Gerrit van Hall

IT University of Copenhagen, København, Capital Region, Denmark

Are you Gerrit van Hall?

Claim your profile

Publications (52)258.95 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glucose-dependent insulinotropic polypeptide (GIP) is glucagonotropic and glucagon-like peptide 1 (GLP-1) is glucagonostatic. We studied the effects of GIP and GLP-1 on glucagon responses to insulin-induced hypoglycemia in patients with type 1 diabetes mellitus (T1DM).Ten male subjects with T1DM (C-peptide negative, age: 26±1 years (mean±SEM); BMI: 24±0.5 kg/m(2); HbA1c 7.3±0.2%) were studied in a randomized, double-blinded, cross-over study, with 2-hour iv administration of saline, GIP or GLP-1. The first hour, plasma glucose was lowered by insulin infusion, and the second hour constituted a 'recovery phase'.During the recovery phase GIP infusions elicited larger glucagon responses (164±50 (GIP) vs. 23±25 (GLP-1) vs. 17±46 (saline) min×pmol/l, P<0.03) and endogenous glucose production was higher with GIP and lower with GLP-1 as compared to saline (P<0.02). On the GIP days significantly less exogenous glucose was needed to keep plasma glucose above 2 mmol/l (155±36 (GIP) vs. 232±40 (GLP-1) vs. 212±56 (saline) mg×kg(-1), P<0.05). Levels of insulin, cortisol, growth hormone, and noradrenaline, as well as hypoglycemic symptoms and cognitive function, were similar on all days.Our results suggest that during hypoglycemia in patients with T1DM exogenous GIP increases glucagon responses during the 'recovery phase' after hypoglycemia and reduces the need for glucose administration.
    Diabetes 07/2014; · 7.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is an ongoing discussion the extent to which oxygen delivery and oxygen extraction contribute to an elevated muscle oxygen uptake during dynamic exercise. It has been proposed that local muscle factors including the capillary bed and mitochondrial oxidative capacity play a large role in prolonged low intensity training of a small muscle group when the cardiac output capacity is not directly limiting. The purpose of this study was to investigate the relative roles of circulatory and muscle metabolic mechanisms by which prolonged low-intensity exercise training alters regional muscle VO2 . In 9 healthy volunteers (7 male, 2 female), hemodynamic and metabolic responses to incremental arm cycling were measured by the Fick method and biopsy of the deltoid and triceps muscles before and after 42 days of skiing for 6 hr(.) day(-1) at 60% max heart rate. Peak pulmonary VO2 during arm crank was unchanged after training (2.38±0.19 vs. 2.18±0.2 L(.) min(-1) pre-training) yet arm VO2 (1.04±0.08 vs. 0.83±0.1 L(.) min(1) , P<0.05) and power output (137±9 vs. 114±10 Watts) were increased along with a higher arm blood flow (7.9±0.5 vs. 6.8±0.6 L(.) min(-1) , P<0.05) and expanded muscle capillary volume (76±7 vs. 62±4 ml, P<0.05). Muscle O2 diffusion capacity (16.2±1 vs. 12.5 ±0.9 ml(.) min(-1.) mHg(-1) , P<0.05) and O2 extraction (68±1 vs. 62±1%, P<0.05) were enhanced at a similar mean capillary transit time (569±43 vs. 564±31 ms) and P50 (35.8±0.7 vs. 35±0.8), whereas mitochondrial O2 flux capacity was unchanged (147±6 ml(.) kg(.) min(-1) vs. 146±8 ml(.) kg(.) min(-1) ). The mechanisms underlying the increase in peak arm VO2 with prolonged low intensity training in previously untrained subjects are an elevated convective O2 delivery specifically to the muscles of the arm combined with a larger capillary-muscle surface area that enhance diffusional O2 conductance, with no apparent role of mitochondrial respiratory capacity. This article is protected by copyright. All rights reserved.
