Xiao Yang

Sun Yat-Sen University, Shengcheng, Guangdong, China

Are you Xiao Yang?

Claim your profile

Publications (233)890.1 Total impact

  • Xiao Yang
    [Show abstract] [Hide abstract]
    ABSTRACT: Targeted mutagenesis based on homologous recombination has been a powerful tool for understanding the mechanisms underlying development, normal physiology, and disease. A recent breakthrough in genome engineering technology based on the class of RNA-guided endonucleases, such as clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas9, is further revolutionizing biology and medical studies. The simplicity of the CRISPR-Cas9 system has enabled its widespread applications in generating germline animal models, somatic genome engineering, and functional genomic screening and in treating genetic and infectious diseases. This technology will likely be used in all fields of biomedicine, ranging from basic research to human gene therapy.
    05/2015; 2. DOI:10.1186/s40779-015-0038-1
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Arsenic, a ubiquitous presence in the biosphere, often occurs from both natural and anthropogenic sources. Bacterial biosensors based on genetically engineered bacteria have promising applications in detecting the chemical compound and its toxicity. However, most of the bactiria biosensor takes advantage of the existing wild-type substrate-induced promoters, which are often low in specificity, affinity and sensitivity, and thus limiting their applications in commercial or field use. In this study, we developed an in vivo evolution procedure with bi-directional selection scheme for improving the sensitivity of arsenite-responsive bacterial biosensor through optimization of the inducible operon. As a proof of concept, we evolved the arsenite-induced arsR operon for both low background and high expression through three successive rounds of fluorescence activated cell sorting (FACS) with bi-directional strategy. An arsR operon variant with 12-fold higher activity over the control was isolated, confirming multiple rounds of construction and screening of mutation library, as described here, can be efficiently applied to bacterial biosensor optimization. The evolved arsenite-responsive biosensor demonstrated an excellent performance in the detection of low trace arsenite in environmental water. These results indicate that the technologies of directed evolution could be used to improve the performance of bacterial biosensors, which will be helpful in promoting the practical application of bacterial biosensors.
    Environmental Science & Technology 04/2015; DOI:10.1021/acs.est.5b00832 · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Land-use and soil management affects soil organic carbon (SOC) pools, nitrogen, salinity and the depth distribution. The objective of this study was to estimate land-use effects on the distribution of SOC, labile fractions C, nitrogen (N) and salinity in saline-alkaline wetlands in the middle reaches of the Heihe River Basin. Three land-use types were selected: intact saline-alkaline meadow wetland, artificial shrubbery (planting Tamarix) and farmland (cultivated for 18 years) of soils previously under meadow wetland. SOC, easily oxidized carbon, microbial biomass carbon, total N, NO3--N and salinity concentrations were measured. The results show that SOC and labile fraction carbon contents decreased significantly with increasing soil depth in the three land-use wetlands. The labile fraction carbon contents in the topsoil (0–20 cm) in cultivated soils were significantly higher than that in intact meadow wetland and artificial shrubbery soil. The aboveground biomass and soil permeability were the primary influencing factors on the contents of SOC and the labile carbon in the intact meadow wetland and artificial shrubbery soil, however, the farming practice was a factor in cultivated soil. Agricultural measures can effectively reduce the salinity contents; however, it caused a significant increase of NO3--N concentrations which posed a threat to groundwater quality in the study area.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Zfp57 is a maternal-zygotic effect gene that maintains genomic imprinting. Here we report that Zfp57 mutants exhibited a variety of cardiac defects including atrial septal defect (ASD), ventricular septal defect (VSD), thin myocardium, and reduced trabeculation. Zfp57 maternal-zygotic mutant embryos displayed more severe phenotypes with higher penetrance than the zygotic ones. Cardiac progenitor cells exhibited proliferation and differentiation defects in Zfp57 mutants. ZFP57 is a master regulator of genomic imprinting, so the DNA methylation imprint was lost in embryonic heart without ZFP57. Interestingly, the presence of imprinted DLK1, a target of ZFP57, correlated with NOTCH1 activation in cardiac cells. These results suggest that ZFP57 may modulate NOTCH signaling during cardiac development. Indeed, loss of ZFP57 caused loss of NOTCH1 activation in embryonic heart with more severe loss observed in the maternal-zygotic mutant. Maternal and zygotic functions of Zfp57 appear to play redundant roles in NOTCH1 activation and cardiomyocyte differentiation. This serves as an example of a maternal effect that can influence mammalian organ development. It also links genomic imprinting to NOTCH signaling and particular developmental functions.
