M A Beaven

National Heart, Lung, and Blood Institute, 베서스다, Maryland, United States

Are you M A Beaven?

Claim your profile

Publications (234)1416.8 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin 33 (IL-33) released from damaged cells plays a central role in allergic inflammation by acting through its membrane-bound receptor, ST2 receptor (ST2L). IL-33 activity can be neutralized by the soluble spliced variant of ST2 (sST2) which has been associated with allergic inflammation but its source is not well defined. We investigated whether mast cells (MCs) are a significant source of sST2 following activation through FcεRI or ST2. We find that antigen and IL-33 induce substantial production and release of sST2 from human and mouse MCs in culture and do so synergistically when added together or in combination with stem cell factor. Moreover, increases in circulating sST2 during anaphylaxis in mice were dependent on the presence of MCs. Human MCs activated via FcεRI failed to generate IL-33 and IL-33 produced by mouse bone marrow-derived MCs was retained within the cells. Therefore, FcεRI-mediated sST2 production is independent of MC-derived IL-33 acting in an autocrine manner. These results are consistent with the conclusion that both mouse and human MCs when activated are a significant inducible source of sST2 but not IL-33 and thus have the ability to modulate the biologic impact of IL-33 produced locally by other cell types during allergic inflammation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
    European Journal of Immunology 08/2015; DOI:10.1002/eji.201545501 · 4.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Subsets of B cells inhibit various immune responses through their production of the cytokine interleukin-10 (IL-10). We found that IL-10-producing CD5(+) B cells suppressed the immunoglobulin E (IgE)- and antigen-mediated activation of mast cells in vitro as well as allergic responses in mice in an IL-10-dependent manner. Furthermore, the suppressive effect of these B cells on mast cells in vitro and in vivo depended on direct cell-to-cell contact through the costimulatory receptor CD40 on CD5(+) B cells and the CD40 ligand on mast cells. This contact enhanced the production of IL-10 by the CD5(+) B cells. Through activation of the Janus-activated kinase-signal transducer and activator of transcription 3 pathway, IL-10 decreased the abundance of the kinases Fyn and Fgr and inhibited the activation of the downstream kinase Syk in mast cells. Together, these findings suggest that an important function of IL-10-producing CD5(+) B cells is inhibiting mast cells and IgE-mediated allergic responses. Copyright © 2015, American Association for the Advancement of Science.
    Science Signaling 03/2015; 8(368):ra28. DOI:10.1126/scisignal.2005861 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MS4A family members differentially regulate the cell cycle and aberrant, or loss of, expression of MS4A family proteins has been observed in colon and lung cancer. However, the precise functions of MS4A family proteins and their mechanistic interactions remain unsolved. Here we report that MS4A4 facilitates trafficking of the receptor tyrosine kinase KIT through endocytic recycling rather than degradation pathways by a mechanism that involves recruitment of KIT to caveolin-1 enriched microdomains. Silencing of MS4A4 in human mast cells altered ligand-induced KIT endocytosis pathways and reduced receptor recycling to the cell surface, thus promoting KIT signaling in the endosomes whilst reducing that in the plasma membrane as exemplified by Akt and PLCγ1 phosphorylation respectively. The altered endocytic trafficking of KIT also resulted in an increase in SCF-induced mast cell proliferation and migration, which may reflect altered signaling in these cells. Our data reveal a novel function for MS4A family proteins in regulating trafficking and signaling, which could have implications in both proliferative and immunological diseases. © 2015 by The American Society for Cell Biology.
    Molecular Biology of the Cell 02/2015; 26(9). DOI:10.1091/mbc.E14-07-1221 · 4.47 Impact Factor

  • Journal of Allergy and Clinical Immunology 02/2015; 135(2):AB389. DOI:10.1016/j.jaci.2014.12.1900 · 11.48 Impact Factor
  • Glenn Cruse · Michael A. Beaven · Stephen C. Music · Peter Bradding · Dean D. Metcalfe ·

    Journal of Allergy and Clinical Immunology 02/2015; 135(2):AB240. DOI:10.1016/j.jaci.2014.12.1718 · 11.48 Impact Factor

