Arthur H M Burghes

The Ohio State University, Columbus, Ohio, United States

Are you Arthur H M Burghes?

Claim your profile

Publications (160)1234.17 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Compound muscle action potential (CMAP) and motor unit number estimation (MUNE) are electrophysiological techniques that can be used to monitor the functional status of a motor unit pool in vivo. These measures can provide insight into the normal development and degeneration of the neuromuscular system. These measures have clear translational potential because they are routinely applied in diagnostic and clinical human studies. We present electrophysiological techniques similar to those employed in humans to allow recordings of mouse sciatic nerve function. The CMAP response represents the electrophysiological output from a muscle or group of muscles following supramaximal stimulation of a peripheral nerve. MUNE is an electrophysiological technique that is based on modifications of the CMAP response. MUNE is a calculated value that represents the estimated number of motor neurons or axons (motor control input) supplying the muscle or group of muscles being tested. We present methods for recording CMAP responses from the proximal leg muscles using surface recording electrodes following the stimulation of the sciatic nerve in mice. An incremental MUNE technique is described using submaximal stimuli to determine the average single motor unit potential (SMUP) size. MUNE is calculated by dividing the CMAP amplitude (peak-to-peak) by the SMUP amplitude (peak-to-peak). These electrophysiological techniques allow repeated measures in both neonatal and adult mice in such a manner that facilitates rapid analysis and data collection while reducing the number of animals required for experimental testing. Furthermore, these measures are similar to those recorded in human studies allowing more direct comparisons.
    Journal of Visualized Experiments 10/2015; 2015(103). DOI:10.3791/52899 · 1.33 Impact Factor