    Proceedings of the National Academy of Sciences 04/2015; 112(16). DOI:10.1073/pnas.1415541112 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stimulator of interferon genes (STING, also known as MITA and ERIS) is critical in protecting the host against DNA pathogen invasion. However, the molecular mechanism underlying the regulation of STING remains unclear. Here, we show that PPM1A negatively regulates antiviral signaling by targeting STING in its phosphatase activity-dependent manner, and in a line with this, PPM1A catalytically dephosphorylates STING and TBK1 in vitro. Importantly, we provide evidence that whereas TBK1 promotes STING aggregation in a phosphorylation-dependent manner, PPM1A antagonizes STING aggregation by dephosphorylating both STING and TBK1, emphasizing that phosphorylation is crucial for the efficient activation of STING. Our findings demonstrate a novel regulatory circuit in which STING and TBK1 reciprocally regulate each other to enable efficient antiviral signaling activation, and PPM1A dephosphorylates STING and TBK1, thereby balancing this antiviral signal transduction.
    PLoS Pathogens 03/2015; 11(3):e1004783. DOI:10.1371/journal.ppat.1004783 · 8.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To perform a profiling analysis of changes in intestinal microRNA (miRNA) expression during hypothermic circulatory arrest (HCA). A total of eight piglets were randomly divided into HCA and sham operation (SO) groups. Under general anesthesia, swine in the HCA group were subjected to hypothermic cardiopulmonary bypass at 24 °C followed by 80 min of circulatory arrest, and the reperfusion lasted for 180 min after cross-clamp removal. The counterparts in the SO group were only subjected to median sternotomy. Histopathological analysis was used to detect mucosal injury, and Pick-and-Mix custom miRNA real-time polymerase chain reaction (PCR) panels containing 306 unique primer sets were utilized to assay unpooled intestinal samples harvested from the two groups. The intestinal mucosa of the animals that were subjected to 24 °C HCA exhibited representative ischemic reperfusion injury of grade 2 or 3 according to the Chiu score. Such intestinal mucosal injuries, with the subepithelial space and epithelial layer lifting away from the lamina propria, were accompanied by shortened and irregular villi. On the contrary, the intestinal mucosa remained normal in the sham-operated animals. In total, twenty-five miRNAs were differentially expressed between the two groups (15 upregulated and 10 downregulated in the HCA group). Among these, eight miRNAs (miR-122, miR-221-5p, miR-31, miR-421-5p, miR-4333, miR-499-3p, miR-542 and let-7d-3p) were significantly dysregulated (four higher and four lower). The expression of miR-122 was significantly (5.37-fold) increased in the HCA group vs the SO group, indicating that it may play a key role in HCA-induced mucosal injury. Exposure to HCA caused intestinal miRNA dysregulation and barrier dysfunction in swine. These altered miRNAs might be related to the protection or destruction of the intestinal barrier.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein-energy wasting (PEW) is strongly associated with high mortality in continuous ambulatory peritoneal dialysis (CAPD) patients. However, its clinical assessment has not been well defined. The aim of the present study was to investigate the relationship between combined nutritional indicators and mortality in CAPD patients. In the present retrospective cohort study, a total of 885 incident CAPD patients were enrolled. Nutritional status at the initiation of CAPD was assessed by BMI and biochemical indices (serum albumin, prealbumin, transferrin, creatinine and total cholesterol). The primary outcome was all-cause mortality. Principal components factor analysis was used to identify the combined nutritional parameters. Their association with mortality was examined by multivariable-adjusted Cox models. The mean age was 47·4 (sd 14·8) years, 59·2 % (n 524) were male and 24·6 % (n 218) were diabetic. Of the total patients, 130 (14·7 %) had BMI < 18·5 kg/m2, 439 (49·6 %) had albumin < 38 g/l ( < 3·8 g/dl), 303 (34·2 %) had prealbumin < 300 mg/l ( < 30 mg/dl), 404 (45·6 %) had transferrin < 2 g/l ( < 200 mg/dl), 501 (56·6 %) had total cholesterol < 5·2 mmol/l ( < 200 mg/dl) and 466 (52·7 %) had creatinine < 707 μmol/l ( < 8 mg/dl). Overall, three components such as visceral proteins, muscle-mass surrogate and BMI were extracted, which explained 69·95 % of the total variance of the nutritional parameters. After adjusting for demographic variables, co-morbid conditions, Hb, TAG and high-sensitivity C-reactive protein, the factor score of visceral proteins including albumin, prealbumin and transferrin was independently associated with mortality (hazard ratio 0·73, 95 % CI 0·60, 0·89; P= 0·002). Lower visceral protein concentrations may be independently associated with higher mortality in incident CAPD patients. Simultaneous measurements of serum albumin, prealbumin and transferrin could be helpful to monitor PEW.