  • Journal of Allergy and Clinical Immunology 02/2015; 135(2):AB64. DOI:10.1016/j.jaci.2014.12.1143 · 11.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rictor is a regulatory component of the mammalian target of rapamycin (mTOR) complex 2 (mTORC2). We have previously demonstrated that rictor expression is substantially downregulated in terminally differentiated mast cells as compared with their immature or transformed counterparts. However, it is not known whether rictor and mTORC2 regulate mast cell activation. In this article, we show that mast cell degranulation induced by aggregation of high-affinity receptors for IgE (FcεRI) is negatively regulated by rictor independently of mTOR. We found that inhibition of mTORC2 by the dual mTORC1/mTORC2 inhibitor Torin1 or by downregulation of mTOR by short hairpin RNA had no impact on FcεRI-induced degranulation, whereas downregulation of rictor itself resulted in an increased sensitivity (∼50-fold) of cells to FcεRI aggregation with enhancement of degranulation. This was linked to a similar enhancement in calcium mobilization and cytoskeletal rearrangement attributable to increased phosphorylation of LAT and PLCγ1. In contrast, degranulation and calcium responses elicited by the G protein-coupled receptor ligand, C3a, or by thapsigargin, which induces a receptor-independent calcium signal, was unaffected by rictor knockdown. Overexpression of rictor, in contrast with knockdown, suppressed FcεRI-mediated degranulation. Taken together, these data provide evidence that rictor is a multifunctional signaling regulator that can regulate FcεRI-mediated degranulation independently of mTORC2.
    The Journal of Immunology 11/2014; 193(12). DOI:10.4049/jimmunol.1303495 · 4.92 Impact Factor
  • Source

