J T Slevin

University of Kentucky, Lexington, KY, United States

Are you J T Slevin?

Claim your profile

Publications (58)325.81 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective Characterize glutamate neurotransmission in the hippocampus of awake-behaving rodents during focal seizures in a model of aging.Methods We used enzyme-based ceramic microelectrode array technology to measure in vivo extracellular tonic glutamate levels and real-time phasic glutamate release and clearance events in the hippocampus of awake Fischer 344 rats. Local application of 4-aminopyridine (4-AP) into the CA1 region was used to induce focal motor seizures in different animal age groups representing young, late-middle aged and elderly humans.ResultsRats with the highest preseizure tonic glutamate levels (all in late-middle aged or elderly groups) experienced the most persistent 4-AP-induced focal seizure motor activity (wet dog shakes) and greatest degree of acute seizure-associated disruption of glutamate neurotransmission measured as rapid transient changes in extracellular glutamate levels.SignificanceIncreased seizure susceptibility was demonstrated in the rats with the highest baseline hippocampal extracellular glutamate levels, all of which were late-middle aged or aged animals. The manifestation of seizures behaviorally was associated with dynamic changes in glutamate neurotransmission. To our knowledge, this is the first report of a relationship between seizure susceptibility and alterations in both baseline tonic and phasic glutamate neurotransmission.
    Epilepsia 09/2014; · 3.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Depression is common in Parkinson's disease and is associated with cognitive impairment. Dopaminergic medications are effective in treating the motor symptoms of Parkinson's disease; however, little is known regarding the effects of dopaminergic pharmacotherapy on cognitive function in depressed Parkinson patients. This study examines the neuropsychological effects of dopaminergic pharmacotherapy in Parkinsonian depression. We compared cognitive function in depressed and non-depressed Parkinson patients at two time-points: following overnight withdrawal and after the usual morning regimen of dopaminergic medications. A total of 28 non-demented, right-handed patients with mild to moderate idiopathic Parkinson's disease participated. Ten of these patients were depressed according to DSM IV criteria. Results revealed a statistically significant interaction between depression and medication status on three measures of verbal memory and a facial affect naming task. In all cases, depressed Parkinson's patients performed significantly more poorly while on dopaminergic medication than while off. The opposite pattern emerged for the non-depressed Parkinson's group. The administration of dopaminergic medication to depressed Parkinson patients may carry unintended risks.
    Psychiatry research. 07/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate the efficacy and safety of a selective serotonin reuptake inhibitor (SSRI) and a serotonin and norepinephrine reuptake inhibitor (SNRI) in the treatment of depression in Parkinson disease (PD). A total of 115 subjects with PD were enrolled at 20 sites. Subjects were randomized to receive an SSRI (paroxetine; n = 42), an SNRI (venlafaxine extended release [XR]; n = 34), or placebo (n = 39). Subjects met DSM-IV criteria for a depressive disorder, or operationally defined subsyndromal depression, and scored >12 on the first 17 items of the Hamilton Rating Scale for Depression (HAM-D). Subjects were followed for 12 weeks (6-week dosage adjustment, 6-week maintenance). Maximum daily dosages were 40 mg for paroxetine and 225 mg for venlafaxine XR. The primary outcome measure was change in the HAM-D score from baseline to week 12. Treatment effects (relative to placebo), expressed as mean 12-week reductions in HAM-D score, were 6.2 points (97.5% confidence interval [CI] 2.2 to 10.3, p = 0.0007) in the paroxetine group and 4.2 points (97.5% CI 0.1 to 8.4, p = 0.02) in the venlafaxine XR group. No treatment effects were seen on motor function. Both paroxetine and venlafaxine XR significantly improved depression in subjects with PD. Both medications were generally safe and well tolerated and did not worsen motor function. This study provides Class I evidence that paroxetine and venlafaxine XR are effective in treating depression in patients with PD.
