Sungjin Kim

Michigan State University, East Lansing, MI, United States

Are you Sungjin Kim?

Claim your profile

Publications (26)270.86 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effect of aging on natural killer cell homeostasis is not well studied in humans or in animal models. We compared natural killer (NK) cells from young and aged mice to investigate age-related defects in NK cell distribution, and development. Our findings indicate aged mice have reduced NK cells in most peripheral tissues, but not in bone marrow. Reduction of NK cells in periphery was attributed to a reduction of the most mature CD11b(+) CD27(-) NK cells. Apoptosis was not found to explain this specific reduction of mature NK cells. Analysis of NK cell development in bone marrow revealed that aged NK cells progress normally through early stages of development, but a smaller percentage of aged NK cells achieved terminal maturation. Less mature NK cells in aged bone marrow correlated with reduced proliferation of immature NK cells. We propose advanced age impairs bone marrow maturation of NK cells, possibly affecting homeostasis of NK cells in peripheral tissues. These alterations in NK cell maturational status have critical consequences for NK cell function in advanced age: reduction of the mature circulating NK cells in peripheral tissues of aged mice affects their overall capacity to patrol and eliminate cancerous and viral infected cells.
    Mechanisms of ageing and development 12/2013; · 4.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Because NK cells lack gene-recombination machinery and are thought to be relatively short-lived, it is unclear whether NK cells can mount long-term effective recall responses to reinfections by diverse pathogens. In this article, we report that FcRγ-deficient NK cells, which we recently identified and termed g(-)NK cells, possess distinct memory features directed by FcR-mediated Ab-dependent target recognition. The presence of g(-)NK cells was associated with prior human CMV (HMCV) infection, yet g(-)NK cell responses were not restricted to HCMV-infected target cells. In the presence of virus-specific Abs, g(-)NK cells had greatly enhanced functional capabilities, superior to conventional NK cells, and were highly responsive to cells infected with either HCMV or HSV-1. Remarkably, the g(-)NK cell subset persisted long-term at nearly constant levels in healthy individuals. Therefore, FcRγ deficiency distinguishes an Ab-dependent memory-like NK cell subset with enhanced potential for broad antiviral responses.
    The Journal of Immunology 01/2013; · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Natural killer (NK) cells respond to tumor and virus-infected cells directly through several activation receptors, including natural cytotoxicity receptors, or indirectly through the activating Fc receptor CD16 for antibody-coated cells. Triggering of NK-cell effector functions through these receptors depends on physically associated transmembrane signaling adaptors, such as FcRγ (also known as FcεRIγ) and CD3ζ, both of which have been traditionally believed to be expressed by all mature NK cells. However, we have identified a distinct subset of human NK cells that are deficient for FcRγ expression but express normal levels of CD3ζ. FcRγ-deficient NK cells were readily detectable in about one-third of the healthy individuals examined. The deficiency was confined to the CD56(dim) population and was due to low FcRγ mRNA. FcRγ-deficient NK cells displayed dramatically reduced expression of the natural cytotoxicity receptors NKp46 and NKp30 but still expressed substantial levels of CD16. Compared to FcRγ-expressing NK cells, FcRγ-deficient NK cells showed poor direct reactivity toward tumor targets as measured by cytokine production and degranulation. Unexpectedly, however, FcRγ-deficient NK cells exhibited significantly more robust responsiveness upon stimulation through CD16, particularly for cytokine production, compared to FcRγ-expressing NK cells. Thus, our study reveals FcRγ-deficient NK cells as a novel subset of human NK cells that have remarkably potent responses toward antibody-coated targets. These findings also illustrate a differential contribution of FcRγ and CD3ζ for the expression and functional activity of their associated receptors.