    Journal of Allergy and Clinical Immunology 02/2014; 133(2):AB58. DOI:10.1016/j.jaci.2013.12.232 · 11.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The protein prohibitin (PHB) is implicated in diverse cellular processes, including cell signaling, transcriptional control, and mitochondrial function. We found that PHB was abundant in the intracellular granules of mast cells, which are critical for allergic responses to antigens. Thus, we investigated whether PHB played a role in signaling mediated by the high-affinity receptor for antigen-bound immunoglobulin E (IgE), FcεRI. PHB-specific small interfering RNAs (siRNAs) inhibited antigen-mediated signaling, degranulation, and cytokine secretion by mast cells in vitro. Knockdown of PHB inhibited the antigen-dependent association of the tyrosine kinase Syk with FcεRI and inhibited the activation of Syk. Fractionation studies revealed that PHB translocated from intracellular granules to plasma membrane lipid rafts in response to antigen, and knockdown of PHB suppressed the movement of FcεRIγ and Syk into lipid rafts. Tyrosine phosphorylation of PHB by Lyn was observed early after exposure to antigen, and point mutations in PHB indicated that Tyr(114) and Tyr(259) were required for the recruitment of Syk to FcεRIγ and mast cell activation. In mice, PHB-specific siRNAs inhibited antigen-initiated mast cell degranulation, passive cutaneous anaphylaxis, and passive systemic anaphylaxis. Together, these results suggest that PHB is essential for FcεRI-mediated mast cell activation and allergic responses in vivo, raising the possibility that PHB might serve as a therapeutic target for the treatment of allergic diseases.
    Science Signaling 09/2013; 6(292):ra80. DOI:10.1126/scisignal.2004098 · 6.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Following antigen/IgE-mediated aggregation of high affinity IgE-receptors (FcεRI), mast cells (MCs) degranulate and release inflammatory mediators leading to the induction of allergic reactions including anaphylaxis. Migration of MCs to resident tissues and sites of inflammation is regulated by tissue chemotactic factors such as stem cell factor (SCF (KIT ligand)). Despite inducing similar early signaling events to antigen, chemotactic factors, including SCF, produce minimal degranulation in the absence of other stimuli. We therefore investigated whether processes regulating MC chemotaxis are rate limiting for MC mediator release. To investigate this issue, we disrupted actin polymerization, a requirement for MC chemotaxis, with latrunculin B and cytochalasin B, then examined chemotaxis and mediator release in human (hu)MCs induced by antigen or SCF. As expected, such disruption minimally affected early signaling pathways, but attenuated SCF-induced huMC chemotaxis. In contrast, SCF, in the absence of other stimuli, induced substantial degranulation in a concentration-dependent manner following actin disassembly. It also moderately enhanced antigen-mediated huMC degranulation which was further enhanced in the presence of SCF. These observations suggest that processes regulating cell migration limit MC degranulation as a consequence of cytoskeletal reorganization. This article is protected by copyright. All rights reserved.
    European Journal of Immunology 07/2013; 43(7). DOI:10.1002/eji.201243214 · 4.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human linkage analyses have implicated the MS4A2-containing gene locus (encoding FcεRIβ) as a candidate for allergy susceptibility. We have identified a truncation of FcεRIβ (t-FcεRIβ) in humans that contains a putative calmodulin-binding domain and thus, we sought to identify the role of this variant in mast cell function. We determined that t-FcεRIβ is critical for microtubule formation and degranulation and that it may perform this function by trafficking adaptor molecules and kinases to the pericentrosomal and Golgi region in response to Ca(2+) signals. Mutagenesis studies suggest that calmodulin binding to t-FcεRIβ in the presence of Ca(2+) could be critical for t-FcεRIβ function. In addition, gene targeting of t-FcεRIβ attenuated microtubule formation, degranulation, and IL-8 production downstream of Ca(2+) signals. Therefore, t-FcεRIβ mediates Ca(2+)-dependent microtubule formation, which promotes degranulation and cytokine release. Because t-FcεRIβ has this critical function, it represents a therapeutic target for the downregulation of allergic inflammation.