    Neurology 04/2012; 78(16):1229-36. · 8.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Our previous work has correlated permanent alterations in the rat neurosecretory machinery with epileptogenesis. Such findings highlighted the need for a greater understanding of the molecular mechanisms underlying epilepsy so that novel therapeutic regimens can be designed. To this end, we examined kindling in transgenic mice with a defined reduction of a key element of the neurosecretory machinery: the v-SNARE (vesicle-bound SNAP [soluble NSF attachment protein] receptor), synaptobrevin/vesicle-associated membrane protein 2 (VAMP2). Initial analysis of biochemical markers, which previously displayed kindling-dependent alterations in rat hippocampal synaptosomes, showed similar trends in both wild-type and VAMP2(+/-) mice, demonstrating that kindled rat and mouse models are comparable. This report focuses on the effects that a ~50% reduction of synaptosomal VAMP2 has on the progression of electrical kindling and on glutamate release in hippocampal subregions. Our studies show that epileptogenesis is dramatically attenuated in VAMP2(+/-) mice, requiring both higher current and more stimulations to reach a fully kindled state (two successive Racine stage 5 seizures). Progression through the five identifiable Racine stages was slower and more variable in the VAMP2(+/-) animals compared with the almost linear progression seen in wild-type littermates. Consistent with the expected effects of reducing a major neuronal v-SNARE, glutamate-selective, microelectrode array (MEA) measurements in specific hippocampal subregions of VAMP2(+/-) mice showed significant reductions in potassium-evoked glutamate release. Taken together these studies demonstrate that manipulating the levels of the neurosecretory machinery not only affects neurotransmitter release but also mitigates kindling-induced epileptogenesis.
    Neuroscience 12/2011; 202:77-86. · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To correlate kindling-associated alterations of the neurotransmitter secretory machinery, glutamate release in the trisynaptic hippocampal excitatory pathway, and the behavioral evolution of kindling-induced epileptogenesis. Neurotransmitter release requires the fusion of vesicle and plasma membranes; it is initiated by formation of a stable, ternary complex (7SC) of SNARE [soluble N-ethylmaleimide sensitive factor (NSF) attachment protein receptor] proteins. Quantitative Western blotting was used to monitor levels of 7SC and SNARE regulators [NSF, SV2 (synaptic vesicle protein 2)] in hippocampal synaptosomes from amygdala-kindled animals. Hippocampal synaptic glutamate release was measured in vivo with a unique microelectrode array (MEA) that uses glutamate oxidase to catalyze the breakdown of glutamate into a reporter molecule. Ipsilateral hippocampal accumulation of 7SC developed with onset of amygdalar kindling, but became permanent only in animals stimulated to at least Racine stage 3; the ratio peaked and did not increase with more than two consecutive stage 5 seizures. Chronic 7SC asymmetry was seen in entorhinal cortex and the hippocampal formation, particularly in dentate gyrus (DG) and CA1, but not in the other brain areas examined. There was a strong correlation between asymmetric 7SC accumulation and increased total hippocampal SV2. Following a 30-day latent period, amplitudes of spontaneous synaptic glutamate release were enhanced in ipsilateral DG and reduced in ipsilateral CA3 of kindled animals; increased volleys of synaptic glutamate activity were seen in ipsilateral CA1. Amygdalar kindling is associated with chronic changes in the flow of glutamate signaling in the excitatory trisynaptic pathway and with early but permanent changes in the mechanics of vesicular release in ipsilateral hippocampal formation.
    Epilepsia 12/2011; 53(1):157-67. · 3.96 Impact Factor
  • Fariha Zaheer, John T Slevin
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple genetic and environmental etiologies have been implicated in the pathogenesis of idiopathic Parkinson disease. Recent observations have suggested an association between chronic exposure to trichloroethylene (TCE) and development of clinical parkinsonism. Animal models of TCE exposure have shown nigrostriatal degeneration and the development of parkinsonian features. Animal and cell culture models indicate mitochondrial dysfunction as the probable mechanism, most likely mediated by TaClo, a potential TCE metabolite. These observations endorse the hypothesis that a variety of environmental risk factors may cause nigrostriatal degeneration and clinical parkinsonism in genetically predisposed individuals.
    Neurologic Clinics 08/2011; 29(3):657-65. · 1.34 Impact Factor
  • Source
    Lee X Blonder, John T Slevin
    [Show abstract] [Hide abstract]
    ABSTRACT: In addition to motor symptomatology, idiopathic Parkinson's disease is characterized by emotional dysfunction. Depression affects some 30 to 40 percent of Parkinson patients and other psychiatric co-morbidities include anxiety and apathy. Neuropsychological and neuroimaging studies of emotional dysfunction in Parkinson patients suggest abnormalities involving mesolimbic and mesocortical dopaminergic pathways. There is also evidence suggesting that the interaction between serotonin and dopamine systems is important in the understanding and treatment of mood disorders in Parkinson's disease. In this review we discuss the neuropsychiatric abnormalities that accompany Parkinson's disease and describe their neuropsychological, neuropharmacologic, and neuroimaging concomitants.