    International Immunology 09/2012; · 3.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During early viral infection, activation of natural killer (NK) cells elicits the effector functions of target cell lysis and cytokine production. However, the cellular and molecular mechanisms leading to NK cell activation during viral infections are incompletely understood. In this study, using a model of acute viral infection, we investigated the mechanisms controlling cytotoxic activity and cytokine production in response to influenza (flu) virus. Analysis of cytokine receptor deficient mice demonstrated that type I interferons (IFNs), but not IL-12 or IL-18, were critical for the NK cell expression of both IFN-γ and granzyme B in response to flu infection. Further, adoptive transfer experiments revealed that NK cell activation was mediated by type I IFNs acting directly on NK cells. Analysis of signal transduction molecules showed that during flu infection, STAT1 activation in NK cells was completely dependent on direct type I IFN signaling, whereas STAT4 activation was only partially dependent. In addition, granzyme B induction in NK cells was mediated by signaling primarily through STAT1, but not STAT4, while IFN-γ production was mediated by signaling through STAT4, but not STAT1. Therefore, our findings demonstrate the importance of direct action of type I IFNs on NK cells to mount effective NK cell responses in the context of flu infection and delineate NK cell signaling pathways responsible for controlling cytotoxic activity and cytokine production.
    PLoS ONE 01/2012; 7(12):e51858. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Influenza is a public health concern, especially for the elderly. While influenza vaccination is efficacious in the young, it offers only limited protection in the elderly. Thus, it becomes imperative to understand age-related changes in the primary response to influenza infection. This study identified potential age-related defects in natural killer (NK) cell function during influenza infection. We showed that NK cells from aged mice were reduced and had impaired function and altered phenotype in lungs during influenza infection. Aged NK cells demonstrated decreased IFN-γ production, but not degranulation, after influenza infection. However, after ex vivo activation with YAC-1 cells, aged NK cells demonstrated both reduced IFN-γ production and degranulation. IFN-γ was also reduced in aged NK cells after activation with anti-NKp46 and soluble cytokines. IFN-β, and IL-12p40 mRNA expression was not significantly different from that observed in adult mice. Analysis of NK cell subsets indicated that aged mice had more immature and less terminally mature NK cells. These data suggest that aging affects the numbers, function and phenotype of NK cells. Thus, these defects in NK cell function could impair the ability of aged mice to induce a strong antiviral immune response during the early stages of the infection.
    Mechanisms of ageing and development 08/2011; 132(10):503-10. · 4.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NK cells are innate immune lymphocytes that can react to cells lacking self-MHC class I. However, NK cells that cannot engage self-MHC through an inhibitory receptor are resistant to stimulation through their activation receptors. To become licensed (i.e., functionally competent to be triggered through its activation receptors), an NK cell must engage host MHC class I via a MHC class I-specific inhibitory receptor, such as a member of the murine Ly49 family. To explore potential determinants of NK cell licensing on a single Ly49 receptor, we have investigated the relative licensing impacts of the b, d, k, q, r, and s H2 haplotypes on Ly49A(+) NK cells. The results indicate that licensing is essentially analog but is saturated by moderate-binding MHC class I ligands. Interestingly, licensing exhibited a strong inverse correlation with a measure of cis engagement of Ly49A. Finally, licensing of Ly49A(+) NK cells was found to be less sensitive to MHC class I engagement than Ly49A-mediated effector inhibition, suggesting that licensing establishes a margin of safety against NK cell autoreactivity.
    The Journal of Immunology 03/2010; 184(7):3424-32. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Natural killer (NK) cells constitute a subpopulation of lymphocytes that develop from precursors in the bone marrow (BM), but the transcriptional regulation of their development and maturation is only beginning to be understood, in part due to their relatively rare abundance, especially of developmental subsets. Using a mouse model in which NK cells are arrested at an immature stage of development, and a gene expression profiling approach, we uncovered transient normal NK cell expression of a homeobox transcription factor (TF) family, called Distal-less (Dlx), which had been primarily implicated in murine CNS, craniofacial, limb, and skin development. Our studies demonstrate that Dlx1, Dlx2, and Dlx3 are transiently expressed in immature Mac-1(lo) NK cells within the BM, with Dlx3 being the predominantly expressed member. These genes are expressed in a temporally regulated pattern with overlapping waves of expression, and they display functional redundancy. Expression is extinguished in fully mature splenic NK cells, and persistent expression of Dlx genes leads to functionally immature NK cells arrested at the Mac-1(lo) stage. Whereas conventional splenic NK cells develop but are arrested at an immature stage, there appears to be a complete failure to develop CD127(+) thymic NK cells when Dlx genes are persistently expressed. We also observed that T and B cells fail to develop in the context of persistent Dlx1 expression. Thus, these studies indicate that Dlx TFs play a functional role in lymphocyte development.
