Hsing-Wen Sung

National Tsing Hua University, Hsin-chu-hsien, Taiwan, Taiwan

Are you Hsing-Wen Sung?

Claim your profile

Publications (162)1098.34 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Successful oral delivery of therapeutic proteins such as insulin can greatly improve the quality of life of patients. This study develops a bubble carrier system by loading diethylene triamine pentaacetic acid (DTPA) dianhydride, a foaming agent (sodium bicarbonate; SBC), a surfactant (sodium dodecyl sulfate; SDS), and a protein drug (insulin) in an enteric-coated gelatin capsule. Following oral administration to diabetic rats, the intestinal fluid that has passed through the gelatin capsule saturates the mixture; concomitantly, DTPA dianhydride produces an acidic environment, while SBC decomposes to form CO2 bubbles at acidic pH. The gas bubbles grow among the surfactant molecules (SDS) owing to the expansion of the generated CO2. The walls of the CO2 bubbles consist of a self-assembled film of water that is in nanoscale and may serve as a colloidal carrier to transport insulin and DTPA. The grown gas bubbles continue to expand until they bump into the wall and burst, releasing their transported insulin, DTPA, and SDS into the mucosal layer. The released DTPA and SDS function as protease inhibitors to protect the insulin molecules as well as absorption enhancers to augment their epithelial permeability and eventual absorption into systemic circulation, exerting their hypoglycemic effects. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Biomaterials 09/2015; 64. DOI:10.1016/j.biomaterials.2015.06.035 · 8.56 Impact Factor
  • Ming-Fan Chung · Wei-Tso Chia · Wei-Lin Wan · Yu-Jung Lin · Hsing-Wen Sung ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammation is associated with many diseases, in which the activated inflammatory cells produce various reactive oxygen species (ROS) including H2O2. This work proposes an ultra-sensitive ROS-responsive hollow microsphere (HM) carrier that contains an anti-inflammatory drug, an acid-precursor of ethanol and FeCl2, and a bubble-generating agent (sodium bicarbonate, SBC). In cases of inflamed osteoarthritis, the H2O2 at low concentration diffuses through the HMs to oxidize their encapsu-lated ethanol in the presence of Fe2+, by the Fenton reaction, to establish an acidic milieu. In acid, SBC decomposes to form CO2 bubbles, disrupting the shell wall of the HMs and releasing the anti-inflammatory drug to the problematic site, eventually protecting against joint destruction. These results reveal that the proposed HMs may uniquely exploit the biologically relevant concentrations of H2O2 and thus be used for the site-specific delivery of therapeutics in inflamed tissues.
    Journal of the American Chemical Society 09/2015; 137(39). DOI:10.1021/jacs.5b08057 · 12.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although the induction of neovascularization by cell-based approaches has demonstrated substantial potential in treating myocardial infarction (MI), the process of cell-mediated angiogenesis and its correlation with therapeutic mechanisms of cardiac repair remain elusive. In this work, three-dimensional (3D) aggregates of human umbilical vein endothelial cells (HUVECs) and cord-blood mesenchymal stem cells (cbMSCs) are constructed using a methylcellulose hydrogel system. By maximizing cell-cell and cell-ECM communications and establishing a hypoxic microenvironment in their inner cores, these cell aggregates are capable of forming widespread tubular networks together with the angiogenic marker αvβ3 integrin; they secret multiple pro-angiogenic, pro-survival, and mobilizing factors when grown on Matrigel. The aggregates of HUVECs/cbMSCs are exogenously engrafted into the peri-infarct zones of rats with MI via direct local injection. Multimodality noninvasive imaging techniques, including positron emission tomography, single photon emission computed tomography, and echocardiography, are employed to monitor serially the beneficial effects of cell therapy on angiogenesis, blood perfusion, and global/regional ventricular function, respectively. The myocardial perfusion is correlated with ventricular contractility, demonstrating that the recovery of blood perfusion helps to restore regional cardiac function, leading to the improvement in global ventricular performance. These experimental data reveal the efficacy of the exogenous transplantation of 3D cell aggregates after MI and elucidate the mechanism of cell-mediated therapeutic angiogenesis for cardiac repair.