    Acta Physiologica 02/2014; · 4.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Type 2 diabetes is characterized by increased insulin resistance and impaired insulin secretion. Type 2 diabetes is also associated with low-grade inflammation and increased levels of proinflammatory cytokines such as TNF- α . TNF- α has been shown to impair peripheral insulin signaling in vitro and in vivo. However, it is unclear whether TNF- α may also affect endogenous glucose production (EGP) during fasting and glucose-stimulated insulin secretion (GSIS) in vivo. We hypothesized that low-dose TNF- α would increase EGP and attenuate GSIS. Recombinant human TNF- α or placebo was infused in healthy, nondiabetic young men (n = 10) during a 4-hour basal period followed by an intravenous glucose tolerance test (IVGTT). TNF- α lowered insulin levels by 12% during the basal period (P < 0.05). In response to the IVGTT, insulin levels increased markedly in both trials, but there was no difference between trials. Compared to placebo, TNF- α did not affect EGP during the basal period. Our results indicate that TNF- α acutely lowers basal plasma insulin levels but does not impair GSIS. The mechanisms behind this are unknown but we suggest that it may be due to TNF- α increasing clearance of insulin from plasma without impairing beta-cell function or hepatic insulin sensitivity.
    Mediators of Inflammation 01/2014; 2014:295478. · 3.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Roux-en-Y gastric bypass surgery (RYGB) improves glucose tolerance in patients with type 2 diabetes, but also changes the glucose profile in response to a meal in glucose-tolerant individuals. We hypothesised that the driving force for the changed postprandial glucose profiles after RYGB is rapid entry of glucose into the systemic circulation due to modified gastrointestinal anatomy, causing hypersecretion of insulin and other hormones influencing glucose disappearance and endogenous glucose production. We determined glucose absorption and metabolism and the rate of lipolysis before and 3 months after RYGB in obese glucose-tolerant individuals using the double-tracer technique during a mixed meal. After RYGB, the postprandial plasma glucose profile changed, with a higher peak glucose concentration followed by a faster return to lower than basal levels. These changes were brought about by changes in glucose kinetics: (1) a more rapid appearance of ingested glucose in the systemic circulation, and a concomitant increase in insulin and glucagon-like peptide-1 secretion; (2) postprandial glucose disappearance was maintained at a high rate for a longer time after RYGB. Endogenous glucose production was similar before and after surgery. Postoperative glucagon secretion increased and showed a biphasic response after RYGB. Adipose tissue basal rate of lipolysis was higher after RYGB. A rapid rate of absorption of ingested glucose into the systemic circulation, followed by increased insulin secretion and glucose disappearance appears to drive the changes in the glucose profile observed after RYGB, while endogenous glucose production remains unchanged. ClinicalTrials.gov NCT01559792. The study was part of the UNIK program: Food, Fitness & Pharma for Health and Disease (see www.foodfitnesspharma.ku.dk ). Funding was received from the Novo Nordisk foundation and the Strategic Research Counsel for the Capital Area and Danish Research Agency. The primary investigator received a PhD scholarship from the University of Copenhagen, which was one-third funded by Novo Nordisk.
    Diabetologia 07/2013; · 6.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Patients with mitochondrial DNA mutations often have elevated plasma lactate at rest and during exercise, but it is unknown whether the high lactate levels are caused by a high production, an impaired oxidation or a combination. We studied lactate kinetics in 10 patients with mtDNA mutations and 10 matched healthy control subjects at rest and during cycle exercise with a combination of femoral arterio-venous differences of lactate, and lactate tracer dilution methodology. During exercise, lactate concentration and production rates were several-fold higher in patients, but despite mitochondrial dysfunction, lactate was oxidized in muscle to the same extent as in healthy control subjects. This surprisingly high ability to burn lactate in working muscle with defective mitochondria, probably relates to the variability of oxidative capacity among muscle fibers. The data suggests that lactate is not solely an indicator of impaired oxidative capacity, but an important fuel for oxidative metabolism, even in muscle with severely impaired mitochondrial function.