  • Neuromuscular Disorders 10/2015; 25:S193. DOI:10.1016/j.nmd.2015.06.036 · 2.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Spinal Muscular Atrophy (SMA) is an autosomal recessive disorder characterized by loss of lower motor neurons. SMA is caused by deletion or mutation of the Survival Motor Neuron 1 (SMN1) gene and retention of the SMN2 gene. The loss of SMN1 results in reduced levels of the SMN protein. SMN levels appear to be particularly important in motor neurons; however SMN levels above that produced by two copies of SMN2 have been suggested to be important in muscle. Studying the spatial requirement of SMN is important in both understanding how SMN deficiency causes SMA and in the development of effective therapies. Using Myf5-Cre, a muscle-specific Cre driver, and the Cre-loxP recombination system, we deleted mouse Smn in the muscle of mice with SMN2 and SMNΔ7 transgenes in the background, thus providing low level of SMN in the muscle. As a reciprocal experiment, we restored normal levels of SMN in the muscle with low SMN levels in all other tissues. We observed that decreasing SMN in the muscle has no phenotypic effect. This was corroborated by muscle physiology studies with twitch force, tetanic and eccentric contraction all being normal. In addition, electrocardiogram and muscle fiber size distribution were also normal. Replacement of Smn in muscle did not rescue SMA mice. Thus the muscle does not appear to require high levels of SMN above what is produced by two copies of SMN2 (and SMNΔ7). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email:
    Human Molecular Genetics 08/2015; DOI:10.1093/hmg/ddv332 · 6.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proximal spinal muscular atrophy (SMA) is the most frequent cause of hereditary infant mortality. SMA is an autosomal recessive neuromuscular disorder that results from the loss of the Survival Motor Neuron 1 (SMN1) gene and retention of the SMN2 gene. The SMN2 gene produces an insufficient amount of full-length SMN protein that results in loss of motor neurons in the spinal cord and subsequent muscle paralysis. Previously we have shown that overexpression of human SMN in neurons in the SMA mouse ameliorates the SMA phenotype while overexpression of human SMN in skeletal muscle had no effect. Using Cre recombinase, here we show that either deletion or replacement of Smn in motor neurons (ChAT-Cre) significantly alters the functional output of the motor unit as measured with compound muscle action potential (CMAP) and motor unit number estimation (MUNE). However ChAT-Cre alone did not alter the survival of SMA mice by replacement and did not appreciably affect survival when used to deplete SMN. However replacement of SMN in both neurons and glia in addition to the motor neuron (Nestin-Cre and ChAT-Cre) resulted in the greatest improvement in survival of the mouse and in some instances complete rescue was achieved. These findings demonstrate that high expression of SMN in the motor neuron is both necessary and sufficient for proper function of the motor unit. Furthermore, in the mouse high expression of SMN in neurons and glia, in addition to motor neurons, has a major impact on survival. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
    Human Molecular Genetics 07/2015; 24(19). DOI:10.1093/hmg/ddv283 · 6.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spinal muscular atrophy is caused by loss of the SMN1 gene and retention of SMN2. The SMN2 copy number inversely correlates with phenotypic severity and is a modifier of disease outcome. The SMN2 gene essentially differs from SMN1 by a single nucleotide in exon 7 that modulates the incorporation of exon 7 into the final SMN transcript. The majority of the SMN2 transcripts lack exon 7 and this leads to a SMN protein that does not effectively oligomerize and is rapidly degraded. However the SMN2 gene does produce some full-length SMN and the SMN2 copy number along with how much full-length SMN the SMN2 gene makes correlates with severity of the SMA phenotype. However there are a number of discordant SMA siblings that have identical haplotypes and SMN2 copy number yet one has a milder form of SMA. It has been suggested that Plastin3 (PLS3) acts as a sex specific phenotypic modifier where increased expression of PLS3 modifies the SMA phenotype in females. To test the effect of PLS3 overexpression we have over expressed full-length PLS3 in SMA mice. To ensure no disruption of functionality or post-translational processing of PLS3 we did not place a tag on the protein. PLS3 protein was expressed under the Prion promoter as we have shown previously that SMN expression under this promoter can rescue SMA mice. High levels of PLS3 mRNA were expressed in motor neurons along with an increased level of PLS3 protein in total spinal cord, yet there was no significant beneficial effect on the phenotype of SMA mice. Specifically, neither survival nor the fundamental electrophysiological aspects of the neuromuscular junction were improved upon overexpression of PLS3 in neurons.
    PLoS ONE 07/2015; 10(7):e0132364. DOI:10.1371/journal.pone.0132364 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The 2007 Consensus Statement for Standard of Care in Spinal Muscular Atrophy notes that patients suffer from gastroesophageal reflux, constipation and delayed gastric emptying. We used two mouse models of SMA to determine whether functional GI complications are a direct consequence of or are secondary to survival motor neuron (Smn) deficiency. Our results show that despite normal activity levels and food and water intake, Smn deficiency caused constipation, delayed gastric emptying, slow intestinal transit and reduced colonic motility without gross anatomical or histopathological abnormalities. These changes indicate alterations to the intrinsic neural control of gut functions mediated by the enteric nervous system (ENS). Indeed, Smn deficiency led to disrupted ENS signaling to the smooth muscle of the colon but did not cause enteric neuron loss. High frequency electrical field stimulation (EFS) of distal colon segments produced up to a 10 fold greater contractile response in Smn deficient tissues. EFS responses were not corrected by the addition of a nNOS inhibitor indicating that the increased contractility was due to hyperexcitability and not disinhibition of the circuitry. The GI symptoms observed in mice are similar to those reported in SMA patients. Together these data suggest that ENS cells are susceptible to Smn deficiency and may underlie the patient GI symptoms. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
    Human Molecular Genetics 04/2015; 24(13). DOI:10.1093/hmg/ddv127 · 6.39 Impact Factor

