M Javeed Ansari

Northwestern University, Evanston, Illinois, United States

Are you M Javeed Ansari?

Claim your profile

Publications (39)308.06 Total impact

  • Edward B Thorp · Christian Stehlik · M Javeed Ansari
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of T-cell exhaustion in the failure of clearance of viral infections and tumors is well established. There are several ongoing trials to reverse T-cell exhaustion for treatment of chronic viral infections and tumors. The mechanisms leading to T-cell exhaustion and its role in transplantation, however, are only beginning to be appreciated and are the focus of the present review. Exhausted T cells exhibit a distinct molecular profile reflecting combinatorial mechanisms involving the interaction of multiple transcription factors important in control of cell metabolism, acquisition of effector function and memory capacity. Change of microenvironmental cues and limiting leukocyte recruitment can modulate T-cell exhaustion. Impaired leukocyte recruitment induces T-cell exhaustion and prevents allograft rejection. Preventing or reversing T-cell exhaustion may lead to prevention of transplant tolerance or triggering of rejection; therefore, caution should be exercised in the use of agents blocking inhibitory receptors for the treatment of chronic viral infections or tumors in transplant recipients. Further definition of the role of T-cell exhaustion in clinical transplantation and an understanding of the mechanisms of induction of T-cell exhaustion are needed to develop strategies for preventing allograft rejection and induction of tolerance.
    Current Opinion in Organ Transplantation 02/2015; 20(1):37-42. DOI:10.1097/MOT.0000000000000153 · 2.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tacrolimus and sirolimus are commonly used maintenance immunosuppressants in kidney transplantation. As their effects on immune cells and allograft molecular profiles have not been elucidated, we characterized the effects of tacrolimus to sirolimus conversion on the frequency and function of T cells, and on graft molecular profiles. Samples from renal transplant patients in a randomized trial of 18 patients with late sirolimus conversion and 12 on tacrolimus maintenance were utilized. Peripheral blood was collected at 0, 6, 12, and 24 months post randomization, with T-cell subpopulations analyzed by flow cytometry and T-cell alloreactivity tested by IFN-γ ELISPOT. Graft biopsy samples obtained 24 months post randomization were used for gene expression analysis. Sirolimus conversion led to an increase in CD4(+)25(+++)Foxp3(+) regulatory T cells. While tacrolimus-maintained patients showed a decrease in indirect alloreactivity over time post transplant, sirolimus conversion increased indirect alloreactive T-cell frequencies compared with tacrolimus-maintained patients. No histological differences were found in graft biopsies, but molecular profiles showed activation of the antigen presentation, IL-12 signaling, oxidative stress, macrophage-derived production pathways, and increased inflammatory and immune response in sirolimus-converted patients. Thus, chronic immune alterations are induced after sirolimus conversion. Despite the molecular profile being favorable to calcineurin inhibitor-based regimen, there was no impact in renal function over 30 months of follow-up.Kidney International advance online publication, 29 October 2014; doi:10.1038/ki.2014.350.
    Kidney International 10/2014; 87(4). DOI:10.1038/ki.2014.350 · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Selectin-selectin ligand interactions mediate the initial steps in leukocyte migration, an integral part of immune responses. Fucosyltransferase-VII (FucT-VII), encoded by Fut7, is essential for biosynthesis of selectin ligands. In an established model of cardiac allograft vasculopathy and chronic rejection, Fut7(-/-) recipients exhibited long-term graft survival with minimal vasculopathy compared with WT controls. Graft survival was associated with CD4 T-cell exhaustion in the periphery, characterized by impaired effector cytokine production, defective proliferation, increased expression of inhibitory receptors programmed death-1 (PD-1) and T cell Ig- and mucin-domain-containing molecule-3 (Tim-3), low levels of IL-7Rα on CD4 T cells, and reduced migration of polyfunctional CD4 memory T cells to the allograft. Blocking PD-1 triggered rejection only in Fut7(-/-) recipients, whereas depleting regulatory T cells had no effect in either Fut7(-/-) or WT recipients. Adoptive transfer experiments confirmed that this CD4 T cell-exhausted phenotype is seen primarily in Fut7(-/-) CD4 T cells. These data suggest that impaired leukocyte recruitment is a novel mechanism leading to CD4 T-cell exhaustion. Our experimental system serves as an excellent model to study CD4 T-cell exhaustion as a dominant mechanism of transplant tolerance. Further, targeting FucT-VII may serve as a promising strategy to prevent chronic allograft rejection and promote tolerance.