    Neuromuscular Disorders 07/2013; · 3.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Insulin resistance and changes in body composition are side effects of androgen deprivation therapy (ADT) given to prostate cancer patients. The present study investigates if endurance training improves insulin sensitivity and body composition in ADT-treated prostate cancer patients. Nine men undergoing ADT for prostate cancer and 10 healthy men with normal testosterone levels underwent 12 weeks of endurance training. Primary endpoints were insulin sensitivity (euglycemic hyperinsulinemic clamps with concomitant glucose-tracer infusion) and body composition (dual-energy x-ray absorptiometry and magnetic resonance imaging). The secondary endpoint was systemic inflammation. Statistics: Two-way ANOVA. Endurance training increased VO2max (ml(O2)/min/kg) by 11% and 13% in patients and controls, respectively (p<0.0001). The patients and controls demonstrated an increase in peripheral insulin sensitivity of 14% and 11%, respectively (p<0.05), with no effect on hepatic insulin sensitivity (p=0.32). Muscle protein content of GLUT4 and total Akt was also increased in response to the training (p<0.05 and p<0.01, respectively). Body weight (p<0.0001) and whole-body fat mass (p<0.01) were reduced, while lean body mass (p=0.99) was unchanged. Additionally, reductions were noted in abdominal (p<0.01), subcutaneous (p<0.05) and visceral fat mass (p<0.01). Plasma markers of systemic inflammation were unchanged in response to the training. No group×time interactions were found, except for thigh intermuscular adipose tissue (IMAT) (p=0.01), reflecting a significant reduction in IMAT in controls (p<0.05) not observed in patients (p=0.64). In response to endurance training, ADT-treated prostate cancer patients improved insulin sensitivity and body composition to a similar degree as eugonadal men.
    Endocrine Related Cancer 06/2013; · 5.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE: Resistance exercise and amino acid availability are positive regulators of muscle protein net balance (NB). However, anabolic responses to resistance exercise and protein supplementation deserve further elucidation. The purpose was to compare intakes of whey, caseinate (both: 0.30 g/kg lean body mass), or a non-caloric control after heavy resistance exercise on protein turnover and mRNA expressions of forkhead homeobox type O (FOXO) isoforms, muscle RING finger 1 (MuRF1), and Atrogin1 in young healthy males. METHODS: Protein turnover was determined by stable isotope-labeled leucine and femoral arteriovenous blood samples at rest and during 6-h recovery. Muscle biopsies were collected at -60 min (rest) and at 60, 210, and 360 min in the recovery period. RESULTS: During recovery, leucine NB was significantly higher in the protein groups compared to control (P < 0.001). Differences in leucine NB, rate of disappearance, and oxidation were observed in the early recovery period between whey and caseinate. FOXO1A and MuRF1 were upregulated at 60 and 210 min, and, in contrast, FOXO3 and Atrogin1 were downregulated at 210 and 360 min. For leucine rate of appearance and all FOXO and atrogene mRNA expressions, no differences were observed between groups. CONCLUSIONS: Whey and caseinate were equally superior to control in the 6-h recovery period and displayed temporal differences with whey having a fast and superior effect in the early part of the recovery period. Effects on mRNA expressions indicate different regulatory mechanisms on the ubiquitin ligases MuRF1 and Atrogin1 in recovery from heavy resistance exercise.
    European Journal of Nutrition 05/2013; · 3.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Leptin is considered an adipokine, however, cultured myocytes have also been found to release leptin. Therefore, as proof-of-concept we investigated if human skeletal muscle synthesized leptin by measuring leptin in skeletal muscle biopsies. Following this, we quantified human skeletal muscle and adipose tissue leptin release in vivo. We recruited 16 healthy male human participants. Catheters were inserted into the femoral artery and vein draining skeletal muscle, as well as an epigastric vein draining the abdominal subcutaneous adipose tissue. By combining the veno-arterial differences in plasma leptin with measurements of blood flow, leptin release from both tissues was quantified. To induce changes in leptin, the participants were infused with either saline or adrenaline in normo-physiological concentrations. The presence of leptin in skeletal muscle was confirmed by western blotting. Leptin was released from leg skeletal muscle (50.6±12ngmin(-1)) and the pattern of release was different from subcutaneous adipose tissue. Moreover, during adrenaline infusion the leptin release from leg skeletal muscle was strongly suppressed (20.5±7.9ngmin(-1), p<0.017), whereas the release from fat was unaltered. During saline infusion the adipose tissue release averaged 0.8±0.3ngmin(-1) 100g tissue(-1) whereas skeletal muscle release was 0.5±0.1ngmin(-1) 100g tissue(-1). In young healthy humans, skeletal muscle contribution to whole body leptin production could be substantial given the greater mass of muscle compared to fat. An understanding of the role that leptin plays in skeletal muscle metabolism may prove important in light of several late-phase trials with recombinant leptin as an anti-obesity drug.