  • Gastroenterology 04/2015; 148(4):S-309. DOI:10.1016/S0016-5085(15)31019-2 · 16.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objectives Spinal muscular atrophy (SMA) is caused by reduced levels of survival motor neuron (SMN) protein, which results in motoneuron loss. Therapeutic strategies to increase SMN levels including drug compounds, antisense oligonucleotides, and scAAV9 gene therapy have proved effective in mice. We wished to determine whether reduction of SMN in postnatal motoneurons resulted in SMA in a large animal model, whether SMA could be corrected after development of muscle weakness, and the response of clinically relevant biomarkers.Methods Using intrathecal delivery of scAAV9 expressing an shRNA targeting pig SMN1, SMN was knocked down in motoneurons postnatally to SMA levels. This resulted in an SMA phenotype representing the first large animal model of SMA. Restoration of SMN was performed at different time points with scAAV9 expressing human SMN (scAAV9-SMN), and electrophysiology measurements and pathology were performed.ResultsKnockdown of SMN in postnatal motoneurons results in overt proximal weakness, fibrillations on electromyography indicating active denervation, and reduced compound muscle action potential (CMAP) and motor unit number estimation (MUNE), as in human SMA. Neuropathology showed loss of motoneurons and motor axons. Presymptomatic delivery of scAAV9-SMN prevented SMA symptoms, indicating that all changes are SMN dependent. Delivery of scAAV9-SMN after symptom onset had a marked impact on phenotype, electrophysiological measures, and pathology.InterpretationHigh SMN levels are critical in postnatal motoneurons, and reduction of SMN results in an SMA phenotype that is SMN dependent. Importantly, clinically relevant biomarkers including CMAP and MUNE are responsive to SMN restoration, and abrogation of phenotype can be achieved even after symptom onset. Ann Neurol 2015
    Annals of Neurology 12/2014; 77(3). DOI:10.1002/ana.24332 · 9.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spinal Muscular Atrophy (SMA) is the most frequent lethal genetic neurodegenerative disorder in infants. The disease is caused by low abundance of the survival of motor neuron (SMN) protein leading to motor neuron degeneration and progressive paralysis. We previously demonstrated that a single intravenous injection (IV) of self-complementary adeno-associated virus 9 carrying the human SMN cDNA (scAAV9-SMN) resulted in widespread transgene expression in spinal cord motor neurons in SMA mice as well as nonhuman primates and complete rescue of the disease phenotype in mice. Here, we evaluated the dosing and efficacy of scAAV9-SMN delivered directly to the cerebral spinal fluid (CSF) via single injection. We found widespread transgene expression throughout the spinal cord in mice and nonhuman primates when using a ten times lower dose compared to the IV application. Interestingly, in nonhuman primates, lower doses than in mice can be used for similar motor neuron targeting efficiency. Moreover, the transduction efficacy is further improved when subjects are kept in the Trendelenburg position to facilitate spreading of the vector. We present a detailed analysis of transduction levels throughout the brain, brainstem and spinal cord of nonhuman primates, providing new guidance for translation towards therapy for a wide range of neurodegenerative disorders.Molecular Therapy (2014); doi:10.1038/mt.2014.210.
    Molecular Therapy 10/2014; 23(3). DOI:10.1038/mt.2014.210 · 6.23 Impact Factor
  • A. Burghes · D. Arnold · S. Duque · V. McGovern · C. Ruhno · C. Iyer · K. Meyer · B. Kaspar ·

    19th International Congress of the World-Muscle-Society; 10/2014
  • W David Arnold · Xiaokui Mo · Stephen J Kolb · Arthur H Burghes · John T Kissel ·