    Behavioural neurology 01/2011; 24(3):201-17. · 1.25 Impact Factor
  • NeuroImage 01/2009; 47. · 6.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report age-dependent penetrance estimates for leucine-rich repeat kinase 2 (LRRK2)-related Parkinson's disease (PD) in a large sample of familial PD. The most frequently seen LRRK2 mutation, Gly2019Ser (G2019S), is associated with approximately 5 to 6% of familial PD cases and 1 to 2% of idiopathic cases, making it the most common known genetic cause of PD. Studies of the penetrance of LRRK2 mutations have produced a wide range of estimates, possibly due to differences in study design and recruitment, including in particular differences between samples of familial PD versus sporadic PD. A sample, including 903 affected and 58 unaffected members from 509 families ascertained for having two or more PD-affected members, 126 randomly ascertained PD patients and 197 controls, was screened for five different LRRK2 mutations. Penetrance was estimated in families of LRRK2 carriers with consideration of the inherent bias towards increased penetrance in a familial sample. Thirty-one out of 509 families with multiple cases of PD (6.1%) were found to have 58 LRRK2 mutation carriers (6.4%). Twenty-nine of the 31 families had G2019S mutations while two had R1441C mutations. No mutations were identified among controls or unaffected relatives of PD cases. Nine PD-affected relatives of G2019S carriers did not carry the LRRK2 mutation themselves. At the maximum observed age range of 90 to 94 years, the unbiased estimated penetrance was 67% for G2019S families, compared with a baseline PD risk of 17% seen in the non-LRRK2-related PD families. Lifetime penetrance of LRRK2 estimated in the unascertained relatives of multiplex PD families is greater than that reported in studies of sporadically ascertained LRRK2 cases, suggesting that inherited susceptibility factors may modify the penetrance of LRRK2 mutations. In addition, the presence of nine PD phenocopies in the LRRK2 families suggests that these susceptibility factors may also increase the risk of non-LRRK2-related PD. No differences in penetrance were found between men and women, suggesting that the factors that influence penetrance for LRRK2 carriers are independent of the factors which increase PD prevalence in men.
    BMC Medicine 12/2008; 6:32. · 7.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic variants in embryonic lethal, abnormal vision, Drosophila-like 4 (ELAVL4) have been reported to be associated with onset age of Parkinson disease (PD) or risk for PD affection in Caucasian populations. In the current study we genotyped three single nucleotide polymorphisms in ELAVL4 in a Caucasian study sample consisting of 712 PD patients and 312 unrelated controls from the GenePD study. The minor allele of rs967582 was associated with increased risk of PD (odds ratio = 1.46, nominal P value = 0.011) in the GenePD population. The minor allele of rs967582 was also the risk allele for PD affection or earlier onset age in the previously studied populations. This replication of association with rs967582 in a third cohort further implicates ELAVL4 as a PD susceptibility gene.
    Human Genetics 09/2008; 124(1):95-9. · 4.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ATP/ADP ratio reflects mitochondrial function and has been reported to be influenced by the size of the Huntington disease gene (HD) repeat. Impaired mitochondrial function has long been implicated in the pathogenesis of Parkinson's disease (PD), and therefore, we evaluated the relationship of the HD CAG repeat size to PD onset age in a large sample of familial PD cases. PD affected siblings (n = 495), with known onset ages from 248 families, were genotyped for the HD CAG repeat. Genotyping failed in 11 cases leaving 484 for analysis, including 35 LRRK2 carriers. All cases had HD CAG repeats (range, 15-34) below the clinical range for HD, although 5.2% of the sample (n = 25) had repeats in the intermediate range (the intermediate range lower limit = 27; upper limit = 35 repeats), suggesting that the prevalence of intermediate allele carriers in the general population is significant. No relation between the HD CAG repeat size and the age at onset for PD was found in this sample of familial PD.