    Biomaterials 09/2015; 73:12-22. DOI:10.1016/j.biomaterials.2015.09.009 · 8.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A recurring obstacle in cell-base strategies for treating ischemic diseases is the significant loss of viable cells that is caused by the elevated levels of regional reactive oxygen species (ROS), which ultimately limits therapeutic capacity. In this study, aggregates of human umbilical vein endothelial cells (HUVECs) and cord-blood mesenchymal stem cells (cbMSCs), which are capable of inducing therapeutic angiogenesis, are prepared. We hypothesize that the concurrent delivery of an antioxidant N-acetylcysteine (NAC) may significantly increase cell retention following the transplantation of HUVEC/cbMSC aggregates in a mouse model with hindlimb ischemia. Our in vitro results demonstrate that the antioxidant NAC can restore ROS-impaired cell adhesion and recover the reduced angiogenic potential of HUVEC/cbMSC aggregates under oxidative stress. In the animal study, we found that by scavenging the ROS generated in ischemic tissues, NAC is likely to be able to establish a receptive cell environment in the early stage of cell transplantation, promoting the adhesion, retention, and survival of cells of engrafted aggregates. Therapeutic angiogenesis is therefore enhanced and blood flow recovery and limb salvage are ultimately achieved. The combinatory strategy that uses an antioxidant and HUVEC/cbMSC aggregates may provide a new means of boosting the therapeutic efficacy of cell aggregates for the treatment of ischemic diseases.
    Biomaterials 09/2015; 74. DOI:10.1016/j.biomaterials.2015.09.043 · 8.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Efficient cardiac function requires synchronous ventricular contraction. After myocardial infarction, the nonconductive nature of scar tissue contributes to ventricular dysfunction by electrically uncoupling viable cardiomyocytes in the infarct region. Injection of a conductive biomaterial polymer that restores impulse propagation could synchronize contraction and restore ventricular function by electrically connecting isolated cardiomyocytes to intact tissue, allowing them to contribute to global heart function. We created a conductive polymer by grafting pyrrole to the clinically tested biomaterial chitosan to create a polypyrrole (PPy)-chitosan hydrogel. Cyclic voltammetry showed that PPy-chitosan had semiconductive properties lacking in chitosan alone. PPy-chitosan did not reduce cell attachment, metabolism, or proliferation in vitro. Neonatal rat cardiomyocytes plated on PPy-chitosan showed enhanced Ca(2+) signal conduction in comparison with chitosan alone. PPy-chitosan plating also improved electric coupling between skeletal muscles placed 25 mm apart in comparison with chitosan alone, demonstrating that PPy-chitosan can electrically connect contracting cells at a distance. In rats, injection of PPy-chitosan 1 week after myocardial infarction decreased the QRS interval and increased the transverse activation velocity in comparison with saline or chitosan, suggesting improved electric conduction. Optical mapping showed increased activation in the border zone of PPy-chitosan-treated rats. Echocardiography and pressure-volume analysis showed improvement in load-dependent (ejection fraction, fractional shortening) and load-independent (preload recruitable stroke work) indices of heart function 8 weeks after injection. We synthesized a biocompatible conductive biomaterial (PPy-chitosan) that enhances biological conduction in vitro and in vivo. Injection of PPy-chitosan better maintained heart function after myocardial infarction than a nonconductive polymer. © 2015 American Heart Association, Inc.