    Cytokine 09/2012; · 2.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A lifestyle characterized by inactivity and a high-calorie diet is a known risk factor for impaired insulin sensitivity and development of Type 2 diabetes mellitus. To investigate possible links, nine young healthy men (24 ± 3 yr; body mass index of 21.6 ± 2.5 kg/m(2)) completed 14 days of step reduction (10,000 to 1,500 steps/day) and overfeeding (+50% kcal). Body composition (dual X-ray absorptiometry, MRI), aerobic fitness (maximal O(2) consumption), systemic inflammation and insulin sensitivity [oral glucose tolerance test (OGTT), hyperinsulinemic euglycemic clamp] were assessed before (day 0), during (days 3 and 7), and immediately after the intervention (day 14), with follow-up tests (day 30). Body weight had increased at days 7 and 14 (P < 0.05). The amount of visceral fat had increased at day 14 compared with day 0 (P < 0.05). The insulin response to the OGTT had increased at days 7 and 14 (P < 0.05). Insulin sensitivity, estimated using the Matsuda index, had decreased at days 3 and 7 (P < 0.01). At day 14, glucose infusion rates had decreased by ∼44% during the euglycemic clamps (P < 0.05). Also, plasma levels of leptin and adiponectin had increased (P < 0.05), whereas no changes were seen in inflammatory markers. At day 30, body weight and whole body adiposity were still elevated compared with day 0 (P < 0.05), whereas the insulin sensitivity as well as the insulin response to the OGTT did not differ from baseline. The glucose response to the OGTT was only affected at day 30, with a decrease compared with day 0. Our data show that insulin sensitivity was impaired after 3 days of inactivity and overfeeding. Impairments in insulin sensitivity occurred before changes in body composition, supporting the notion that the initial steps in impairment of insulin sensitivity may be linked directly to the effects of inactivity and a high calorie intake.
    Journal of Applied Physiology 05/2012; 113(1):7-15. · 3.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To elucidate the molecular mechanisms behind physical inactivity-induced insulin resistance in skeletal muscle, 12 young, healthy male subjects completed 7 days of bed rest with vastus lateralis muscle biopsies obtained before and after. In six of the subjects, muscle biopsies were taken from both legs before and after a 3-h hyperinsulinemic euglycemic clamp performed 3 h after a 45-min, one-legged exercise. Blood samples were obtained from one femoral artery and both femoral veins before and during the clamp. Glucose infusion rate and leg glucose extraction during the clamp were lower after than before bed rest. This bed rest-induced insulin resistance occurred together with reduced muscle GLUT4, hexokinase II, protein kinase B/Akt1, and Akt2 protein level, and a tendency for reduced 3-hydroxyacyl-CoA dehydrogenase activity. The ability of insulin to phosphorylate Akt and activate glycogen synthase (GS) was reduced with normal GS site 3 but abnormal GS site 2+2a phosphorylation after bed rest. Exercise enhanced insulin-stimulated leg glucose extraction both before and after bed rest, which was accompanied by higher GS activity in the prior-exercised leg than the rested leg. The present findings demonstrate that physical inactivity-induced insulin resistance in muscle is associated with lower content/activity of key proteins in glucose transport/phosphorylation and storage.
    Diabetes 03/2012; 61(5):1090-9. · 7.90 Impact Factor
  • Gerrit van Hall
    [Show abstract] [Hide abstract]
    ABSTRACT: This review highlights the role of cytokines, in particular tumour necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), in relation to the nature of human in-vivo muscle wasting in disease. Infusion of human TNF-α and IL-6 in healthy individuals, acutely raises TNF-α and IL-6 to moderate levels, has only identified IL-6 as a potent cytokine, decreasing systemic amino acid levels and muscle protein metabolism. The marked decrease in circulatory and muscle amino acid concentrations was observed with a concomitant reduction in both the rates of muscle protein synthesis and breakdown, that is, reduced turnover with a minor increase in net muscle degradation. Very similar observations have been made in models of acute inflammation, induced by high-dose endotoxin injection. However, these changes were suggested not to be attributed to a direct effect of IL-6 on the regulation of muscle protein metabolism but indirectly via IL-6 reducing amino acid availability. Recent studies suggest that the best described cytokines TNF-α and IL-6 are unlikely to be the major direct mediators of muscle protein loss in inflammatory diseases. However, these cytokines can initiate important changes in secondary mediators and/or clinical complications that need correction therapies causing muscle wasting. Moreover, the general view from animal work is that in muscle wasting the rate of muscle protein synthesis is decreased and the rate of breakdown is increased. However, this does not seem applicable for inflammatory diseases or human models of sepsis, in which the enhanced imbalance between these two processes is observed within an enhanced, normal or reduced muscle protein turnover.