    Movement Disorders 08/2008; 23(11):1596-601. · 5.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microtubule-associated protein tau (MAPT) has been associated with several neurodegenerative disorders including forms of parkinsonism and Parkinson disease (PD). We evaluated the association of the MAPT region with PD in a large cohort of familial PD cases recruited by the GenePD Study. In addition, postmortem brain samples from patients with PD and neurologically normal controls were used to evaluate whether the expression of the 3-repeat and 4-repeat isoforms of MAPT, and neighboring genes Saitohin (STH) and KIAA1267, are altered in PD cerebellum. Twenty-one single-nucleotide polymorphisms (SNPs) in the region of MAPT on chromosome 17q21 were genotyped in the GenePD Study. Single SNPs and haplotypes, including the H1 haplotype, were evaluated for association to PD. Relative quantification of gene expression was performed using real-time RT-PCR. After adjusting for multiple comparisons, SNP rs1800547 was significantly associated with PD affection. While the H1 haplotype was associated with a significantly increased risk for PD, a novel H1 subhaplotype was identified that predicted a greater increased risk for PD. The expression of 4-repeat MAPT, STH, and KIAA1267 was significantly increased in PD brains relative to controls. No difference in expression was observed for 3-repeat MAPT. This study supports a role for MAPT in the pathogenesis of familial and idiopathic Parkinson disease (PD). Interestingly, the results of the gene expression studies suggest that other genes in the vicinity of MAPT, specifically STH and KIAA1267, may also have a role in PD and suggest complex effects for the genes in this region on PD risk.
    Neurology 08/2008; 71(1):28-34. · 8.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the molecular mechanisms underlying epilepsy is crucial to designing novel therapeutic regimens. This report focuses on alterations in the secretory machinery responsible for neurotransmitter (NT) release. Soluble N-ethylmaleimide sensitive factor (NSF) attachment protein receptor (SNARE) complexes mediate the fusion of synaptic vesicle and active zone membranes, thus mediating NT secretion. SNARE regulators control where and when SNARE complexes are formed. Previous studies showed an asymmetric accumulation of 7S SNARE complexes (7SC) in the ipsilateral hippocampus of kindled animals. The present studies probe the persistence of 7SC accumulation and the effect of the anticonvulsant, levetiracetam (LEV), on 7SC and SNARE regulators. Quantitative Western blotting was used to monitor levels of 7SC and SNARE regulators in hippocampal synaptosomes from kindled animals both before and after LEV treatment. The asymmetric accumulation of 7SC is present 1-year postamygdalar kindling. The synaptic vesicle protein, synaptic vesicle protein 2 (SV2), a primary LEV-binding protein, and the SNARE regulator Tomosyn increase, whereas NSF decreases in association with this accumulation. Treatment with LEV prevented kindling-induced accumulation of SV2, but did not affect the transient increase of Tomosyn or the long-term decrease NSF. LEV treatment retarded the electrical and behavioral concomitants of amygdalar kindling coincident with a decrease in accumulation of 7SC. The ipsilateral hippocampal accumulation of SNARE complexes is an altered molecular process associated with kindling that appears permanent. Kindling epileptogenesis alters synaptosomal levels of the SNARE regulators: NSF, SV2, and Tomosyn. Concomitant treatment with LEV reverses the kindling-induced 7SC accumulation and increase of SV2.
    Epilepsia 06/2008; 49(10):1749-58. · 3.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To analyze a cluster of 30 industrial coworkers with Parkinson's disease and parkinsonism subjected to long-term (8-33 years) chronic exposure to trichloroethylene. Neurological evaluations were conducted on the 30 coworkers, including a general physical and neurological examination and the Unified Parkinson's Disease Rating Scale. In addition, fine motor speed was quantified and an occupational history survey was administered. Next, animal studies were conducted to determine whether trichloroethylene exposure is neurotoxic to the nigrostriatal dopamine system that degenerates in Parkinson's disease. The experiments specifically analyzed complex 1 mitochondrial neurotoxicity because this is a mechanism of action of other known environmental dopaminergic neurotoxins. The three workers with workstations adjacent to the trichloroethylene source and subjected to chronic inhalation and dermal exposure from handling trichloroethylene-soaked metal parts had Parkinson's disease. Coworkers more distant from the trichloroethylene source, receiving chronic respiratory exposure, displayed many features of parkinsonism, including significant motor slowing. Neurotoxic actions of trichloroethylene were demonstrated in accompanying animal studies showing that oral administration of trichloroethylene for 6 weeks instigated selective complex 1 mitochondrial impairment in the midbrain with concomitant striatonigral fiber degeneration and loss of dopamine neurons. Trichloroethylene, used extensively in industry and the military and a common environmental contaminant, joins other mitochondrial neurotoxins, MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and some pesticides, as a risk factor for parkinsonism.