    Muscle & Nerve 09/2014; 50(3). DOI:10.1002/mus.24318 · 2.28 Impact Factor
  • Chitra C. Iyer · Vicki L. McGovern · Dawnne O. Wise · David J. Glass · Arthur H.M. Burghes ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Spinal Muscular Atrophy (SMA) is an autosomal recessive disease causing degeneration of lower motor neurons and muscle atrophy. One therapeutic avenue for SMA is targeting signaling pathways in muscle to ameliorate atrophy. Muscle Atrophy F-box, MAFbx, and Muscle RING Finger 1, MuRF1, are muscle-specific ubiquitin ligases upregulated in skeletal and cardiac muscle during atrophy. Homozygous knock-out of MAFbx or MuRF1 causes muscle sparing in adult mice subjected to atrophy by denervation. We wished to determine whether blockage of the major muscle atrophy pathways by deletion of MAFbx or MuRF1 in a mouse model of SMA would improve the phenotype. Deletion of MAFbx in the Δ7 SMA mouse model had no effect on the weight and the survival of the mice while deletion of MuRF1 was deleterious. MAFbx-/-–SMA mice showed a significant alteration in fiber size distribution tending towards larger fibers. In skeletal and cardiac tissue MAFbx and MuRF1 transcripts were upregulated whereas MuRF2 and MuRF3 levels were unchanged in Δ7 SMA mice. We conclude that deletion of the muscle ubiquitin ligases does not improve the phenotype of a Δ7 SMA mouse. Furthermore, it seems unlikely that the beneficial effect of HDAC inhibitors is mediated through inhibition of MAFbx and MuRF1.
    Neuromuscular Disorders 05/2014; 24(5). DOI:10.1016/j.nmd.2014.02.007 · 2.64 Impact Factor
  • Matthew E.R. Butchbach · Jasbir Singh · Mark E Gurney · Arthur H.M. Burghes ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Spinal muscular atrophy (SMA) is an early-onset motor neuron disease characterized by loss of spinal motor neurons which leads to skeletal muscle atrophy. Proximal SMA results from the loss or mutation of the survival motor neuron (SMN) gene. In humans, the SMN gene is duplicated to produce two nearly identical genes, SMN1 and SMN2. SMN1 is lost in SMA but SMN2 is retained; in fact, the number of SMN2 copies correlates with disease severity. The SMN2 inducer D156844 increases the survival and improves phenotype of SMNΔ7 SMA mice. Maternal diet also modifies the survival and phenotype of these mice. In this study, we show the effect of maternal diet on the protective effects of D156844 in SMNΔ7 SMA mice. SMA mice maintained on the PicoLab20 Mouse diet survived longer when treated with D156844; the effect of diet was additive to the effect of D156844 on these mice. Brain levels of D156844 were higher in neonatal mice maintained on the PicoLab20 diet than those on the Harlan-Teklad 22/5 diet. SMN protein levels in the spinal cord were modestly elevated in D156844-treated, PicoLab20-maintained SMA mice. These data show that maternal diet does influence the responsiveness of D156844 in neonatal SMNΔ7 SMA mice.
    Experimental Neurology 03/2014; 256. DOI:10.1016/j.expneurol.2014.03.005 · 4.70 Impact Factor
  • Source