    Current opinion in clinical nutrition and metabolic care. 11/2011; 15(1):85-91.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Obese and lean humans treated with leptin have not experienced convincing weight-loss results compared with the dramatic weight losses observed in obese rodents. We sought to investigate the effect of acutely elevating leptin to concentrations observed in obese individuals on muscle and adipose tissue metabolism and muscle signaling in healthy lean males. Healthy, lean, postabsorptive males were infused with either recombinant human leptin (rhleptin; n = 8) or saline (control; n = 8) for 4 h, which elicited leptin concentrations of ~ 20 and ~ 1 ng/mL, respectively. Systemic, skeletal muscle, and adipose tissue fat and glucose metabolism in vivo were assessed before, during, and 2 h after cessation of the infusion. Skeletal muscle biopsy specimens were obtained to quantify changes in signal transducers and activators of transcription-5'AMP-activated protein kinase (STAT-AMPK) signaling. During the infusion of rhleptin, no differences in either systemic, skeletal muscle, or adipose tissue glucose or fat metabolism were observed. These observations were made despite increased activation of STAT (~ 17-fold) and AMPK (1.43-fold) after 1 h of rhleptin infusion. After the rhleptin infusion, an increase in systemic palmitate and fat oxidation was observed (P < 0.0003), which likely was caused by a concomitant increase in skeletal muscle palmitate oxidation (P < 0.02). This was observed despite lowered leptin concentrations and basal skeletal muscle STAT-AMPK signaling. Elevating circulating leptin concentrations to concentrations comparable with those of obese individuals increases human in vivo skeletal muscle signaling through the AMPK pathway and causes an increase in skeletal muscle fatty acid oxidation. Abdominal adipose tissue was unaffected by the acute physiologic increase in leptin concentrations.
    American Journal of Clinical Nutrition 11/2011; 94(6):1533-44. · 6.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Low birth weight is associated with type 2 diabetes, which to some extent may be mediated via abdominal adiposity and insulin resistance. Fetal growth velocity is high during the third trimester, constituting a potential critical window for organ programming. Intra-pair differences among monozygotic twins are instrumental in determining nongenetic associations between early environment and adult metabolic phenotype. Our objective was to investigate the relationship between size at birth and third-trimester growth velocity on adult body composition and glucose metabolism using intra-pair differences in young healthy twins. Fifty-eight healthy twins (42 monozygotic/16 dizygotic) aged 18-24 yr participated. Insulin sensitivity was assessed using hyperinsulinemic-euglycemic clamps. Whole-body fat was assessed by dual-energy x-ray absorptiometry scan, whereas abdominal visceral and sc fat (L1-L4) were assessed by magnetic resonance imaging. Third-trimester growth velocity was determined by repeated ultrasound examinations. Size at birth was nongenetically inversely associated with adult visceral and sc fat accumulation but unrelated to adult insulin action. In contrast, fetal growth velocity during third trimester was not associated with adult visceral or sc fat accumulation. Interestingly, third-trimester growth was associated with insulin action in a paradoxical inverse manner. Abdominal adiposity including accumulation of both sc and visceral fat may constitute primary nongenetic factors associated with low birth weight and reduced fetal growth before the third trimester. Reduced fetal growth during vs. before the third trimester may define distinct adult trajectories of metabolic and anthropometric characteristics influencing risk of developing type 2 diabetes.