    Circulation 08/2015; 132(8):772-84. DOI:10.1161/CIRCULATIONAHA.114.014937 · 14.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Repeated cancer treatments are common, owing to the aggressive and resistant nature of tumors. This work presents a chitosan (CS) derivative that contains self-doped polyaniline (PANI) side chains, capable of self-assembling to form micelles and then transforming into hydrogels driven by a local change in pH. Analysis results of small-angle X-ray scattering indicate that the sol-gel transition of this CS derivative may provide the mechanical integrity to maintain its spatial stability in the microenvironment of solid tumors. The micelles formed in the CS hydrogel function as nanoscaled heating sources upon exposure to near-infrared light, thereby enabling the selective killing of cancer cells in a light-treated area. Additionally, photothermal efficacy of the micellar hydrogel is evaluated using a tumor-bearing mouse model; hollow gold nanospheres (HGNs) are used for comparison. Given the ability of the micellar hydrogel to provide spatial stability within a solid tumor, which prevents its leakage from the injection site, the therapeutic efficacy of this hydrogel, as a photothermal therapeutic agent for repeated treatments, exceeds that of nanosized HGNs. Results of this study demonstrate that this in situ-formed micellar hydrogel is a highly promising modality for repeated cancer treatments, providing a clinically viable, minimally invasive phototherapeutic option for therapeutic treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Biomaterials 07/2015; 56. DOI:10.1016/j.biomaterials.2015.03.060 · 8.56 Impact Factor
  • Ming-Fan Chung · Hung-Yi Liu · Kun-Ju Lin · Wei-Tso Chia · Hsing-Wen Sung ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Multidrug resistance (MDR) resulting from the overexpression of drug transporters such as P-glycoprotein (Pgp) increases the efflux of drugs and thereby limits the effectiveness of chemotherapy. To address this issue, this work develops an injectable hollow microsphere (HM) system that carries the anticancer agent irinotecan (CPT-11) and a NO-releasing donor (NONOate). Upon injection of this system into acidic tumor tissue, environmental protons infiltrate the shell of the HMs and react with their encapsulated NONOate to form NO bubbles that trigger localized drug release and serve as a Pgp-mediated MDR reversal agent. The site-specific drug release and the NO-reduced Pgp-mediated transport can cause the intracellular accumulation of the drug at a concentration that exceeds the cell-killing threshold, eventually inducing its antitumor activity. These results reveal that this pH-responsive HM carrier system provides a potentially effective method for treating cancers that develop MDR. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    Angewandte Chemie International Edition 07/2015; 54(34). DOI:10.1002/anie.201504444 · 11.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent research in chemotherapy has prioritized overcoming the multidrug resistance (MDR) of cancer cells. In this work, liposomes that contain doxorubicin (DOX) and ammonium bicarbonate (ABC, a bubble-generating agent) are prepared and functionalized with an antinucleolin aptamer (AS1411 liposomes) to target DOX-resistant breast cancer cells (MCF-7/ADR), which overexpress nucleolin receptors. Free DOX and liposomes without functionalization with AS1411 (plain liposomes) were used as controls. The results of molecular dynamic simulations suggest that AS1411 functionalization may promote the affinity and specific binding of liposomes to the nucleolin receptors, enhancing their subsequent uptake by tumor cells, whereas plain liposomes enter cells with difficulty. Upon mild heating, the decomposition of ABC that is encapsulated in the liposomes enables the immediate activation of generation of CO2 bubbles, creating permeable defects in their lipid bilayers, and ultimately facilitating the swift intracellular release of DOX. In vivo studies in nude mice that bear tumors demonstrate that the active targeting of AS1411 liposomes can substantially increase the accumulation of DOX in the tumor tissues relative to free DOX or passively targeted plain liposomes, inhibiting tumor growth and reducing systemic side effects, including cardiotoxicity. The above findings indicate that liposomes that are functionalized with AS1411 represent an attractive therapeutic alternative for overcoming the MDR effect, and support a potentially effective strategy for cancer therapy. Copyright © 2015. Published by Elsevier B.V.
    Journal of Controlled Release 01/2015; 208. DOI:10.1016/j.jconrel.2015.01.032 · 7.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Eradicating subcutaneous bacterial infections remains a significant challenge. This work reports an injectable system of hollow microspheres (HMs) that can rapidly produce localized heat activated by near-infrared (NIR) light and control the release of an antibiotic via a "molecular switch" in their polymer shells, as a combination strategy for treating subcutaneous abscesses. The HMs have a shell of poly(D,L-lactic-co-glycolic acid) (PLGA) and an aqueous core that is comprised of vancomycin (Van) and polypyrrole nanoparticles (PPy NPs), which are photothermal agents. Experimental results demonstrate that the micro-HMs ensure efficiently the spatial stabilization of their encapsulated Van and PPy NPs at the injection site in mice with subcutaneous abscesses. Without NIR irradiation, the HMs elute a negligible drug concentration, but release substantially more when exposed to NIR light, suggesting that this system is suitable as a photothermally-responsive drug delivery system. The combination of photothermally-induced hyperthermia and antibiotic therapy with HMs increases cytotoxicity for bacteria in abscesses, to an extent that is greater than the sum of the two treatments alone, demonstrating a synergistic effect. This treatment platform may find other clinical applications, especially for localized hyperthermia-based cancer therapy. Copyright © 2014. Published by Elsevier B.V.