    Neuromuscular Disorders 03/2014; 24:S3. DOI:10.1016/S0960-8966(14)70011-2 · 2.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Preclinical therapies that restore survival motor neuron (SMN) protein levels can dramatically extend survival in spinal muscular atrophy (SMA) mouse models. Biomarkers are needed to effectively translate these promising therapies to clinical trials. Our objective was to investigate electrophysiological biomarkers of compound muscle action potential (CMAP), motor unit number estimation (MUNE) and electromyography (EMG) using an SMA mouse model. Sciatic CMAP, MUNE, and EMG were obtained in SMNΔ7 mice at ages 3-13 days and at 21 days in mice with SMN selectively reduced in motor neurons (ChAT(Cre) ). To investigate these measures as biomarkers of treatment response, measurements were obtained in SMNΔ7 mice treated with antisense oligonucleotide (ASO) or gene therapy. CMAP was significantly reduced in SMNΔ7 mice at days 6-13 (p<0.01), and MUNE was reduced at days 7-13 (p<0.01). Fibrillations were present on EMG in SMNΔ7 mice but not controls (p=0.02). Similar findings were seen at 21 days in ChAT(Cre) mice. MUNE in ASO-treated SMNΔ7 mice were similar to controls at day 12 and 30. CMAP reduction persisted in ASO-treated SMNΔ7 mice at day 12 but was corrected at day 30. Similarly, CMAP and MUNE responses were corrected with gene therapy to restore SMN. These studies confirm features of preserved neuromuscular function in the early postnatal period and subsequent motor unit loss in SMNΔ7 mice. SMN restoring therapies result in preserved MUNE and gradual repair of CMAP responses. This provides preclinical evidence for the utilization of CMAP and MUNE as biomarkers in future SMA clinical trials.
    02/2014; 1(1):34-44. DOI:10.1002/acn3.23
  • [Show abstract] [Hide abstract]
    ABSTRACT: Amyotrophic lateral sclerosis (ALS) causes motor neuron degeneration, paralysis, and death. Accurate disease modeling, identifying disease mechanisms, and developing therapeutics is urgently needed. We previously reported motor neuron toxicity through postmortem ALS spinal cord-derived astrocytes. However, these cells can only be harvested after death, and their expansion is limited. We now report a rapid, highly reproducible method to convert adult human fibroblasts from living ALS patients to induced neuronal progenitor cells and subsequent differentiation into astrocytes (i-astrocytes). Non-cell autonomous toxicity to motor neurons is found following coculture of i-astrocytes from familial ALS patients with mutation in superoxide dismutase or hexanucleotide expansion in C9orf72 (ORF 72 on chromosome 9) the two most frequent causes of ALS. Remarkably, i-astrocytes from sporadic ALS patients are as toxic as those with causative mutations, suggesting a common mechanism. Easy production and expansion of i-astrocytes now enables rapid disease modeling and high-throughput drug screening to alleviate astrocyte-derived toxicity.
    Proceedings of the National Academy of Sciences 12/2013; 111(2). DOI:10.1073/pnas.1314085111 · 9.67 Impact Factor

  • Neuromuscular Disorders 10/2013; 23(9-10):797. DOI:10.1016/j.nmd.2013.06.558 · 2.64 Impact Factor

  • Neuromuscular Disorders 10/2013; 23(9-10):771. DOI:10.1016/j.nmd.2013.06.476 · 2.64 Impact Factor

  • Neuromuscular Disorders 10/2013; 23(9-10):797. DOI:10.1016/j.nmd.2013.06.557 · 2.64 Impact Factor
  • Source
    W David Arnold · Arthur H M Burghes ·
    [Show abstract] [Hide abstract]
    ABSTRACT: In neurodegenerative disorders effective treatments are urgently needed, along with methods to detect that the treatment worked. In this review we discuss the rapid progress in the understanding of recessive proximal spinal muscular atrophy and how this is leading to exciting potential treatments of the disease. Spinal muscular atrophy is a caused by loss of the Survival Motor Neuron 1 (SMN1) gene and reduced levels of SMN protein. The critical downstream targets of SMN deficiency that result in motor neuron loss are not known. However, increasing SMN levels has a marked impact in mouse models, and these therapeutics are rapidly moving towards clinical trials. Promising preclinical therapies, the varying degree of impact on the mouse models, and potential measures of treatment effect are reviewed. One key issue discussed is the variable outcome of increasing SMN at different stages of disease progression. ANN NEUROL 2013. © 2013 American Neurological Association.
    Annals of Neurology 08/2013; 74(3). DOI:10.1002/ana.23995 · 9.98 Impact Factor

Publication Stats

10k Citations
1,234.17 Total Impact Points


  • 1991-2015
    • The Ohio State University
      • • College of Medicine
      • • Department of Molecular and Cellular Biochemistry
      • • Department of Molecular Genetics
      • • Department of Pathology
      • • Department of Neurology
      Columbus, Ohio, United States
  • 2012
    • Columbia University
      • Department of Neurology
      New York City, New York, United States
  • 1988-1989
    • SickKids
      • Division of Neurology
      Toronto, Ontario, Canada
  • 1982
    • Ealing, Hammersmith & West London College
      Londinium, England, United Kingdom