    The Journal of clinical endocrinology and metabolism 07/2011; 96(9):2835-43. · 6.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To test the hypothesis that physical inactivity impairs the exercise-induced modulation of pyruvate dehydrogenase (PDH), six healthy normally physically active male subjects completed 7 days of bed rest. Before and immediately after the bed rest, the subjects completed an oral glucose tolerance test (OGTT) and a one-legged knee extensor exercise bout [45 min at 60% maximal load (W(max))] with muscle biopsies obtained from vastus lateralis before, immediately after exercise, and at 3 h of recovery. Blood samples were taken from the femoral vein and artery before and after 40 min of exercise. Glucose intake elicited a larger (P ≤ 0.05) insulin response after bed rest than before, indicating glucose intolerance. There were no differences in lactate release/uptake across the exercising muscle before and after bed rest, but glucose uptake after 40 min of exercise was larger (P ≤ 0.05) before bed rest than after. Muscle glycogen content tended to be higher (0.05< P ≤ 0.10) after bed rest than before, but muscle glycogen breakdown in response to exercise was similar before and after bed rest. PDH-E1α protein content did not change in response to bed rest or in response to the exercise intervention. Exercise increased (P ≤ 0.05) the activity of PDH in the active form (PDHa) and induced (P ≤ 0.05) dephosphorylation of PDH-E1α on Ser²⁹³, Ser²⁹⁵ and Ser³⁰⁰, with no difference before and after bed rest. In conclusion, although 7 days of bed rest induced whole body glucose intolerance, exercise-induced PDH regulation in skeletal muscle was not changed. This suggests that exercise-induced PDH regulation in skeletal muscle is maintained in glucose-intolerant (e.g., insulin resistant) individuals.
    Journal of Applied Physiology 06/2011; 111(3):751-7. · 3.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We recently demonstrated that reconstituted high-density lipoprotein (rHDL) modulates glucose metabolism in humans via both AMP-activated protein kinase (AMPK) in muscle and by increasing plasma insulin. Given the key roles of both AMPK and insulin in fatty acid metabolism, the current study investigated the effect of rHDL infusion on fatty acid oxidation and lipolysis. Thirteen patients with type 2 diabetes received separate infusions of rHDL and placebo in a randomized, cross-over study. Fatty acid metabolism was assessed using steady-state tracer methodology, and plasma lipids were measured by mass spectrometry (lipidomics). In vitro studies were undertaken in 3T3-L1 adipocytes. rHDL infusion inhibited fasting-induced lipolysis (P = 0.03), fatty acid oxidation (P < 0.01), and circulating glycerol (P = 0.04). In vitro, HDL inhibited adipocyte lipolysis in part via activation of AMPK, providing a possible mechanistic link for the apparent reductions in lipolysis observed in vivo. In contrast, circulating NEFA increased after rHDL infusion (P < 0.01). Lipidomic analyses implicated phospholipase hydrolysis of rHDL-associated phosphatidylcholine as the cause, rather than lipolysis of endogenous fat stores. rHDL infusion inhibits fasting-induced lipolysis and oxidation in patients with type 2 diabetes, potentially through both AMPK activation in adipose tissue and elevation of plasma insulin. The phospholipid component of rHDL also has the potentially undesirable effect of increasing circulating NEFA.
    The Journal of Lipid Research 03/2011; 52(3):572-81. · 4.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Exercising muscle releases interleukin-6 (IL-6), but the mechanisms controlling this process are poorly understood. This study was performed to test the hypothesis that the IL-6 release differs in arm and leg muscle during whole-body exercise, owing to differences in muscle metabolism. Sixteen subjects (10 men and six women, with body mass index 24 ± 1 kg m(-2) and peak oxygen uptake 3.4 ± 0.6 l min(-1)) performed a 90 min combined arm and leg cycle exercise at 60% of maximal oxygen uptake. The subjects arrived at the laboratory having fasted overnight, and catheters were placed in the femoral artery and vein and in the subclavian vein. During exercise, arterial and venous limb blood was sampled and arm and leg blood flow were measured by thermodilution. Lean limb mass was measured by dual-energy X-ray absorbtiometry scanning. Before and after exercise, biopsies were obtained from vastus lateralis and deltoideus. During exercise, IL-6 release was similar between men and women and higher (P < 0.05) from arms than legs (1.01 ± 0.42 and 0.33 ± 0.12 ng min(-1) (kg lean limb mass)(-1), respectively). Blood flow (425 ± 36 and 554 ± 35 ml min(-1) (kg lean limb mass)(-1)) and fatty acid uptake (26 ± 7 and 47 ± 7 μmol min(-1) (kg lean limb mass)(-1)) were lower, glucose uptake similar (51 ± 12 and 41 ± 8 mmol min(-1) (kg lean limb mass)(-1)) and lactate release higher (82 ± 32 and -2 ± 12 μmol min(-1) (kg lean limb mass)(-1)) in arms than legs, respectively, during exercise (P < 0.05). No correlations were present between IL-6 release and exogenous substrate uptakes. Muscle glycogen was similar in arms and legs before exercise (388 ± 22 and 428 ± 25 mmol (kg dry weight)(-1)), but after exercise it was only significantly lower in the leg (219 ± 29 mmol (kg dry weight)(-1)). The novel finding of a markedly higher IL-6 release from the exercising arm compared with the leg during whole-body exercise was not directly correlated to release or uptake of exogenous substrate, nor to muscle glycogen utilization.