    Immunity 04/2013; 38(5). DOI:10.1016/j.immuni.2013.04.007 · 21.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Antigen-mediated mast cell (MC) degranulation is the critical early event in the induction of allergic reactions. Transient receptor potential channels (TRPC), particularly TRPC1, are thought to contribute to such MC activation. To explore the contribution of TRPC1 in MC-driven allergic reactions, we examined antigen-mediated anaphylaxis in Trpc1(-/-) and WT mice, and TRPC1 involvement in the activation of MCs derived from the bone marrow (BMMCs) of these mice. In vivo, we observed a similar induction of passive systemic anaphylaxis in the Trpc1(-/-) mice compared to WT controls. Nevertheless, there was delayed recovery from this response in Trpc1(-/-) mice. Furthermore, contrary to expectations, Trpc1(-/-) BMMCs responded to antigen with enhanced calcium signaling but with little defect in degranulation or associated signaling. In contrast, antigen-mediated production of TNF-α, and other cytokines, was enhanced in the Trpc1(-/-) BMMCs, as were calcium-dependent events required for these responses. Additionally, circulating levels of TNF-α in response to antigen were preferentially elevated in the Trpc1(-/-) mice, and administration of an anti-TNF-α antibody blocked the delay in recovery from anaphylaxis in these mice. These data thus provide evidence that, in this model, TRPC1 promotes recovery from the anaphylactic response by repressing antigen-mediated TNF-α release from MCs.
    Cell calcium 03/2013; 53(5-6). DOI:10.1016/j.ceca.2013.02.001 · 3.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Activation of KIT, by its ligand, stem cell factor (SCF), results in the initiation of signal transduction pathways that influence mast cell survival and proliferation. Activating mutations in KIT have thus been linked to clonal MC proliferation associated with systemic mastocytosis. SCF also modulates MC function by inducing MC chemotaxis and by potentiating antigen (Ag)/IgE-mediated MC degranulation. Thus, mutations in KIT also have the potential to affect these processes in allergic and other mast cell-related diseases. Studies to determine how native and mutated KIT may modulate MC chemotaxis and activation have, however, been limited due to the lack of availability of a suitable functional MC line lacking native KIT which would allow transduction of KIT constructs. Here we describe a novel mouse MC line which allows the study of normal and mutated KIT constructs. These cells originated from a bone marrow-derived mouse MC culture out of which a rapidly dividing mast cell sub-population spontaneously arose. Over time, these cells lost KIT expression while continuing to express functional high affinity receptors for IgE (FcεRI). As a consequence, these cells degranulated in response to Ag/IgE but did not migrate nor show any evidence of potentiation of Ag/IgE degranulation in response to SCF. Retroviral transduction of the cells with a human (hu)KIT construct resulted in surface expression of huKIT which responded to huSCF by potentiation of Ag/IgE-induced degranulation and chemotaxis. This cell line thus presents a novel system to delineate how MC function is modulated by native and mutated KIT and for the identification of novel inhibitors of these processes.
    Journal of immunological methods 01/2013; 390(1). DOI:10.1016/j.jim.2013.01.008 · 1.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: IL-33 is elevated in afflicted tissues of patients with mast cell (MC)-dependent chronic allergic diseases. Based on its acute effects on mouse MCs, IL-33 is thought to play a role in the pathogenesis of allergic disease through MC activation. However, the manifestations of prolonged IL-33 exposure on human MC function, which best reflect the conditions associated with chronic allergic disease, are unknown. In this study, we found that long-term exposure of human and mouse MCs to IL-33 results in a substantial reduction of MC activation in response to Ag. This reduction required >72 h exposure to IL-33 for onset and 1-2 wk for reversion following IL-33 removal. This hyporesponsive phenotype was determined to be a consequence of MyD88-dependent attenuation of signaling processes necessary for MC activation, including Ag-mediated calcium mobilization and cytoskeletal reorganization, potentially as a consequence of downregulation of the expression of phospholipase Cγ(1) and Hck. These findings suggest that IL-33 may play a protective, rather than a causative, role in MC activation under chronic conditions and, furthermore, reveal regulated plasticity in the MC activation phenotype. The ability to downregulate MC activation in this manner may provide alternative approaches for treatment of MC-driven disease.
    The Journal of Immunology 12/2012; 190(2). DOI:10.4049/jimmunol.1201576 · 4.