    Journal of Controlled Release 12/2014; 199. DOI:10.1016/j.jconrel.2014.12.011 · 7.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To celebrate the success of the Journal of Controlled Release and the research covered in the journal, here we highlight some of the most cited research articles in the history of the journal. Based on the literature search in Google Scholar in July 2013, we identified ~30 research articles that have received most number of citations. Authors of these articles were invited to provide a commentary on these articles. This compilation of commentaries gives a historical perspective and current status of research covered in these articles.
    Journal of Controlled Release 09/2014; 190:29-74. DOI:10.1016/j.jconrel.2014.07.012 · 7.71 Impact Factor
  • Zi-Xian Liao · Er-Yuan Chuang · Chun-Wen Hsiao · Hsing-Wen Sung ·

    Journal of Controlled Release 09/2014; 190:68-70. DOI:10.1016/j.jconrel.2014.07.033 · 7.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The oral route is a convenient and commonly employed way for drug delivery. However, therapeutic proteins have poor bioavailable upon oral administration due to the impermeable barrier from intestinal epithelial tight junction. Moreover, the small intestinal pH varies among different region of the intestinal tract where digestion and absorption occurs at different level. In this study, a tunable dual-emitting and pH-responsive nanocarrier that can alter the fluorescent color and emission intensity in response to pH changes and can trigger the opening of intestinal epithelial tight junction at different levels, were developed from chitosan-N-arginine and poly(γ-glutamic acid)-taurine conjugates. As pH increased from 6.0 to 8.0, the binding affinity of the oppositely charged polyions decreased, whereas the ratio of the intensity of the donor-to-acceptor emission intensity (ID/IA) increased by 27 folds. The fluorescent and pH-responsive nanocarrier that was able to monitor the pH change of intestinal environment and to control the release of an anti-angiogenic protein in response to the pH gradient. The nanocarrier triggered the opening of intestinal epithelial tight junction, consequently enhanced the permeation of the released protein through the intestinal epithelial barrier model (Caco-2 cell monolayer) to inhibit tube formation of human umbilical vein endothelial cells.
    ACS Applied Materials & Interfaces 09/2014; 6(20). DOI:10.1021/am505441p · 6.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cell transplantation via direct intramuscular injection is a promising therapy for patients with ischemic diseases. However, following injections, retention of transplanted cells in engrafted areas remains problematic, and can be deleterious to cell-transplantation therapy. In this Progress Report, a thermoresponsive hydrogel system composed of aqueous methylcellulose (MC) blended with phosphate-buffered saline is constructed to grow cell sheet fragments and cell bodies for the treatment of ischemic diseases. The as-prepared MC hydrogel system undergoes a sol-gel reversible transition upon heating or cooling at ≈32 °C. Via this unique property, the grown cell sheet fragments (cell bodies) can be harvested without using proteolytic enzymes; consequently, their inherent extracellular matrices (ECMs) and integrative adhesive agents remain well preserved. In animal studies using rats and pigs with experimentally created myocardial infarction, the injected cell sheet fragments (cell bodies) become entrapped in the interstices of muscular tissues and adhere to engraftment sites, while a minimal number of cells exist in the group receiving dissociated cells. Moreover, transplantation of cell sheet fragments (cell bodies) significantly increases vascular density, thereby improving the function of an infarcted heart. These experimental results demonstrate that cell sheet fragments (cell bodies) function as a cell-delivery construct by providing a favorable ECM environment to retain transplanted cells locally and consequently, improving the efficacy of therapeutic cell transplantation.