    Proceedings of the National Academy of Sciences 09/2008; 105(31):10877-82. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epidemiological studies have associated certain human disease outcomes with particular killer cell Ig-like receptor (KIR) and HLA genotypes. However, the functional explanation for these associations is poorly understood, because the KIRs were initially described as natural killer (NK) cell inhibitory receptors with specificity for HLA molecules on their cellular targets. Yet resolution of infections is often associated with genotypic pairing of inhibitory KIRs with their cognate HLA ligands. Recent studies in mice indicate a second role for MHC-specific inhibitory receptors, i.e., self-MHC recognition confers functional competence on the NK cell to be triggered through their activation receptors, a process termed licensing. As a result, licensed NK cells with self-MHC-specific receptors are more readily activated as compared with unlicensed NK cells without self-MHC-specific receptors. Such results predict that human NK cells may undergo a similar process. Here, we examined the human NK cell subset expressing KIR3DL1, the only known KIR specific for HLA-Bw4 alleles. The KIR3DL1(+) subset in normal donors with two HLA-B-Bw4 genes displayed increased responsiveness to tumor stimulation compared with the KIR3DL1(+) subset from individuals with only one or no Bw4 genes. By contrast, NK cells lacking KIR3DL1 showed no differences. Therefore, these data indicate that particular KIR and HLA alleles are associated with more responsive NK cells, strongly suggesting that human NK cells are also subjected to NK cell licensing, and providing a potential functional explanation for the influence of KIR and HLA genes in disease as well as interindividual differences in NK cell potency.
    Proceedings of the National Academy of Sciences 03/2008; 105(8):3053-8. · 9.81 Impact Factor
  • Wayne M Yokoyama, Sungjin Kim
    [Show abstract] [Hide abstract]
    ABSTRACT: Typical assays for natural killer (NK) cell function assess the responses of entire NK cell populations. It is now possible to determine the responses of individual NK cells. Herein, two representative assays are described along with examples of how they have helped clarify current understanding of NK cell biology.
    Methods in molecular biology (Clifton, N.J.) 02/2008; 415:179-96. · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The interaction of NK inhibitory killer Ig-like receptors (KIRs) with self-MHC class I molecules mediates NK tolerance to self while conferring functional competence. Through single-cell analysis of intracellular IFN-gamma production and NK clone cytotoxicity we evaluated the resting NK repertoire, analyzing the responsiveness of NK subgroups expressing discrete combinations of non-KIR and KIR class I-specific receptors. CD94:NKG2A and Ig-like transcript 2 (ILT2)-expressing cells have a modest response to class I-negative target cells, but NK cells expressing inhibitory KIRs to self-MHC class I ligands, both HLA-B and HLA-C ligands, achieve significantly higher effector capacity. There is a dose effect of KIR for self-MHC on effector capacity, but even in the most highly responsive NK cells expressing more than one inhibitory KIR for self-MHC the presentation of only one cognate MHC ligand is sufficient to abolish response. Among KIR(+) cells there is preferential expression for inhibitory KIR for self-MHC. The likelihood of KIR expression is influenced by whether other KIRs are already expressed on the same cell, supporting a model of serial acquisition of KIR expression. These findings define how inhibitory receptor and autologous HLA interactions impact single-cell function and demonstrate that the resting human NK repertoire is highly attuned but variegated in response. These findings have important implications for the resting NK response to viral pathogens and malignancy, for donor selection in allogeneic hemopoietic cell transplantation, and for models of NK tolerance.