    Experimental physiology 03/2011; 96(6):590-8. · 3.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to investigate the effect of protein ingestion on leg protein turnover and vastus lateralis muscle protein synthesis during bicycle exercise and recovery. Eight healthy males participated in two experiments in which they ingested either a carbohydrate solution (CHO) providing 0.49 g·kg(-1)·h(-1), or a carbohydrate and protein solution (CHO + P) providing 0.49 and 0.16 g·kg(-1)·h(-1), during 3 h of bicycle exercise and 3 h of recovery. Leg protein turnover was determined from stable isotope infusion (l-[ring-C6]phenylalanine), femoral-arterial venous blood sampling, and blood flow measurements. Muscle protein synthesis was calculated from the incorporation of l-[ring-C6]phenylalanine into protein. Consuming protein during exercise increased leg protein synthesis and decreased net leg protein breakdown; however, protein ingestion did not increase protein synthesis within the highly active vastus lateralis muscle (0.029%·h(-1), ± 0.004%·h(-1), and 0.030%·h(-1), ± 0.003%·h(-1), in CHO and CHO + P, respectively; P = 0.88). In contrast, consuming protein, during exercise and recovery, increased postexercise vastus lateralis muscle protein synthesis by 51% ± 22% (0.070%·h(-1), ± 0.003%·h(-1), and 0.105%·h(-1), ± 0.013%·h(-1), in CHO and CHO+P, respectively; P < 0.01). Furthermore, leg protein net balance was negative during recovery with CHO intake, whereas positive leg protein net balance was achieved with CHO+P intake. We conclude that consuming protein during prolonged bicycle exercise does not increase protein synthesis within highly active leg muscles. However, protein intake may have stimulated protein synthesis within less active leg muscles and/or other nonmuscle leg tissue. Finally, protein supplementation, during exercise and recovery, enhanced postexercise muscle protein synthesis and resulted in positive leg protein net balance.
    Medicine and science in sports and exercise 02/2011; 43(9):1635-42. · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Muscle protein turnover following resistance exercise and amino acid availability are relatively well described. By contrast, the beneficial effects of different sources of intact proteins in relation to exercise need further investigation. Our objective was to compare muscle anabolic responses to a single bolus intake of whey or casein after performance of heavy resistance exercise. Young male individuals were randomly assigned to participate in two protein trials (n = 9) or one control trial (n = 8). Infusion of l-[1-(13)C]leucine was carried out, and either whey, casein (0.3 g/kg lean body mass), or a noncaloric control drink was ingested immediately after exercise. l-[1-(13)C]leucine-labeled whey and casein were used while muscle protein synthesis (MPS) was assessed. Blood and muscle tissue samples were collected to measure systemic hormone and amino acid concentrations, tracer enrichments, and myofibrillar protein synthesis. Western blots were used to investigate the Akt signaling pathway. Plasma insulin and branched-chain amino acid concentrations increased to a greater extent after ingestion of whey compared with casein. Myofibrillar protein synthesis was equally increased 1-6 h postexercise after whey and casein intake, both of which were higher compared with control (P < 0.05). Phosphorylation of Akt and p70(S6K) was increased after exercise and protein intake (P < 0.05), but no differences were observed between the types of protein except for total 4E-BP1, which was higher after whey intake than after casein intake (P < 0.05). In conclusion, whey and casein intake immediately after resistance exercise results in an overall equal MPS response despite temporal differences in insulin and amino acid concentrations and 4E-BP1.