    Proceedings of the National Academy of Sciences 08/2014; 111(33). DOI:10.1073/pnas.1303676111 · 9.81 Impact Factor
  • Ahmed Akl · Anat Roitberg-Tambur · M. Javeed Ansari
    [Show abstract] [Hide abstract]
    ABSTRACT: Aim To quantify and characterize HLA-specific B cells subsets identified by single antigen HLA-coated multiplexed beads (SAB) in kidney transplant recipients. Methods PBMC from kidney transplant recipients (n = 8) and healthy volunteers (n = 10) were incubated with SAB (One lambda) for HLA class I and II. HLA Bead-B-cell Rosette (BBR) frequency & specificity were analyzed by flow cytometry. HLA-specific B cells specificities and polyreactivity was defined by the percentage of total SAB forming BBR. Transplant recipients serum was tested for circulating HLA antibodies using SAB & MFI were estimated. Results Significantly higher frequency of HLA-specific B cells were identified in transplant recipients with circulating anti-HLA antibodies compared to healthy volunteers. Circulating HLA-specific B cells (donor specific and non-specific) were in higher frequency (1.15% of B cells vs 0.17% of B cells; p < 0.05), wide breadth of polyreactivity (HLA class I 76.97 ± 28.3; HLA class II 91.9 ± 10.5) vs (HLA class I 13.1 ± 3.15; HLA class II 13.69 ± 10.3); p < 0.05 among recipients with poor graft outcome compared with those with good graft outcome. Not all HLA-specific B cells were associated with IgG HLA antibodies detected above the cutoff values. Conclusions The frequency & breadth of HLA-specific B cells reactivity may be a determinant of an aggressive clinical course after transplantation. This novel approach has the advantage of the wide array of available HLA antigens in a single test which will help in defining HLA B cell receptor poly & cross-reactivity. In addition to enable phenotyping, functional and gene expression analysis of HLA specific B cells.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD160 is a cell surface molecule expressed by most NK cells and approximately 50% of CD8(+) cytotoxic T lymphocytes. Engagement of CD160 by MHC class-I directly triggers a costimulatory signal to TCR-induced proliferation, cytokine production and cytotoxic effector functions. The role of CD160 in alloimmunity is unknown. Using a newly generated CD160 fusion protein (CD160Ig) we examined the role of the novel costimulatory molecule CD160 in mediating CD4(+) or CD8(+) T cell driven allograft rejection. CD160Ig inhibits alloreactive CD8(+) T cell proliferation and IFN-γ production in vitro, in particular in the absence of CD28 costimulation. Consequently CD160Ig prolongs fully mismatched cardiac allograft survival in CD4(-/-), CD28(-/-) knockout and CTLA4Ig treated WT recipients, but not in WT or CD8(-/-) knockout recipients. The prolonged cardiac allograft survival is associated with reduced alloreactive CD8(+) T cell proliferation, effector/memory responses and alloreactive IFN-γ production. Thus, CD160 signaling is particularly important in CD28-independent effector/memory CD8(+) alloreactive T cell activation in vivo and therefore may serve as a novel target for prevention of allograft rejection.