    Advanced Healthcare Materials 08/2014; 3(8). DOI:10.1002/adhm.201300605 · 5.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As a cationic polysaccharide, chitosan (CS) has been identified for its potential use as a non-viral vector for exogenous gene transfection. However, owing to their electrostatic interactions, CS complexes may cause difficulties in gene release upon their arrival at the site of action, thus limiting their transfection efficiency. In this work, an attempt is made to facilitate the release of a gene by incorporating a negatively-charged poly(γ-glutamic acid) (γPGA) into CS complexes in order to diminish their attractive interactions. The mechanisms of exploiting γPGA to enhance the transfection efficiency of CS complexes are elucidated. The feasibility of using this CS/γPGA-based system for DNA or siRNA transfer is explored as well. Additionally, potential of the CS/γPGA formulation to deliver disulfide bond-conjugated dual PEGylated siRNAs for multiple gene silencing is also examined. Moreover, the genetic use of pKillerRed-mem, delivered using complexes of CS and γPGA, to express a membrane-targeted KillerRed as an intrinsically generated photosensitizer for photodynamic therapy is described.
    Journal of Controlled Release 04/2014; 193. DOI:10.1016/j.jconrel.2014.04.024 · 7.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As is widely suspected, lysolipid dissociation from liposomes contributes to the intravenous instability of ThermoDox® (Lysolipid liposomes), thereby impeding its antitumor efficacy. This work evaluates the feasibility of a thermoresponsive bubble-generating liposomal system without lysolipids for tumor-specific chemotherapy. The key component in this liposomal formulation is its encapsulated ammonium bicarbonate (ABC), which is used to actively load doxorubicin (DOX) into liposomes and trigger a drug release when heated locally. Incubating ABC liposomes with whole blood results in a significantly smaller decrease in the retention of encapsulated DOX than that by Lysolipid liposomes, indicating superior plasma stability. Biodistribution analysis results indicate that the ABC formulation circulates longer than its Lysolipid counterpart. Following the injection of ABC liposome suspension into mice with tumors heated locally, decomposition of the ABC encapsulated in liposomes facilitates the immediate thermal activation of CO2 bubble generation, subsequently increasing the intratumoral DOX accumulation. Consequently, the antitumor efficacy of the ABC liposomes is superior to that of their Lysolipid counterparts. Results of this study demonstrate that this thermoresponsive bubble-generating liposomal system is a highly promising carrier for tumor-specific chemotherapy, especially for local drug delivery mediated at hyperthermic temperatures.
    ACS Nano 04/2014; 8(5). DOI:10.1021/nn501162x · 12.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chemotherapy-induced neutropenia often increases the likelihood of life-threatening infections. In this study, a nanoparticle (NP) system composed of chitosan and poly(γ-glutamic acid) conjugated with diethylene triamine pentaacetic acid (γPGA-DTPA) was prepared for oral delivery of granulocyte colony-stimulating factor (G-CSF), a hematopoietic growth factor. The therapeutic potential of this NP system for daily administration of G-CSF to treat neutropenia associated with chemotherapy was evaluated in a rat model. In vitro results indicate that the procedures of NP loading and release preserved the structural integrity and bioactivity of the G-CSF molecules adequately. Those results further demonstrated the enzymatic inhibition activity of γPGA-DTPA towards G-CSF against intestinal proteases. Additionally, the in vivo biodistribution study clearly identified accumulations of G-CSF in the heart, liver, bone marrow, and urinary bladder, an indication of systemic absorption of G-CSF; its relative bioavailability was approximately 13.6%. Moreover, significant glucose uptake was observed in bone marrow during G-CSF treatment, suggesting increased bone marrow metabolism and neutrophil production. Consequently, neutrophil count in the blood increased in a sustained manner; this fact may help a patient's immune system recover from the side effects of chemotherapy.
    Biomaterials 01/2014; 35(11). DOI:10.1016/j.biomaterials.2014.01.020 · 8.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress and reduced pH are involved in many inflammatory diseases. This study describes a nanoparticle-based system that is responsive to both oxidative stress and reduced pH in an inflammatory environment to effectively release its encapsulated curcumin, an immune-modulatory agent with potent anti-inflammatory and antioxidant capabilities. Due to the presence of Förster resonance energy transfer between curcumin and the carrier, this system also allowed us to monitor the intracellular release behavior. The curcumin released upon triggering could efficiently reduce the excess oxidants produced by the lipopolysaccharide (LPS)-stimulated macrophages. The feasibility of using the curcumin-loaded nanoparticles for anti-inflammatory applications was further validated in a mouse model with ankle inflammation induced by LPS. The results of these studies demonstrate that the proposed nanoparticle system is promising for treating oxidative stress-related diseases.