    The Journal of Immunology 12/2007; 179(9):5977-89. · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The development of natural killer (NK) cells in the bone marrow is not well characterized. We recently described a mouse (referred to as an NK cell-deficient [NKD] mouse) with a selective deficiency in NK cells caused by the insertion of a transgene construct into the genetic locus for the basic leucine zipper transcription factor ATF-2. NK cells in this mouse were both phenotypically and functionally immature and accumulated in the bone marrow at a stage at which constitutive NK cell proliferation occurs in wild-type mice. We hypothesized that excess IL-15 could potentially overcome this developmental block, allowing normal emigration of mature NK cells from the bone marrow to the periphery. Double-transgenic mice were generated by crossing the NKD mice with transgenic mice overexpressing IL-15. The double-transgenic mice had a dramatic accumulation of phenotypically immature NK cells in the bone marrow and subsequently in the blood, liver, and spleen. NK cells from these double-transgenic mice manifested functional deficits similar to those observed in NK cells from NKD mice, as assessed by decreased cytokine production and cytotoxicity. Rather than bypass the observed developmental defect in NKD mice, excess IL-15 drove a massive accumulation of phenotypically and functionally immature NK cells in the bone marrow and periphery. We propose that these double-transgenic mice will serve as a murine model of chronic NK cell lymphocytosis in human patients.
    Journal of Allergy and Clinical Immunology 11/2007; 120(4):924-31. · 12.05 Impact Factor
  • Wayne M Yokoyama, Sungjin Kim
    [Show abstract] [Hide abstract]
    ABSTRACT: Natural killer (NK) cells have potent capacities to immediately kill cellular targets and produce cytokines that may potentially damage normal self-tissues unless they are kept in check. Such tolerance mechanisms are incompletely understood. Here we discuss recent studies suggesting that NK cells undergo a host major histocompatibility complex (MHC) class I-dependent functional maturation process, termed 'licensing'. Ironically, licensing directly involves inhibitory receptors that recognize target cell MHC class I molecules and block activation of NK cells in effector responses. This process results in two types of tolerant NK cells: functionally competent (licensed) NK cells, whose effector responses are inhibited by self-MHC class I molecules through the same receptors that conferred licensing, and functionally incompetent (unlicensed) NK cells.
    Immunological Reviews 01/2007; 214:143-54. · 12.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NK cells vigorously proliferate during viral infections. During the course of murine CMV infection, this response becomes dominated by the preferential proliferation of NK cells that express the activation receptor Ly49H. The factors driving such selective NK cell proliferation have not been characterized. In this study, we demonstrate that preferential NK cell proliferation is dependent on DAP12-mediated signaling following the binding of Ly49H to its virally encoded ligand, m157. Ly49H signaling through DAP12 appears to directly augment NK cell sensitivity to low concentrations of proproliferative cytokines such as IL-15. The impact of Ly49H-mediated signaling on NK cell proliferation is masked in the presence of high concentrations of proproliferative cytokines that nonselectively drive all NK cells to proliferate.
    The Journal of Immunology 11/2006; 177(8):4981-90. · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mature natural killer (NK) cells are able to vigorously proliferate in response to infectious stimuli such as viral infections. The factors driving NK cell proliferation under these circumstances are only beginning to be characterized. NK cells constitutively express interleukin-18 receptor alpha and are stimulated by IL-18 to produce IFNgamma. Although IL-18 alone is not sufficient to drive NK cell proliferation, we demonstrate that IL-18 is able to act synergistically with IL-15 in stimulating in vitro NK cell proliferation. Furthermore using a NK cell line, we show that this effect occurs through direct stimulation of NK cells by IL-18 rather than through a secondary signal generated by an intermediary cell type. This raises the possibility that IL-18 may act synergistically with IL-15 in driving pathogen-induced NK cell proliferation in addition to its contribution in enhancing IL-12 stimulation of NK cell IFNgamma production.
