years. Likewise, genome-scale efforts to map DNA methylation, chromatin state and occupancy, messenger RNA expression patterns, and disease-associated genetic polymorphisms, and proteome-wide efforts to map protein-protein interactions, have also created vast resources of data. An emerging trend involves combining multiple types of data, referred to as integrative screening. Examples include papers that report integrated data generated from large-scale RNA interference screens on the Wnt/beta-catenin pathway with either genotypic or proteomic data in colorectal cancer. These studies demonstrate the power of data integration to generate focused, validated data sets and to identify high-confidence candidate genes for follow-up experiments. We present the ongoing evolution and new strategies for the integrative screening approach with respect to understanding and treating human disease.
    Science Signaling 02/2009; 2(70):pt4. · 7.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study demonstrates that in malignant melanoma, elevated levels of nuclear beta-catenin in both primary tumors and metastases correlate with reduced expression of a marker of proliferation and with improved survival, in contrast to colorectal cancer. The reduction in proliferation observed in vivo is recapitulated in B16 murine melanoma cells and in human melanoma cell lines cultured in vitro with either WNT3A or small-molecule activators of beta-catenin signaling. Consistent with these results, B16 melanoma cells expressing WNT3A also exhibit decreased tumor size and decreased metastasis when implanted into mice. Genome-wide transcriptional profiling reveals that WNT3A up-regulates genes implicated in melanocyte differentiation, several of which are down-regulated with melanoma progression. These findings suggest that WNT3A can mediate transcriptional changes in melanoma cells in a manner reminiscent of the known role of Wnt/beta-catenin signaling in normal melanocyte development, thereby altering melanoma cell fate to one that may be less proliferative and potentially less aggressive. Our results may explain the observed loss of nuclear beta-catenin with melanoma progression in human tumors, which could reflect a dysregulation of cellular differentiation through a loss of homeostatic Wnt/beta-catenin signaling.
    Proceedings of the National Academy of Sciences 02/2009; 106(4):1193-8. · 9.81 Impact Factor
  • Michael B Major, Randall T Moon
    [Show abstract] [Hide abstract]
    ABSTRACT: Integration of data from different techniques is the key to effective validation of "hits" in large-scale screens. A discussion of validation methods for siRNA screens and protein-interaction screens reveals how to go beyond an arbitrary assignment of relevant to a more biologically meaningful identification of targets.
    Science Signaling 02/2009; 2(72):eg7. · 7.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Wnts are secreted ligands that activate several receptor-mediated signal transduction cascades. Homeostatic Wnt signaling through beta-catenin is required in adults, because either elevation or attenuation of beta-catenin function has been linked to diverse diseases. To contribute to the identification of both protein and pharmacological regulators of this pathway, we describe a combinatorial screen that merged data from a high-throughput screen of known bioactive compounds with an independent focused small interfering RNA screen. Each screen independently revealed Bruton's tyrosine kinase (BTK) as an inhibitor of Wnt-beta-catenin signaling. Loss of BTK function in human colorectal cancer cells, human B cells, zebrafish embryos, and cells derived from X-linked agammaglobulinemia patients with a mutant BTK gene resulted in elevated Wnt-beta-catenin signaling, confirming that BTK acts as a negative regulator of this pathway. From affinity purification-mass spectrometry and biochemical binding studies, we found that BTK directly interacts with a nuclear component of Wnt-beta-catenin signaling, CDC73. Further, we show that BTK increased the abundance of CDC73 in the absence of stimulation and that CDC73 acted as a repressor of beta-catenin-mediated transcription in human colorectal cancer cells and B cells.
    Science Signaling 02/2009; 2(72):ra25. · 7.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The identification and characterization of previously unidentified signal transduction molecules has expanded our understanding of biological systems and facilitated the development of mechanism-based therapeutics. We present a highly validated small interfering RNA (siRNA) screen that functionally annotates the human genome for modulation of the Wnt/beta-catenin signal transduction pathway. Merging these functional data with an extensive Wnt/beta-catenin protein interaction network produces an integrated physical and functional map of the pathway. The power of this approach is illustrated by the positioning of siRNA screen hits into discrete physical complexes of proteins. Similarly, this approach allows one to filter discoveries made through protein-protein interaction screens for functional contribution to the phenotype of interest. Using this methodology, we characterized AGGF1 as a nuclear chromatin-associated protein that participates in beta-catenin-mediated transcription in human colon cancer cells.
    Science Signaling 02/2008; 1(45):ra12. · 7.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This is a conversation with two of the authors of a Research Article published in the 11 November issue of Science Signaling. They explain how combining a functional genetics screen with proteomics data provides new insight into Wnt signaling in a particular human cell line.
    Science Signaling 02/2008; 1(45):pc11. · 7.65 Impact Factor

Publication Stats

854 Citations
184.49 Total Impact Points

Institutions

  • 2012–2013
    • University of North Carolina at Chapel Hill
      • • Department of Cell Biology and Physiology
      • • Lineberger Comprehensive Cancer Center
      Chapel Hill, NC, United States
  • 2007–2013
    • Howard Hughes Medical Institute
      Ashburn, Virginia, United States
  • 2009
    • University of Washington Seattle
      • Division of Dermatology
      Seattle, WA, United States
  • 2004
    • University of Utah
      • Department of Oncological Sciences
      Salt Lake City, UT, United States