    ACS Nano 01/2014; 8(2). DOI:10.1021/nn4058787 · 12.88 Impact Factor
  • Ko-Jie Chen · Hsiang-Fa Liang · Hsing-Wen Sung ·

    Journal of Controlled Release 11/2013; 172(1):e46-7. DOI:10.1016/j.jconrel.2013.08.098 · 7.71 Impact Factor
  • Ping Yan · Ko-Jie Chen · Jun Wu · Lu Sun · Hsing-Wen Sung · Richard D Weisel · Jun Xie · Ren-Ke Li ·
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to synthesize a cationic microbubble (CMB) conjugated with an antibody against matrix metalloproteinase 2 (CMBMMP2) to increase microbubble accumulation and gene transfection in the infarcted myocardium and to restore ventricular function following an ischemic insult. We previously reported that our CMBs enhanced the efficiency of gene transfection following ultrasound-targeted microbubble destruction (UTMD) in rodent hearts. Therefore, we conjugated a thiolated MMP2 antibody to the PEG chains on the CMB surface, which was verified by fluorescent microscopy. Rats underwent ischemia/reperfusion injury 3 days prior to UTMD delivery of the control or Timp3 plasmid. The CMBMMP2 improved microbubble accumulation in the infarct region, with 57% more contrast intensity compared to the non-conjugated CMB. UTMD-mediated CMBMMP2 delivery of the Timp3 gene significantly increased TIMP3 protein levels in the infarct scar and border zone at 3 days post-UTMD compared to delivery by the non-conjugated CMB. Both MMP2 and MMP9 activity were reduced in the CMBMMP2Timp3 group, which resulted in smaller and thicker infarcts and improved cardiac function. UTMD therapy with this CMBMMP2 provides an efficient platform for the targeted delivery of factors intended to preserve ventricular structure and improve cardiac function after ischemic injury.
    Biomaterials 10/2013; 35(3). DOI:10.1016/j.biomaterials.2013.10.043 · 8.56 Impact Factor
  • Zi-Xian Liao · Yu-Chun Li · Hsiang-Ming Lu · Hsing-Wen Sung ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Photodynamic therapy (PDT) has received considerable attention as a therapeutic treatment for cancer and other diseases; however, it is frequently accompanied by prolonged phototoxic reaction of the skin due to slow clearance of synthetic photosensitizers (PSs) administered externally. This study was designed to investigate the genetic use of pKillerRed-mem, delivered using complexes of chitosan (CS) and poly(γ-glutamic acid) (γPGA), to intracellularly express a membrane-targeted KillerRed protein that can be used as a potential PS for PDT. Following transfection with CS/pKillerRed/γPGA complexes, a red fluorescence protein of KillerRed was clearly seen at the cellular membranes. When exposed to green-light irradiation, the KillerRed-positive cells produced an excessive amount of reactive oxygen species (ROS) in a time-dependent manner. Data from viability assays indicate that ROS have an important role in mediating KillerRed-induced cytotoxicity, apoptosis, and anti-proliferation, suggesting that KillerRed can be used as an intrinsically generated PS for PDT treatments. Notably, the phototoxic reaction of KillerRed toward cells gradually became negligible over time, presumably because of its intracellular degradability. These experimental results demonstrate that this genetically encoded KillerRed is biodegradable and has potential for PDT-induced destruction of diseased cells.
    Biomaterials 10/2013; 35(1). DOI:10.1016/j.biomaterials.2013.09.075 · 8.56 Impact Factor

Publication Stats

7k Citations
1,098.34 Total Impact Points


  • 2000-2015
    • National Tsing Hua University
      • Department of Chemical Engineering
      Hsin-chu-hsien, Taiwan, Taiwan
  • 1999-2000
    • National Central University
      • Department of Chemical & Materials Engineering
      Taoyuan City, Taiwan, Taiwan