    British Journal Of Nutrition 01/2015; 113(04):1-7. DOI:10.1017/S0007114514004061 · 3.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The terminal differentiation of hypertrophic chondrocytes is a tightly regulated process that plays a pivotal role in endochondral ossification. As a negative regulator, Sox9 is essentially downregulated in terminally differentiated hypertrophic chondrocytes. However, the underlying mechanism of Sox9 silencing is undefined. Here we show that the zinc finger protein Zbtb20 regulates the terminal differentiation of hypertrophic chondrocytes by repressing Sox9. In the developing skeleton of the mouse, Zbtb20 protein is highly expressed by hypertrophic chondrocytes from late embryonic stages. To determine its physiological role in endochondral ossification, we have generated chondrocyte-specific Zbtb20 knockout mice and demonstrate that disruption of Zbtb20 in chondrocytes results in delayed endochondral ossification and postnatal growth retardation. Zbtb20 deficiency caused a delay in cartilage vascularization and an expansion of the hypertrophic zone owing to reduced expression of Vegfa in the hypertrophic zone. Interestingly, Sox9, a direct suppressor of Vegfa expression, was ectopically upregulated at both mRNA and protein levels in the late Zbtb20-deficient hypertrophic zone. Furthermore, knockdown of Sox9 greatly increased Vegfa expression in Zbtb20-deficient hypertrophic chondrocytes. Our findings point to Zbtb20 as a crucial regulator governing the terminal differentiation of hypertrophic chondrocytes at least partially through repression of Sox9. © 2015. Published by The Company of Biologists Ltd.
    Development 01/2015; 142(2):385-393. DOI:10.1242/dev.108530 · 6.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence indicates that some miRNAs could form feedback loops with their targets to fine-tune tissue homeostasis, while disruption of these loops constitutes an essential step towards human tumorigenesis. In this study, we report the identification of a novel negative feedback loop formed between miR-139 and its oncogenic target Jun. In this loop, miR-139 could inhibit Jun expression by targeting a conserved site on its 3'-UTR, whereas Jun could induce miR-139 expression in a dose dependent manner through a distant upstream regulatory element. Interestingly, aberration in this loop was found in human gastric cancer, where miR-139 was down-regulated and inversely correlated with Jun expression. Further functional analysis showed that restored expression of miR-139 in gastric cancer cells significantly induces apoptosis, and inhibits cell migration and proliferation as well as tumour growth through targeting Jun. Thus, our data strongly suggests a role of aberrant miR-139/Jun negative feedback loop in the development of human gastric cancer and miR-139 as a potential therapeutic target for gastric cancer. Given that miR-139 and Jun are deregulated in many cancers, our findings here might have broader implication in other types of human cancers.
    Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 12/2014; 1853(2). DOI:10.1016/j.bbamcr.2014.12.002 · 5.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In mouse, continuous growth of the postnatal incisor is coordinated by two populations of multipotent progenitor cells, the dental papilla mesenchymal cells and dental epithelial stem cells, residing at the proximal end of the incisor, yet the molecular mechanism underlying the cooperation between mesenchymal and epithelial cells is largely unknown. Here, TGF-β type II receptor (Tgfbr2) was specifically deleted within the postnatal dental papilla mesenchyme. The Tgfbr2-deficient mice displayed malformed incisors with wavy mineralized structures at the labial side as a result of increased differentiation of dental epithelial stem cells. We found that mesenchymal Tgfbr2 disruption led to upregulated expression of Wnt5a and downregulated expression of Fgf3/10 in the mesenchyme, both of which synergistically enhanced Lrp5/6-β-catenin signaling in the cervical loop epithelium. In accord with these findings, mesenchyme-specific depletion of the Wnt transporter gene Wls abolished the aberrant mineralized structures caused by Tgfbr2 deletion. Thus, mesenchymal TGF-β signaling provides a unifying mechanism for the homeostasis of dental epithelial stem cells via a Wnt signaling mediated mesenchymal–epithelial cell interaction. Stem Cells 2014
    Stem Cells 11/2014; 32(11). DOI:10.1002/stem.1772 · 7.70 Impact Factor
  • Xueqing Yu, Xiao Yang
    [Show abstract] [Hide abstract]
    ABSTRACT: Due to limited medical and economic resources, particularly in the countryside and remote areas, the proportion of individuals with end-stage kidney disease who are treated with dialysis in China is only about 20%. For the rest, renal replacement therapy currently is not available. Peritoneal dialysis (PD) has been developed and used for more than 30 years in China to treat patients with end-stage kidney disease. Several national PD centers of first-rate scale and quality have sprung up, but the development of PD varies widely among geographic regions across China. The Chinese government has dedicated itself to continually increasing the coverage and level of medical service for patients with end-stage kidney disease. Under the guidance of the government and because of promotion by kidney care professionals, presently there are more than 40,000 prevalent PD patients in China, representing approximately 20% of the total dialysis population. Recently, a National Dialysis Unit Training Program for countywide hospitals has been initiated. Through the efforts of programs like this, we believe that awareness of PD and advances in the underlying technology will benefit more patients with end-stage kidney disease in China. Copyright © 2014 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
    American Journal of Kidney Diseases 11/2014; 65(1). DOI:10.1053/j.ajkd.2014.08.023 · 5.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To compare the effects of different volumes of fluorescein on tear breakup time (FTBUT) and to investigate if and to what extent the tear breakup time determined by an automated noninvasive instrument (NITBUT) differs from FTBUT.
    Optometry and vision science: official publication of the American Academy of Optometry 10/2014; DOI:10.1097/OPX.0000000000000418 · 2.04 Impact Factor
  • Yong-Zhong Su, Xiao Yang, Rong Yang
    [Show abstract] [Hide abstract]
    ABSTRACT: In irrigated agricultural ecosystems, the accumulation, distribution and transfer of nitrate nitrogen (NO(3-)-N) in soil profile and groundwater nitrate pollution were influenced by irrigation and fertilization, and were closely related to soil textural characteristics. In this study, a monitoring section with 10 groundwater observation wells along Heihe River flood land-old oasis croplands-newly cultivated sandy croplands-fixed sandy land outside oasis was established in Pingchuan desert-oasis in Linze county in the middle of Heihe river basin, and groundwater NO(3-)-N concentration was continuously monitored. Soil texture and NO(3-)-N concentration in the unsaturated zone at different landscape locations were determined. The NO(3-)-N transfer change in soil profile, nitrate leaching of soils with different texture and fertility levels in the 0-100 cm layer were analyzed. The results indicated that the vertical distribution of soil texture was sandy loam in the 0-130 cm depth, loam in the 130-190 cm and clay loam in the 190-300 cm for the old oasis croplands. For newly cultivated sandy croplands, sand content was more than 80% in each soil layer of the 0-300 cm profile, although a thin clay layer occurred in the 140-160 cm depth. The clay layer occurred 160 cm below the sand-fixing zone outside oasis. There were significant correlations between soil NO(3-)-N concentration and silt + clay content, and the order of significant degree was the natural soils of sandy lands > the newly cultivated sandy croplands > the old oasis croplands. The loss of N leaching was closely correlated to the silt + caly content in the 0-100 cm soil depth. The groundwater NO(3-)-N concentration varied from 1.01 to 5.17 mg · L(-1), with a mean value of 2.65 mg · L(-1) and from 6.6 to 29.5 mg · L(-1), with an average of 20.8 mg · L(-1) in the area of old oasis croplands and the newly cultivated croplands, respectively. The averaged groundwater NO(3-)-N concentration in the area of newly cultivated sandy croplands during the period of May and October, 2013 was 26.5 mg · L(-1), which was increased by 9.5 mg · L(-1) in comparison with the same period of 2012. There was a clear increasing trend in groundwater NO(3-)-N concentration in the sand-fixing zone outside oasis. The textural characteristics of soil unsaturated zone in the shallow groundwater distribution area was the key determining factor for controlling soil NO(3-)-N leaching and groundwater nitrate pollution. The newly cultivated sandy croplands were the nitrate vulnerable zones and high-risk areas of groundwater nitrate pollution. The implementation of cultivation pattern and irrigation and fertilization management that could effectively reduce groundwater NO(3-)-N pollution should be considered in the development of ecological agriculture.