    PLoS ONE 04/2013; 8(4):e60391. DOI:10.1371/journal.pone.0060391 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite significant nephrotoxicity, calcineurin inhibitors (CNIs) remain the cornerstone of immunosuppression in solid organ transplantation. We, along with others, have reported tolerogenic properties of anti-thymocyte globulin (ATG, Thymoglobulin®), evinced by its ability both to spare Tregs from depletion in vivo and, when administered at low, non-depleting doses, to expand Tregs ex vivo. Clinical trials investigating B7/CD28 blockade (LEA29Y, Belatacept) in kidney transplant recipients have proven that the replacement of toxic CNI use is feasible in selected populations. Rabbit polyclonal anti-murine thymocyte globulin (mATG) was administered as induction and/or prolonged, low-dose therapy, in combination with CTLA4-Ig, in a stringent, fully MHC-mismatched murine skin transplant model to assess graft survival and mechanisms of action. Prolonged, low-dose mATG, combined with CTLA4-Ig, effectively promotes engraftment in a stringent transplant model. Our data demonstrate that mATG achieves graft acceptance primarily by promoting Tregs, while CTLA4-Ig enhances mATG function by limiting activation of the effector T cell pool in the early stages of treatment, and by inhibiting production of anti-rabbit antibodies in the maintenance phase, thereby promoting regulation of alloreactivity. These data provide the rationale for development of novel, CNI-free clinical protocols in human transplant recipients.
    PLoS ONE 01/2013; 8(1):e53797. DOI:10.1371/journal.pone.0053797 · 3.23 Impact Factor
  • Source
    Clinical Immunology 01/2013; 150(1). DOI:10.1016/j.clim.2013.09.004 · 3.99 Impact Factor
  • Farida Abadja · Bara Sarraj · Mohammed J Ansari
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this review is to provide an overview of significance of T helper 17 (Th17) immunity in acute, chronic and antibody-mediated allograft rejection. The role of Th17 immunity in development of de-novo autoimmunity following transplantation is outlined. It will also consider the impact of Th17 immunity on transplantation tolerance. Potential therapies to target Th17 immunity are discussed. Interleukin17 (IL-17) is produced by a wide variety of immune and non-immune cells in response to injury. IL-17 production by tubular epithelial cells in response to complement activation in acute antibody-mediated rejection may perpetuate immune injury. Th17-dependent de-novo autoimmunity contributes to chronic allograft rejection. Targeting IL-17 not only inhibits Th17 immunity but also attenuates Th1 immunity by affecting the initial recruitment of immune cells to sites of inflammation and modulates innate and adaptive immune responses that ultimately lead to tissue destruction. Th17 immunity is now beginning to be appreciated as a set of responses mediated not only by CD4 Th17 cells but a variety of immune cells and a plethora of cytokines that collaborate to mediate immune disorders, including transplant rejection. Development and contribution of de-novo autoimmunity to chronic rejection is increasingly appreciated. The developmental plasticity of Tregs and Th17 cells is a major hurdle to Treg-based cellular therapies for transplantation. Several biologics targeting Th17 immunity are under evaluation for autoimmune disease. It remains to be determined whether these can be used in transplantation to improve outcomes.
    Current opinion in organ transplantation 12/2011; 17(1):8-14. DOI:10.1097/MOT.0b013e32834ef4e4 · 2.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Imbalance in the regulatory immune mechanisms that control intestinal cellular and bacterial homeostasis may lead to induction of the detrimental inflammatory signals characterized in humans as inflammatory bowel disease. Induction of proinflammatory cytokines (i.e., IL-12) induced by dendritic cells (DCs) expressing pattern recognition receptors may skew naive T cells to T helper 1 polarization, which is strongly implicated in mucosal autoimmunity. Recent studies show the ability of probiotic microbes to treat and prevent numerous intestinal disorders, including Clostridium difficile-induced colitis. To study the molecular mechanisms involved in the induction and repression of intestinal inflammation, the phosphoglycerol transferase gene that plays a key role in lipoteichoic acid (LTA) biosynthesis in Lactobacillus acidophilus NCFM (NCK56) was deleted. The data show that the L. acidophilus LTA-negative in LTA (NCK2025) not only down-regulated IL-12 and TNFα but also significantly enhanced IL-10 in DCs and controlled the regulation of costimulatory DC functions, resulting in their inability to induce CD4(+) T-cell activation. Moreover, treatment of mice with NCK2025 compared with NCK56 significantly mitigated dextran sulfate sodium and CD4(+)CD45RB(high)T cell-induced colitis and effectively ameliorated dextran sulfate sodium-established colitis through a mechanism that involves IL-10 and CD4(+)FoxP3(+) T regulatory cells to dampen exaggerated mucosal inflammation. Directed alteration of cell surface components of L. acidophilus NCFM establishes a potential strategy for the treatment of inflammatory intestinal disorders.
