Nyaya Kelkar

Howard Hughes Medical Institute, Ashburn, Virginia, United States

Are you Nyaya Kelkar?

Claim your profile

Publications (5)44.77 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The c-Jun NH2-terminal kinase (JNK)-interacting protein (JIP) group of scaffold proteins (JIP1, JIP2, and JIP3) can interact with components of the JNK signaling pathway and potently activate JNK. Here we describe the identification of a fourth member of the JIP family. The primary sequence of JIP4 is most closely related to that of JIP3. Like other members of the JIP family of scaffold proteins, JIP4 binds JNK and also the light chain of the microtubule motor protein kinesin-1. However, the function of JIP4 appears to be markedly different from other JIP proteins. Specifically, JIP4 does not activate JNK signaling. In contrast, JIP4 serves as an activator of the p38 mitogen-activated protein (MAP) kinase pathway by a mechanism that requires the MAP kinase kinases MKK3 and MKK6. The JIP4 scaffold protein therefore appears to be a new component of the p38 MAP kinase signaling pathway.
    Molecular and Cellular Biology 05/2005; 25(7):2733-43. · 5.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The murine JNK-interacting protein 3 (JIP3) protein (also known as JSAP1) is expressed exclusively in neurons and has been identified as a scaffold protein for the c-Jun NH2-terminal kinase (JNK) signaling pathway and as an adapter protein for cargo transport by the microtubule motor protein kinesin. To investigate the physiological function of JIP3, we examined the effect of Jip3 gene disruption in mice. The Jip3-/- mice were unable to breathe and died shortly after birth. Microscopic analysis demonstrated that Jip3 gene disruption causes severe defects in the morphogenesis of the telencephalon. Jip3-/- mice lack the telencephalic commissure, a major connection between the left and right hemispheres of the brain. The central nervous system abnormalities of Jip3-/- mice may be accounted for in part by a reduction in signal transduction by RhoA and its effector ROCK.
    Proceedings of the National Academy of Sciences 09/2003; 100(17):9843-8. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The p38 mitogen-activated protein kinase (MAPK) is activated in vitro by three different protein kinases: MKK3, MKK4, and MKK6. To examine the relative roles of these protein kinases in the mechanism of p38 MAP kinase activation in vivo, we examined the effect of disruption of the murine Mkk3, Mkk4, and Mkk6 genes on the p38 MAPK signaling pathway. We show that MKK3 and MKK6are essential for tumor necrosis factor-stimulated p38 MAPK activation. In contrast, ultraviolet radiation-stimulated p38 MAPK activation was mediated by MKK3, MKK4, and MKK6. Loss of p38 MAPK activation in the mutant cells was associated with defects in growth arrest and increased tumorigenesis. These data indicate that p38 MAPK is regulated by the coordinated and selective actions of three different protein kinases in response to cytokines and exposure to environmental stress.
    Genes & Development 09/2003; 17(16):1969-78. · 12.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The c-Jun N-terminal kinase (JNK) signal transduction pathway is activated in response to the exposure of cells to environmental stress. Components of the JNK signaling pathway interact with the JIP1 scaffold protein. JIP1 is located in the neurites of primary hippocampal neurons. However, in response to stress, JIP1 accumulates in the soma together with activated JNK and phosphorylated c-Jun. Disruption of the Jip1 gene in mice by homologous recombination prevented JNK activation caused by exposure to excitotoxic stress and anoxic stress in vivo and in vitro. These data show that the JIP1 scaffold protein is a critical component of a MAP-kinase signal transduction pathway.
    Genes & Development 10/2001; 15(18):2421-32. · 12.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The c-Jun NH(2)-terminal kinase (JNK) group of mitogen-activated protein kinases (MAPKs) is activated in response to the treatment of cells with inflammatory cytokines and by exposure to environmental stress. JNK activation is mediated by a protein kinase cascade composed of a MAPK kinase and a MAPK kinase kinase. Here we describe the molecular cloning of a putative molecular scaffold protein, JIP3, that binds the protein kinase components of a JNK signaling module and facilitates JNK activation in cultured cells. JIP3 is expressed in the brain and at lower levels in the heart and other tissues. Immunofluorescence analysis demonstrated that JIP3 was present in the cytoplasm and accumulated in the growth cones of developing neurites. JIP3 is a member of a novel class of putative MAPK scaffold proteins that may regulate signal transduction by the JNK pathway.
    Molecular and Cellular Biology 03/2000; 20(3):1030-43. · 5.04 Impact Factor