  • Clinical Chemistry and Laboratory Medicine 09/2014; 53(4). DOI:10.1515/cclm-2014-0770 · 2.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Monocyte chemoattractant protein-1 (MCP-1) is an important chemokine involved in the pathogenesis of spontaneous preterm birth (SPTB). We examined whether the MCP-1 G-2518A polymorphism is associated with the risk of SPTB in a Chinese population. The MCP-1 G-2518A polymorphism was genotyped in 569 preterm singleton neonates and in 673 term neonates using polymerase chain reaction-restriction fragment length polymorphism analysis. The distribution of the MCP-1 G-2518A genotype and the allele frequencies between the SPTB patients and the controls were not significantly different in the overall sample. However, we found that the AA genotype was associated with significantly increased susceptibility to very SPTB (<32 weeks) [odds ratio (OR) 2.07; 95 % confidence interval (CI), 1.27-3.36; P = 0.005) and extremely SPTB (<28 weeks) (OR 2.74; 95 % CI, 1.10-6.72; P = 0.014) compared with -2518G-positive genotypes (GG + GA genotypes). When extremely preterm neonates and very preterm neonates were combined, the AA genotype was also significantly associated with increased susceptibility to SPTB (OR 2.23; 95 % CI, 1.40-3.54; P < 0.001). The MCP-1 G-2518A polymorphism was not associated with increased susceptibility to SPTB in patients with premature rupture of the membranes (PROM) or in those without PROM. Our findings suggest that the MCP-1 G-2518A polymorphism may plays a role in mediating the susceptibility to SPTB in the Chinese population. Knowledge of genetic factors contributing to the pathogenesis of SPTB may have implications for screening and treatment of this disorder.
    Molecular Genetics and Genomics 09/2014; 290(1). DOI:10.1007/s00438-014-0921-6 · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BackgroundThe first episode of peritonitis affects survival of the peritoneal membrane as a medium for dialysis as well as survival of patients. The aim of this study is to investigate risk factors associated with the first episode of peritonitis in Southern Chinese continuous ambulatory peritoneal dialysis (CAPD) patients.MethodsThis is a single-center, retrospective, cohort study. All incident CAPD patients from 1 January 2006 to 31 December 2010 were recruited, and followed up until their first episode of peritonitis or 31 December, 2012. Baseline demographic, socioeconomic, clinical and laboratory data were collected. Cox proportional model was used to determine the factors associated with the first episode of peritonitis.ResultsIn a cumulative 30756.5 patient-months follow-up (the median vintage 26.1 months) of 1117 CAPD patients, 309(27.7%) patients presented the first episodes of peritonitis. The cumulative peritonitis-free survival was 86.2%, 78.1%, 71.4% and 57.8% at 1, 2, 3 and 5 year, respectively. The multivariate analysis showed that factors associated with risk for the first episode of peritonitis were elderly patients (>65 years) [hazard ratio (HR) = 1.427, 95% confidence interval (CI) = 1.051 to 1.938, P = 0.023], male(HR = 1.315, 95% CI = 1.028 to 1.684, P = 0.030), lower education level (HR = 1.446, 95% CI: 1.127 to 1.855, P = 0.004) and albumin <38g/L (HR = 1.425, 95% CI: 1.112 to 1.825, P = 0.005).ConclusionsOlder age, male, lower educational level and hypoalbuminemia at the commencement of PD were the risk factors associated with the first episode of peritonitis in Southern Chinese CAPD patients.