    Annals of Neurology 03/2008; 63(2):184-92. · 11.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The human movement analysis panel (HMAP) measures separable components of arm motion and simple and complex finger coordination. HMAP testing takes 30min to administer. In separate experiments we have validated the HMAP against the standard grooved pegboard and measures of gait speed, and demonstrated important learning effects over both short durations of days, and longer intervals of months to years in normal subjects of different ages. Stepwise regression demonstrated the strongest correlation between the HMAP complex motor times and pegboard both-hand removal (R(2)=0.52, p=0.002 for dominant and R(2)=0.33, p=0.02 for non-dominant hands). The most consistent and sensitive measure of HMAP motor performance overall was the complex motor time. The HMAP is a short-duration, easily administered, objective quantitative test of motor function, with potential applications in aging, and in Parkinson's Disease and related motor disorders. The HMAP has a smaller version used in primates, so that measurements made in primate models of disease and its treatment are directly comparable to analogous clinical measurements made in the corresponding human disease.
    Journal of Neuroscience Methods 10/2007; 165(2):287-96. · 2.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: N-ethylmaleimide sensitive factor (NSF) is an ATPases associated with various cellular activities protein (AAA), broadly required for intracellular membrane fusion. NSF functions as a SNAP receptor (SNARE) chaperone which binds, through soluble NSF attachment proteins (SNAPs), to SNARE complexes and utilizes the energy of ATP hydrolysis to disassemble them thus facilitating SNARE recycling. While this is a major function of NSF, it does seem to interact with other proteins, such as the AMPA receptor subunit, GluR2, and beta2-AR and is thought to affect their trafficking patterns. New data suggest that NSF may be regulated by transient post-translational modifications such as phosphorylation and nitrosylation. These new aspects of NSF function as well as its role in SNARE complex dynamics will be discussed.
    FEBS Letters 05/2007; 581(11):2140-9. · 3.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glial cell line-derived neurotrophic factor (GDNF) infused unilaterally into the putamen for 6 months has been previously shown to improve significantly motor functions and quality of life measures in 10 patients with Parkinson disease (PD) in a Phase I trial. In the present study the authors report the safety and efficacy of continuous treatment for a minimum of 1 year. After the trial was halted by the drug sponsor, the patients were monitored for an additional 1 year during which the effects of drug withdrawal were evaluated. During the extended study period, patients received a 30-microg/day unilateral intraputamenal infusion of GDNF at a basal infusion rate supplemented with pulsed boluses every 6 hours at a convection-enhanced delivery rate to increase tissue penetration of the protein. When the study was stopped, the delivery system was reprogrammed to deliver sterile saline at the basal infusion rate of 2 microl/hour. The Unified Parkinson's Disease Rating Scale (UPDRS) total scores after 1 year of therapy were improved by 42 and 38% in the off- and on-medication states; the motor UPDRS scores were also improved 45 and 39%, respectively. Benefits from treatment were lost by 9 to 12 months after the cessation of GDNF infusion. The UPDRS scores returned to their baseline and the patients required higher levels of conventional antiparkinsonian drugs to treat symptoms. After 11 months of treatment, the delivery system had to be removed in one patient because of risk of infection. Seven patients developed antibodies to GDNF but without evident clinical sequelae. There was no evidence for GDNF-induced cerebellar toxicity, as evaluated by magnetic resonance imaging and clinical testing. The unilateral administration of GDNF results in significant, sustained bilateral benefits in patients with PD. These improvements are lost within 9 months of drug withdrawal. Safety concerns with GDNF therapy can be closely monitored and managed.
    Journal of Neurosurgery 05/2007; 106(4):614-20. · 3.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Modifications of neurotransmission may contribute to the synchronization of neuronal networks that are a hallmark of epileptic seizures. In this study we examine the synaptosomal proteins involved in neurotransmitter release to determine if alterations in their interactions correlate with the chronic epileptic state. Using quantitative western blotting, we measured the levels of 7S SNARE complexes and SNARE effectors in the effected hippocampi from animals that were electrically kindled through stimulation from one of three different foci. All three kindling paradigms, amygdalar, entorhinal, and septal, were associated with an accumulation of 7S SNARE complexes in the ipsilateral hippocampus, measured 1 month after completion of kindling. Of the eight SNARE effectors examined (alpha-SNAP, NSF, SV2A/B, Munc18a/nSec1, Munc13-1, Complexins 1 and 2, and synaptotagmin I), there was a statistically significant bihemispheric increase of hippocampal SV2 and decrease of NSF upon kindling; neither by itself would be expected to account for the asymmetry of SNARE complex distribution. These data suggest that an ipsilateral hippocampal accumulation of SNARE complexes is a permanent alteration of kindling-induced epilepsy, regardless of stimulation pathway. The significance of these findings toward a molecular understanding of epilepsy will be discussed.