    Proceedings of the National Academy of Sciences 03/2011; 108 Suppl 1(Suppl 1):4623-30. DOI:10.1073/pnas.1005066107 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Regulatory T cells (Tregs) actively regulate alloimmune responses and promote transplantation tolerance. Thymoglobulin, a rabbit polyclonal antithymocyte globulin (ATG), is a widely used induction therapy in clinical organ transplantation that depletes peripheral T cells. However, resistance to tolerance induction is seen with certain T-cell depleting strategies and is attributed to alterations in the balance of naive, memory and Tregs. The exact mechanism of action of ATG and its effects on the homeostasis and balance between Tregs and T-effector-memory cells (Tem) are unknown. A novel antibody reagent, rabbit polyclonal anti-murine thymocyte globulin (mATG), generated by the same process used to manufacture thymoglobulin, was used alone or in combination with CTLA4Ig or sirolimus (SRL) in a stringent fully major histocompatibility complex-mismatched murine skin allograft model to study graft survival and mechanisms involved. mATG depletes T cells but preferentially spares CD25+ natural Tregs which limit skewing of T-cell repertoire toward Tem phenotype among the recovering T cells. T-cell depletion with mATG combined with CTLA4Ig and SRL synergize to prolong graft survival by tipping the Treg/Tem balance further in favor of Tregs by preserving Tregs, facilitating generation of new Tregs by a conversion mechanism and limiting Tem expansion in response to alloantigen and homeostatic proliferation. Simultaneous T-cell depletion with ATG and costimulatory blockade, combined with SRL, synergizes to promote regulation and prolong allograft survival in a stringent transplant model. These results provide the rationale for translating such novel combination therapy to promote regulation in primate and human organ transplantation.
    Transplantation 08/2010; 90(3):260-9. DOI:10.1097/TP.0b013e3181e64217 · 3.78 Impact Factor
  • Y. Huang · C. B. Zhang · G. Ko · P. Fiorina · M. J. Ansari · R. Abdi · H. Rabb · K. L. Womer
    Transplantation 07/2010; 90. DOI:10.1097/00007890-201007272-00448 · 3.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability to induce durable transplantation tolerance predictably and consistently in the clinic is a highly desired but elusive goal. Progress is hampered by lack of appropriate experimental models in which to study resistance to transplantation tolerance. Here, we demonstrate that T helper 1-associated T box 21 transcription factor (Tbet) KO recipients exhibit allograft tolerance resistance specifically mediated by IL-17-producing CD8 T (T17) cells. Neutralization of IL-17 facilitates long-term cardiac allograft survival with combined T cell co-stimulation (CD28-CD80/86 and CD154-CD40) blockade in Tbet KO recipients. We have used this T17-biased Tbet KO model of allograft tolerance resistance to study the impact of targeting a T cell-co-stimulatory pathway, and demonstrate that targeting T cell Ig and mucin domain-1 (Tim-1) with anti-Tim-1 overcomes this resistance by specifically inhibiting the pathogenic IL-17-producing CD8 T17 cells. These data indicate that in the absence of Th1 immunity, CD8 T17 alloreactivity constitutes a barrier to transplantation tolerance. Targeting TIM-1 provides an approach to overcome resistance to tolerance in clinical transplantation.