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: DJ-1 is an antioxidant protein known to reduce levels of reactive oxygen species (ROS), but its presence or function in mast cells and allergic diseases is unknown. OBJECTIVES: We sought to determine the role and mechanism of DJ-1 in allergic responses in vitro and in vivo. METHODS: ROS and DJ-1 levels in serum or culture medium were measured with ELISA kits. The role of DJ-1 was evaluated in mast cell cultures and passive cutaneous anaphylaxis in normal or DJ-1 knockout (KO) mice. The mechanism of DJ-1 action was examined by using immunoblotting, immunoprecipitation, RT-PCR, and other molecular biological approaches. RESULTS: Patients with atopic dermatitis had increased levels of ROS and diminished levels of DJ-1. DJ-1 KO mice exhibited enhanced passive cutaneous anaphylaxis and augmented ROS levels in sera and bone marrow-derived mast cells (BMMCs). Furthermore, antigen-induced degranulation and production of TNF-α and IL-4 were significantly amplified in DJ-1 KO and anti-DJ-1 small interfering RNA-transfected BMMCs compared with that seen in wild-type (WT) BMMCs. Studies with these cells and BMMCs transfected with small interfering RNAs against the phosphatases Src homology domain 2-containing protein tyrosine phosphatase (SHP) 1 and SHP-2 revealed that the DJ-1 KO phenotype could be attributed to suppression of SHP-1 activity and enhancement of SHP-2 activity, leading to strengthened signaling through linker for activation of T cells, phospholipase Cγ, and mitogen-activated protein kinases. CONCLUSIONS: A deficiency or constitutive activation of DJ-1 can have implications in mast cell-driven allergic diseases, such as asthma and anaphylaxis.
    The Journal of allergy and clinical immunology 11/2012; 131(6). DOI:10.1016/j.jaci.2012.10.012 · 11.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mast cells, activated by Ag via FcεRI, release an array of proinflammatory mediators that contribute to allergic disorders, such as asthma and anaphylaxis. The KIT ligand, stem cell factor (SCF), is critical for mast cell expansion, differentiation, and survival, and under acute conditions, it enhances mast cell activation. However, extended SCF exposure in vivo conversely protects against fatal Ag-mediated anaphylaxis. In investigating this dichotomy, we identified a novel mode of regulation of the mast cell activation phenotype through SCF-mediated programming. We found that mouse bone marrow-derived mast cells chronically exposed to SCF displayed a marked attenuation of FcεRI-mediated degranulation and cytokine production. The hyporesponsive phenotype was not a consequence of altered signals regulating calcium flux or protein kinase C, but of ineffective cytoskeletal reorganization with evidence implicating a downregulation of expression of the Src kinase Hck. Collectively, these findings demonstrate a major role for SCF in the homeostatic control of mast cell activation with potential relevance to mast cell-driven disease and the development of novel approaches for the treatment of allergic disorders.
    The Journal of Immunology 04/2012; 188(11):5428-37. DOI:10.4049/jimmunol.1103366 · 4.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Resveratrol, a polyphenol in red wine, has been reported as a calorie restriction mimetic with potential antiaging and antidiabetogenic properties. It is widely consumed as a nutritional supplement, but its mechanism of action remains a mystery. Here, we report that the metabolic effects of resveratrol result from competitive inhibition of cAMP-degrading phosphodiesterases, leading to elevated cAMP levels. The resulting activation of Epac1, a cAMP effector protein, increases intracellular Ca(2+) levels and activates the CamKKβ-AMPK pathway via phospholipase C and the ryanodine receptor Ca(2+)-release channel. As a consequence, resveratrol increases NAD(+) and the activity of Sirt1. Inhibiting PDE4 with rolipram reproduces all of the metabolic benefits of resveratrol, including prevention of diet-induced obesity and an increase in mitochondrial function, physical stamina, and glucose tolerance in mice. Therefore, administration of PDE4 inhibitors may also protect against and ameliorate the symptoms of metabolic diseases associated with aging.
    Cell 02/2012; 148(3):421-33. DOI:10.1016/j.cell.2012.01.017 · 32.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mast cells are considered the primary initiators of allergic diseases as a consequence of the release of multiple inflammatory mediators on activation. Although predominately activated through antigen-mediated aggregation of IgE-occupied-FcɛRI, they can also be induced to release mediators by other receptors and environmental stimuli. Based on studies conducted in the RBL 2H3 rodent mast cell line, the transient receptor potential melastatin 8 (TRPM8) cation channel has been implicated in the activation of mast cells in response to cold and, by inference, the development of urticaria. Here we investigated the expression and role of TRPM8 receptor, in both human and mouse non-transformed cells, with the aim of exploring the potential link between TRPM8 and the pathology of cold urticaria in humans. Although expressed in mouse mast cells, we found no evidence of TRPM8 expression in human mast cells or functional mutations in TRPM8 in cold urticaria patients. Furthermore, neither mouse nor human primary cultured mast cells degranulated in response to cold challenge or TRPM8 agonists and mast cell reactivity was unaffected in Trpm8(-/-) mice. From these data, we conclude that TRPM8 is unlikely to directly regulate mast cell activation in cold urticaria. Thus, alternative mechanisms likely exist for the pathogenesis of this disease.