    Epilepsy Research 04/2007; 73(3):266-74. · 2.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Polymorphisms in the glutathione S-transferase pi gene (GSTP1), encoding GSTP1-1, a detoxification enzyme, may increase the risk of Parkinson disease (PD) with exposure to pesticides. Using the GenePD Study sample of familial PD cases, we explored whether GSTP1 polymorphisms were associated with the age at onset of PD symptoms and whether that relation was modified by exposure to herbicides. Seven single-nucleotide polymorphisms (SNPs) were genotyped and tested for association with PD onset age in men in three strata: no exposure to herbicides, residential exposure to herbicides, and occupational exposure to herbicides. Haplotypes were similarly evaluated in stratified analyses. Three SNPs were associated with PD onset age in the group of men occupationally exposed to herbicides. Three additional SNPs had significant trends for the association of PD onset age across the herbicide exposure groups. Haplotype results also provided evidence that the relation between GSTP1 and onset age is modified by herbicide exposure. One haplotype was associated with an approximately 8-years-earlier onset in the occupationally exposed group and a 2.8-years-later onset in the nonexposed group. Herbicide exposure may be an effect modifier of the relation between glutathione S-transferase pi gene polymorphisms and onset age in familial PD.
    Neurology 01/2007; 67(12):2206-10. · 8.30 Impact Factor
  • Source
    Melody Ryan, John T Slevin
    [Show abstract] [Hide abstract]
    ABSTRACT: The signs and symptoms, epidemiology, etiology, pathophysiology, diagnosis, pharmacologic and nonpharmacologic treatments, and options and guidelines for the treatment of restless legs syndrome (RLS) are reviewed. RLS was first described in the 17th century and further characterized in 1945. RLS is a common disorder, occurring in about 10% of the population. Patients with RLS often describe the urge to move, uncomfortable sensations, and pain, which begin or worsen during rest or inactivity such as lying or sitting. Symptoms of RLS make sleeping difficult for many patients, and significant daytime difficulties result from the condition. RLS can either be primary or arise from secondary causes that lead to iron deficiency. There is a familial component in primary RLS, but its underlying mechanisms remain unknown. Of individuals with conditions associated with iron-deficiency states, including pregnancy, renal failure, and anemia, 25-30% may develop RLS. The goals of RLS treatment include improving its symptoms and the patient's quality of life. There are limited data on the treatment of RLS. Pharmacologic therapies include iron replacement, dopaminergic agents (e.g., levodopa), dopamine agonists, anticonvulsants, opioids, and benzodiazepines. There have been no systematic trials of nonpharmacologic therapies for RLS, but good sleep hygiene and avoidance of alcohol, caffeine, and nicotine may improve symptoms. RLS is a common disorder thought to involve abnormal iron metabolism and dopaminergic systems. Nonpharmacologic therapy should be suggested for all patients with RLS, but pharmacologic therapy may be required, and evidence is strongest for levodopa and dopamine agonists.
    American Journal of Health-System Pharmacy 10/2006; 63(17):1599-612. · 1.98 Impact Factor

Publication Stats

1k Citations
325.81 Total Impact Points

Institutions

  • 1985–2011
    • University of Kentucky
      • • Department of Neurology
      • • Department of Molecular & Cellular Biochemistry
      • • Department of Pharmacy Practice & Science
      • • Department of Anatomy & Neurobiology
      • • College of Medicine
      Lexington, KY, United States
  • 2008
    • Boston University
      • Department of Neurology
      Boston, MA, United States
  • 1986–2004
    • Lexington VA Medical Center
      Washington, Washington, D.C., United States
  • 1991
    • Lexington Medical Center
      West Columbia, South Carolina, United States
  • 1988
    • Beth Israel Deaconess Medical Center
      • Department of Neurology
      Boston, MA, United States