    Proceedings of the National Academy of Sciences 07/2009; 106(26):10734-9. DOI:10.1073/pnas.0812538106 · 9.81 Impact Factor
  • 9th Joint Meeting of the; 01/2009
  • 9th Joint Meeting of the; 01/2009
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: T-bet plays a crucial role in Th1 development. We investigated the role of T-bet in the development of allograft rejection in an established MHC class II-mismatched (bm12 into B6) model of chronic allograft vasculopathy (CAV). Intriguingly, and in contrast to IFN-gamma(-/-) mice that are protected from CAV, T-bet(-/-) recipients develop markedly accelerated allograft rejection accompanied by early severe vascular inflammation and vasculopathy, and infiltration by predominantly IL-17-producing CD4 T cells. Concurrently, T-bet(-/-) mice exhibit a T helper type 1 (Th1)-deficient environment characterized by profound IFN-gamma deficiency, a Th2 switch characterized by increased production of interleukin (IL) 4, IL-5, IL-10, and IL-13 cytokines, as well as increased production of the proinflammatory cytokines IL-6, IL-12p40, and IL-17. Neutralization of IL-17 inhibits accelerated allograft rejection and vasculopathy in T-bet(-/-) mice. Interestingly, CD4 but not CD8 T cell deficiency in T-bet(-/-) mice affords dramatic protection from vasculopathy and facilitates long-term graft acceptance. This is the first study establishing that in the absence of Th1-mediated alloimmune responses, CD4 Th17 cells mediate an aggressive proinflammatory response culminating in severe accelerated allograft rejection and vasculopathy. These results have important implications for the development of novel therapies to target this intractable problem in clinical solid organ transplantation.
    Journal of Experimental Medicine 01/2009; 205(13):3133-44. DOI:10.1084/jem.20081937 · 13.91 Impact Factor
  • M Javeed Ansari · Mohamed H Sayegh
    Blood 10/2008; 112(5):1551-2. DOI:10.1182/blood-2008-07-168179 · 10.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: T cell Ig mucin 1 (TIM-1) plays an important role in regulating immune responses in autoimmune and asthma models, and it is expressed on both Th1 and Th2 cells. Using an antagonistic TIM-1-specific antibody, we studied the role of TIM-1 in alloimmunity. A short course of TIM-1-specific antibody monotherapy prolonged survival of fully MHC-mismatched vascularized mouse cardiac allografts. This prolongation was associated with inhibition of alloreactive Th1 responses and preservation of Th2 responses. TIM-1-specific antibody treatment was more effective in Th1-type cytokine-deficient Stat4(-/-) recipients as compared with Th2-type cytokine-deficient Stat6(-/-) recipients. Subtherapeutic doses of rapamycin plus TIM-1-specific antibody resulted in allograft acceptance and prevented the development of chronic allograft vasculopathy. Allograft survival via this treatment was accompanied by a Th1- to Th2-type cytokine switch. Depletion of natural Tregs abrogated the graft-protecting effect of the TIM-1-specific antibody. Importantly, CD4(+)CD25(+) Tregs obtained from long-term survivors had enhanced regulatory activity as compared with naive CD4(+)CD25(+) Tregs. Consistent with this, TIM-1-specific antibody treatment both preserved Tregs and prevented the expansion of alloreactive effector Th1 cells in an alloreactive TCR transgenic adoptive transfer model. These studies define previously unknown functions of TIM-1 in regulating alloimmune responses in vivo and may provide a novel approach to promoting transplantation tolerance.
    Journal of Clinical Investigation 03/2008; 118(2):742-51. DOI:10.1172/JCI32451 · 13.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Allograft vasculopathy is a major limiting factor in the long-term success of cardiac transplantation. T cells play a critical role in initiation of cardiac allograft rejection and allograft vasculopathy. The negative T-cell costimulatory pathway PD-1:PDL1/PDL2 (programmed death-1:programmed death ligand-1/2) plays an important role in regulating alloimmune responses. We investigated the role of recipient versus donor PD-1 ligands in the pathogenesis of allograft rejection with emphasis on the role of tissue expression in regulating this alloimmune response in vivo. We used established major histocompatibility complex class II- and class I-mismatched models of vascularized cardiac allograft rejection, blocking anti-PDL1 and anti-PDL2 antibodies, and PDL1- and PDL2-deficient mice (as donors or recipients) to study the role of the PD-1:PDL1/PDL2 pathway in chronic rejection. We also used PDL1-deficient and wild-type mice and bone marrow transplantation to generate chimeric animals that express PDL1 exclusively on either hematopoietic or parenchymal cells. PDL1 but not PDL2 blockade significantly accelerated cardiac allograft rejection in the bm12-into-B6 and B6-into-bm12 models. Although wild-type cardiac allografts survived long term, PDL1-/- donor hearts transplanted into wild-type bm12 mice exhibited accelerated rejection and vasculopathy associated with enhanced recipient T-cell alloreactivity. Interestingly, PDL1-/- recipients did not exhibit an accelerated tempo of cardiac allograft rejection. Using chimeric animals as donors, we show that PDL1 expression on cardiac tissue alone significantly prolonged graft survival compared with full PDL1-/- donor grafts in transplanted wild-type recipients. This is the first report to demonstrate that expression of the negative costimulatory molecule PDL1 on donor cardiac tissue regulates recipient alloimmune responses, allograft rejection, and vasculopathy.