    Cytokine 10/2006; 35(5-6):229-34. · 2.52 Impact Factor
  • Wayne M Yokoyama, Sungjin Kim
    [Show abstract] [Hide abstract]
    ABSTRACT: Natural killer (NK) cells provide innate defense against tumors and infections by virtue of potent capacities to immediately kill cellular targets and produce cytokines. These effector functions may potentially damage normal self-tissues unless they are kept in check by tolerance mechanisms that need clarification. Here, we discuss recent studies indicating that the NK cells acquire functional competence directly through engagement of their MHC-specific receptors by self-MHC. Ironically, these receptors were first identified in terms of recognizing target cell MHC class I molecules and inhibiting NK cells in effector responses. Other studies of NK cell tolerance are also discussed. Although these studies begin to clarify the means by which NK cell tolerance is achieved, much more investigation is needed because NK cell tolerance is relevant to clinical observations in patients with infections and cancer.
    Immunity 04/2006; 24(3):249-57. · 19.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Natural killer (NK) cell development in the bone marrow is not fully understood. Following lineage commitment, these cells appear to advance through a series of developmental stages that are beginning to be characterized. We previously reported a selective deficiency of NK cells in a C57BL/6 mouse with a transgenic construct consisting of the cDNA for the Ly49A major histocompatibility complex (MHC) class 1-specific inhibitory receptor driven by the granzyme A gene. This mouse has few NK cells in peripheral tissues with relative preservation of other immune cells, including T and B cells. Herein we demonstrate that these mice have an accumulation of NK cells with an immature phenotype in the bone marrow, consistent with a block at a previously proposed stage in normal NK-cell development. The phenotype is associated with transgenic insertion into Atf2, the gene for the basic leucine zipper (bZIP) transcription factor family member ATF-2. Although analysis of Atf2-null NK cells shows no defect, the transgenic mice express abnormal truncated Atf2 transcripts that may mediate a repressor effect because ATF2 can heterodimerize with other bZIP molecules. The defect is cell intrinsic, suggesting that certain bZIP molecules play significant roles in NK-cell development.
    Blood 03/2006; 107(3):1024-30. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Self versus non-self discrimination is a central theme in biology from plants to vertebrates, and is particularly relevant for lymphocytes that express receptors capable of recognizing self-tissues and foreign invaders. Comprising the third largest lymphocyte population, natural killer (NK) cells recognize and kill cellular targets and produce pro-inflammatory cytokines. These potentially self-destructive effector functions can be controlled by inhibitory receptors for the polymorphic major histocompatibility complex (MHC) class I molecules that are ubiquitously expressed on target cells. However, inhibitory receptors are not uniformly expressed on NK cells, and are germline-encoded by a set of polymorphic genes that segregate independently from MHC genes. Therefore, how NK-cell self-tolerance arises in vivo is poorly understood. Here we demonstrate that NK cells acquire functional competence through 'licensing' by self-MHC molecules. Licensing involves a positive role for MHC-specific inhibitory receptors and requires the cytoplasmic inhibitory motif originally identified in effector responses. This process results in two types of self-tolerant NK cells--licensed or unlicensed--and may provide new insights for exploiting NK cells in immunotherapy. This self-tolerance mechanism may be more broadly applicable within the vertebrate immune system because related germline-encoded inhibitory receptors are widely expressed on other immune cells.