    PLoS ONE 09/2014; 9(9):e107485. DOI:10.1371/journal.pone.0107485 · 3.53 Impact Factor
  • Peritoneal dialysis international: journal of the International Society for Peritoneal Dialysis 09/2014; DOI:10.3747/pdi.2013.00332 · 2.20 Impact Factor
  • Source
    Cell Research 08/2014; 24(10). DOI:10.1038/cr.2014.111 · 11.98 Impact Factor
  • International Journal of Cardiology 08/2014; 176(3). DOI:10.1016/j.ijcard.2014.08.030 · 6.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cystatin play an important role in parasite immune evasion. It is involved in many immune responses processes regulations such as inhibiting antigen presentation, modifying cytokines production and macrophage polarization. In recent years, more and more cystatins were used in treating some inflammatory diseases such as asthma and inflammation bowel diseases; however, cystatins from Schistosoma japonicum were rarely studied. In the present study, we have cloned a cystatin from the adult stage of Schistosoma japonicum, named as SjCystatin, and its sequence shares conserved domains with other type II family cystatins. It was further verified by enzyme inhibition assays. SjCystatin retained its inhibitory activity under a wide range of pH values and temperatures, can maintain its inhibitory activity at pH 6.5-7.5 and 37 °C, respectively. Then, we investigated the effects of SjCystatin on the lipopolysaccharide (LPS)-induced activated RAW264.7. Results showed that SjCystatin inhibit LPS-induced nitric oxide production in a dose-dependent manner. LPS-induced TNF-α and IL-6 production began to be inhibited at least 6 h after SjCystatin stimulation. SjCystatin significantly increased IL-10 production at 6 h after stimulation and its effect on IL-10 production diminished quickly. These results imply that SjCystatin can induce M2 macrophage polarization and can be expected to serve as a potential drug source for the medication of inflammatory disorders like other cystatins.
    Parasitology Research 08/2014; 113(11). DOI:10.1007/s00436-014-4064-9 · 2.33 Impact Factor

Publication Stats

4k Citations
890.10 Total Impact Points


  • 2004–2015
    • Sun Yat-Sen University
      • • Department of Medical Oncology
      • • The First Affiliated Hospital
      Shengcheng, Guangdong, China
  • 2002–2015
    • Sun Yat-Sen University of Medical Sciences
      • • Department of Nephrology
      • • First Affiliated Hospital
      Shengcheng, Guangdong, China
  • 2009–2014
    • Chinese Academy of Sciences
      • Graduate School
      Peping, Beijing, China
    • 307 Hospital of the Chinese People's Liberation Army
      Peping, Beijing, China
    • Beijing Institute Of Technology
      Peping, Beijing, China
  • 2001–2014
    • Fuerkang Beijing Institute of Biotechnology
      Peping, Beijing, China
  • 2010–2013
    • Shanghai Jiao Tong University
      Shanghai, Shanghai Shi, China
    • Lanzhou University
      • School of Life Science
      Lanzhou, Gansu Sheng, China
  • 2007–2013
    • Shanghai University
      • Department of Automation
      Shanghai, Shanghai Shi, China
    • University of Rochester
      Rochester, New York, United States
  • 2012
    • Xinqiao Hospital
      Ch’ung-ch’ing-shih, Chongqing Shi, China
  • 2000–2012
    • Academy of Military Medical Sciences
      T’ien-ching-shih, Tianjin Shi, China
  • 2011
    • Hunan University
      Ch’ang-sha-shih, Hunan, China
  • 2003–2009
    • Government of the People's Republic of China
      Peping, Beijing, China
    • Henan Provincial People’s Hospital
      Cheng, Henan Sheng, China
  • 2006
    • Peking Union Medical College Hospital
      Peping, Beijing, China
  • 2005
    • Second Military Medical University, Shanghai
      Shanghai, Shanghai Shi, China
    • Guangzhou First People's Hospital
      Shengcheng, Guangdong, China
  • 1997–2002
    • National Institutes of Health
      • • Branch of Genetics of Development and Disease (GDDB)
      • • Laboratory of Metabolism
      Bethesda, MD, United States