    Circulation 03/2008; 117(5):660-9. DOI:10.1161/CIRCULATIONAHA.107.741025 · 14.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Islet allografts are subject to alloimmune and autoimmune destruction when transplanted into autoimmune prone animals or humans. The ICOS-B7h pathway plays a role in alloimmune responses, but its function in autoimmunity against islet cells is controversial. We investigated the role of ICOS signaling in autoimmune and alloimmune responses in NOD mice. ICOS blockade prevents development of spontaneous disease in pre-diabetic NOD mice. Furthermore, while ICOS blockade prolongs graft survival in a fully mismatched non-autoimmune islet allograft model in C57BL/6 recipients, it has no beneficial effect in reversing diabetes in models of islet transplantation in NOD mice involving autoimmunity alone or both allo- and autoimmunity. Interestingly, ICOS blockade is effective in prolonging heart allograft (not subject to tissue-specific autoimmunity) survival in NOD mice. We conclude that in islet transplantation and autoimmune diabetes, ICOS blockade can be effective in inhibiting alloimmunity and preventing autoimmunity but is ineffective in inhibiting recurrence of autoimmunity.
    Clinical Immunology 03/2008; 126(2):140-7. DOI:10.1016/j.clim.2007.07.019 · 3.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that the development of type 1 diabetes (T1D) can be prevented in nonobese diabetic (NOD) mice by reconstitution with autologous hemopoietic stem cells retrovirally transduced with viruses encoding MHC class II I-A beta-chain molecules associated with protection from the disease. In this study we examined whether a blockade of the programmed death-1 (PD-1)-programmed death ligand-1 (PD-L1) pathway, a major pathway known to control diabetes occurrence, could precipitate T1D in young NOD mice following reconstitution with autologous bone marrow retrovirally transduced with viruses encoding protective MHC class II I-A beta-chain molecules. In addition, we examined whether the expression of protective MHC class II alleles in hemopoietic cells could be used to prevent the recurrence of diabetes in mice with pre-existing disease following islet transplantation. Protection from the occurrence of T1D diabetes in young NOD mice by the expression of protective MHC class II I-A beta-chain molecules in bone marrow-derived hemopoietic cells was resistant to induction by PD-1-PD-L1 blockade. Moreover, reconstitution of NOD mice with pre-existing T1D autologous hemopoietic stem cells transduced with viruses encoding protective MHC class II I-A beta-chains allowed for the successful transplantation of syngeneic islets, resulting in the long-term reversal of T1D. Reversal of diabetes was resistant to induction by PD-1-PDL-1 blockade and depletion of CD25(+) T cells. These data suggest that expression of protective MHC class II alleles in bone marrow-derived cells establishes robust self-tolerance to islet autoantigens and is sufficient to prevent the recurrence of autoimmune diabetes following islet transplantation.
    The Journal of Immunology 12/2007; 179(10):6762-9. DOI:10.4049/jimmunol.179.10.6762 · 5.36 Impact Factor

Publication Stats

2k Citations
308.06 Total Impact Points

Institutions

  • 2011–2015
    • Northwestern University
      • • Division of Organ Transplantation
      • • Department of Surgery
      • • Feinberg School of Medicine
      Evanston, Illinois, United States
  • 2005–2013
    • Harvard Medical School
      • Department of Pathology
      Boston, Massachusetts, United States
  • 2003–2010
    • Harvard University
      Cambridge, Massachusetts, United States
  • 2006–2009
    • Brigham and Women's Hospital
      • Transplantation Research Center
      Boston, Massachusetts, United States
  • 2008
    • Yale-New Haven Hospital
      New Haven, Connecticut, United States