    AJP Endocrinology and Metabolism 11/2010; 300(1):E231-42. · 4.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin (IL)-6 is chronically elevated in type 2 diabetes but also during exercise. However, the exact metabolic role, and hence the physiological significance, has not been elucidated. The objective of this study was to investigate the in vivo effect of recombinant human (rh) IL-6 on human fat and glucose metabolism and signaling of both adipose tissue and skeletal muscle. Eight healthy postabsorptive males were infused with either rhIL-6 or saline for 4 h, eliciting IL-6 levels of ∼40 and ∼1 pg/ml, respectively. Systemic, skeletal muscle, and adipose tissue fat and glucose metabolism was assessed before, during, and 2 h after cessation of the infusion. Glucose metabolism was unaffected by rhIL-6. In contrast, rhIL-6 increased systemic fatty acid oxidation approximately twofold after 60 min, and it remained elevated even 2 h after the infusion. The increase in oxidation was followed by an increase in systemic lipolysis. Adipose tissue lipolysis and fatty acid kinetics were unchanged with rhIL-6 compared with saline infusion. Conversely, rhIL-6 infusion caused an increase in skeletal muscle unidirectional fatty acid and glycerol release, indicative of an increase in lipolysis. The increased lipolysis in muscle could account for the systemic changes. Skeletal muscle signaling increased after 1 h of rhIL-6 infusion, indicated by a fourfold increase in the phosphorylated signal transducer and activator of transcription (STAT) 3-to-STAT3 ratio, whereas no changes in phosphorylated AMP-activated protein kinase or acetyl-CoA carboxylase levels could be observed. Our findings suggest that an acute increase in IL-6 at a normophysiological level selectively stimulates lipolysis in skeletal muscle, whereas adipose tissue is unaffected.
    AJP Endocrinology and Metabolism 11/2010; 299(5):E832-40. · 4.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It was investigated whether skeletal muscle K(+) release is linked to the degree of anaerobic energy production. Six subjects performed an incremental bicycle exercise test in normoxic and hypoxic conditions prior to and after 2 and 8 wk of acclimatization to 4,100 m. The highest workload completed by all subjects in all trials was 260 W. With acute hypoxic exposure prior to acclimatization, venous plasma [K(+)] was lower (P < 0.05) in normoxia (4.9 +/- 0.1 mM) than hypoxia (5.2 +/- 0.2 mM) at 260 W, but similar at exhaustion, which occurred at 400 +/- 9 W and 307 +/- 7 W (P < 0.05), respectively. At the same absolute exercise intensity, leg net K(+) release was unaffected by hypoxic exposure independent of acclimatization. After 8 wk of acclimatization, no difference existed in venous plasma [K(+)] between the normoxic and hypoxic trial, either at submaximal intensities or at exhaustion (360 +/- 14 W vs. 313 +/- 8 W; P < 0.05). At the same absolute exercise intensity, leg net K(+) release was less (P < 0.001) than prior to acclimatization and reached negative values in both hypoxic and normoxic conditions after acclimatization. Moreover, the reduction in plasma volume during exercise relative to rest was less (P < 0.01) in normoxic than hypoxic conditions, irrespective of the degree of acclimatization (at 260 W prior to acclimatization: -4.9 +/- 0.8% in normoxia and -10.0 +/- 0.4% in hypoxia). It is concluded that leg net K(+) release is unrelated to anaerobic energy production and that acclimatization reduces leg net K(+) release during exercise.
    AJP Regulatory Integrative and Comparative Physiology 07/2010; 299(1):R306-13. · 3.28 Impact Factor

Publication Stats

1k Citations
258.95 Total Impact Points

Institutions

  • 2000–2014
    • IT University of Copenhagen
      København, Capital Region, Denmark
  • 2003–2013
    • University of Copenhagen
      • • Faculty of Health and Medical Sciences
      • • Department of International Health, Immunology and Microbiology
      • • Centre of Inflammation and Metabolism
      København, Capital Region, Denmark
  • 2011
    • Brunel University
      अक्सब्रिज, England, United Kingdom
  • 2009–2011
    • Steno Diabetes Center
      Gjentofte, Capital Region, Denmark
  • 2002
    • University of Melbourne
      • Department of Physiology
      Melbourne, Victoria, Australia