    Nature 09/2005; 436(7051):709-13. · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phospholipase C-gamma (PLCgamma) is a key regulator of intracellular Ca(2+) mobilization. Two isoforms of PLCgamma have been identified, PLCgamma1 and PLCgamma2. Previously, in vitro studies indicated that activating NK cell receptors signal through both isoforms. However, PLCgamma2 deficiency alone was sufficient to induce a substantial impairment of NK cell-mediated cytotoxicity in vitro. Why PLCgamma2 is more important than PLCgamma1 for NK cell activation and whether PLCgamma2 is also critical for NK cell development, secretion of IFN-gamma, and clearance of viral infections in vivo is not known. In this study, we report that PLCgamma2 is the predominant isoform expressed in murine NK cells. PLCgamma2 deficiency did not affect NK cell numbers in bone marrow and spleen, but acquisition of Ly49 receptors by NK cells was partially impaired. PLCgamma2-deficient NK cells exhibited a dramatic impairment of cytolytic function and IFN-gamma production upon ligation of activating receptors, whereas they did secrete IFN-gamma in response to cytokines. Consequently, mice lacking PLCgamma2 controlled murine CMV infection substantially less effectively than did wild-type animals, and this defect was most evident in the spleen, where viral clearance mostly depends on NK cell lytic function. These results demonstrate that PLCgamma2 is crucial for development of the NK cell receptor repertoire and signaling of activating NK cell receptors, mediating optimal NK cell function in vivo.
    The Journal of Immunology 08/2005; 175(2):749-54. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phospholipase C-γ (PLCγ) is a key regulator of intracellular Ca2+ mobilization. Two isoforms of PLCγ have been identified, PLCγ1 and PLCγ2. Previously, in vitro studies indicated that activating NK cell receptors signal through both isoforms. However, PLCγ2 deficiency alone was sufficient to induce a substantial impairment of NK cell-mediated cytotoxicity in vitro. Why PLCγ2 is more important than PLCγ1 for NK cell activation and whether PLCγ2 is also critical for NK cell development, secretion of IFN-γ, and clearance of viral infections in vivo is not known. In this study, we report that PLCγ2 is the predominant isoform expressed in murine NK cells. PLCγ2 deficiency did not affect NK cell numbers in bone marrow and spleen, but acquisition of Ly49 receptors by NK cells was partially impaired. PLCγ2-deficient NK cells exhibited a dramatic impairment of cytolytic function and IFN-γ production upon ligation of activating receptors, whereas they did secrete IFN-γ in response to cytokines. Consequently, mice lacking PLCγ2 controlled murine CMV infection substantially less effectively than did wild-type animals, and this defect was most evident in the spleen, where viral clearance mostly depends on NK cell lytic function. These results demonstrate that PLCγ2 is crucial for development of the NK cell receptor repertoire and signaling of activating NK cell receptors, mediating optimal NK cell function in vivo.
    The Journal of Immunology 07/2005; 175(2). · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Natural killer (NK) cells play a crucial role in the initial host defense against pathogens such as murine cytomegalovirus (MCMV). They respond rapidly and effectively control pathogen replication while the adaptive immune system is being activated. However, in the absence of an adaptive immune system, an effective initial NK cell response is not sufficient for long-term pathogen control as demonstrated by the late recrudescence of disease and mortality in immunodeficient mice infected with MCMV. In this setting, NK cells suppress the initial infection but exert enough selective pressure to drive the outgrowth of MCMV mutants that escape recognition by NK cells. Herein, we characterize the rapid emergence of escape mutants following infection with a plaque-purified MCMV isolate and demonstrate that these mutant viruses are no longer effectively controlled by NK cells. These findings suggest that late recrudescence of viral infections in certain clinical settings may also be due to viral escape from NK cells or other components of innate immunity.
    Clinical Immunology 05/2005; 115(1):61-9. · 3.77 Impact Factor

Publication Stats

2k Citations
270.86 Total Impact Points

Institutions

  • 2012–2013
    • Michigan State University
      • Department of Microbiology and Molecular Genetics
      East Lansing, MI, United States
  • 2004–2010
    • University of Washington Seattle
      • • Department of Medicine
      • • Department of Pediatrics
      Seattle, WA, United States
  • 2002–2008
    • Howard Hughes Medical Institute
      Maryland, United States
    • Barnes Jewish Hospital
      San Luis, Missouri, United States
  • 2007
    • Washington University in St. Louis
      • Division of Rheumatology
      San Luis, Missouri, United States