    Cell calcium 09/2011; 50(5):473-80. DOI:10.1016/j.ceca.2011.08.003 · 3.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mast cells are critical for various allergic disorders. Mast cells express Src family kinases, which relay positive and negative regulatory signals by Ag. Lyn, for example, initiates activating signaling events, but it also induces inhibitory signals. Fyn and Hck are reported to be positive regulators, but little is known about the roles of other Src kinases, including Fgr, in mast cells. In this study, we define the role of Fgr. Endogenous Fgr associates with FcεRI and promotes phosphorylation of Syk, Syk substrates, which include linkers for activation of T cells, SLP76, and Gab2, and downstream targets such as Akt and the MAPKs in Ag-stimulated mast cells. As a consequence, Fgr positively regulates degranulation, production of eicosanoids, and cytokines. Fgr and Fyn appeared to act in concert, as phosphorylation of Syk and degranulation are enhanced by overexpression of Fgr and further augmented by overexpression of Fyn but are suppressed by overexpression of Lyn. Moreover, knockdown of Fgr by small interfering RNAs (siRNAs) further suppressed degranulation in Fyn-deficient bone marrow-derived mast cells. Overexpression of Fyn or Fgr restored phosphorylation of Syk and partially restored degranulation in Fyn-deficient cells. Additionally, knockdown of Fgr by siRNAs inhibited association of Syk with FcεRIγ as well as the tyrosine phosphorylation of FcεRIγ. Of note, the injection of Fgr siRNAs diminished the protein level of Fgr in mice and simultaneously inhibited IgE-mediated anaphylaxis. In conclusion, Fgr positively regulates mast cell through activation of Syk. These findings help clarify the interplay among Src family kinases and identify Fgr as a potential therapeutic target for allergic diseases.
    The Journal of Immunology 08/2011; 187(4):1807-15. DOI:10.4049/jimmunol.1100296 · 4.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reports indicate that prostaglandin (PG)E(2) markedly enhances antigen-mediated degranulation in mouse bone marrow-derived mast cells (BMMCs) but not in human mast cells (HuMCs). We have examined the underlying mechanism(s) for this disparity in HuMCs derived from the peripheral blood of multiple donors in addition to mouse BMMCs. HuMCs from half of these donors failed to respond to PGE(2) and the PGE(2) EP3 receptor agonist, sulprostone. However, HuMCs from the remaining donors and the LAD2 human MC line responded to PGE(2) and sulprostone with marked enhancement of antigen-mediated degranulation and IL-8 production in a similar manner to that observed in mouse BMMCs. The EP2 agonist, butaprost, failed to modulate antigen-mediated responses in any type of MCs. These distinct phenotypes could not be explained by differences in EP2 or EP3 expression nor by differences in the ability of PGE(2) to elevate levels of cAMP, a signal recognized to down-regulate mast cell activation. Moreover, both responder and non-responder HuMC populations exhibited similar activation of phosphatidylinositol 3-kinase, and MAP kinases. However, translocation of PLCγ(1) to the cell membrane and the associated calcium signal were enhanced only in the responder HuMC population indicating that the link between EP3 and PLCγ is impaired in the non-responder HuMCs. CONCLUSIONS: These data provide a cautionary note for the translating of observations in the mouse to human mast cell-dependent disorders, but may also provide a basis for examining the effects of co-activating receptors in patients susceptible to allergic conditions.
    Immunology letters 07/2011; 141(1):45-54. DOI:10.1016/j.imlet.2011.07.002 · 2.51 Impact Factor

Publication Stats

10k Citations
1,416.80 Total Impact Points


  • 1970-2015
    • National Heart, Lung, and Blood Institute
      • Genetics and Development Biology Center
      베서스다, Maryland, United States
  • 1975-2008
    • National Institute of Allergy and Infectious Diseases
      • Laboratory of Parasitic Diseases (LPD)
      Maryland, United States
  • 2006
    • University of Texas at Dallas
      Richardson, Texas, United States
  • 1966-2004
    • National Institutes of Health
      • • Laboratory of Cellular and Molecular Immunology
      • • Chemical Biology Laboratory
      Maryland, United States
  • 2003
    • Medical College of Wisconsin
      Milwaukee, Wisconsin, United States
    • Harvard University
      Cambridge, Massachusetts, United States
  • 1996
    • National Institute of Arthritis and Musculoskeletal and Skin Diseases
      Maryland, United States
  • 1989
    • National Institute of Child Health and Human Development
      베서스다, Maryland, United States
  • 1983-1984
    • University of Cambridge
      • Department of Biochemistry
      Cambridge, England, United Kingdom
  • 1981
    • Harvard Medical School
      Boston, Massachusetts, United States
  • 1976
    • National Institute of Allergy and Infectious Disease
      Maryland, United States