Michael Maceyka

Virginia Commonwealth University, Ричмонд, Virginia, United States

Are you Michael Maceyka?

Claim your profile

Publications (41)344.2 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Sphingosine 1-phosphate (S1P) is a pleiotropic bioactive sphingolipid metabolite that regulates numerous processes important for immune responses. S1P is made within cells and must be transported out of cells to exert its effects through activation of 5 specific cell surface GPCRs in an autocrine or paracrine fashion. Spinster 2 (Spns2) transports S1P out of cells, and its deletion in mice reduces circulating levels of S1P, alters immune cell trafficking, and induces lymphopenia. Here we examined the effects of Spns2 deletion on adaptive immune responses and in autoimmune disease models. Airway inflammation and hypersensitivity as well as delayed-type contact hypersensitivity were attenuated in Spns2(-/-) mice. Similarly, Spns2 deletion reduced dextran sodium sulfate- and oxazolone-induced colitis. Intriguingly, Spns2(-/-) mice were protected from the development of experimental autoimmune encephalopathy, a model of the autoimmune disease multiple sclerosis. Deletion of Spns2 also strongly alleviated disease development in collagen-induced arthritis. These results point to a broad role for Spns2-mediated S1P transport in the initiation and development of adaptive immune related disorders.-Donoviel, M. S., Hait, N. C., Ramachandran, S., Maceyka, M., Takabe, K., Milstien, S., Oravecz, T., Spiegel, S. Spinster 2, a sphingosine-1-phosphate transporter, plays a critical role in inflammatory and autoimmune diseases.
    The FASEB Journal 09/2015; DOI:10.1096/fj.15-274936 · 5.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Asthma, a chronic inflammatory condition defined by episodic shortness of breath with expiratory wheezing and cough, is a serious health concern affecting more than 250 million persons. Genome-wide association studies have identified ORM (yeast)-like protein isoform 3 (ORMDL3) as a gene associated with susceptibility to asthma. Although its yeast ortholog is a negative regulator of de novo ceramide biosynthesis, how ORMDL3 contributes to asthma pathogenesis is not known. We sought to decipher the molecular mechanism for the pathologic functions of ORMDL3 in asthma and the relationship to its evolutionarily conserved role in regulation of ceramide homeostasis. We determined the relationship between expression of ORMDL3 and ceramide in epithelial and inflammatory cells and in asthma pathogenesis in mice. Although small increases in ORMDL3 expression decrease ceramide levels, remarkably, higher expression in lung epithelial cells and macrophages in vitro and in vivo increased ceramide production, which promoted chronic inflammation, airway hyperresponsiveness, and mucus production during house dust mite-induced allergic asthma. Moreover, nasal administration of the immunosuppressant drug FTY720/fingolimod reduced ORMDL3 expression and ceramide levels and mitigated airway inflammation and hyperreactivity and mucus hypersecretion in house dust mite-challenged mice. Our findings demonstrate that overexpression of ORMDL3 regulates ceramide homeostasis in cells in a complex manner and suggest that local FTY720 administration might be a useful therapeutic intervention for the control of allergic asthma. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
    The Journal of allergy and clinical immunology 04/2015; DOI:10.1016/j.jaci.2015.02.031 · 11.48 Impact Factor
  • Jason Newton · Santiago Lima · Michael Maceyka · Sarah Spiegel
    Experimental Cell Research 03/2015; 333(2). DOI:10.1016/j.yexcr.2015.02.025 · 3.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The tumor necrosis factor (TNF) receptor family member CD40 plays an essential role in the activation of antigen-presenting cells, B cell maturation, and immunoglobulin (Ig) class switching critical for adaptive immunity. Although the bioactive sphingolipid metabolite sphingosine-1-phosphate (S1P) and the kinase that produces it, sphingosine kinase 1 (SphK1), have long been implicated in the actions of TNF mediated by engagement of TNFR1, nothing is yet known of their role in CD40-mediated events. We have now found that ligation of CD40 activates and translocates SphK1 to the plasma membrane, leading to generation of S1P. SphK1 inhibition in human tonsil B cells, as well as inhibition or deletion of SphK1 in mouse splenic B cells, significantly reduced CD40-mediated Ig class switching and plasma cell differentiation ex vivo. Optimal activation of downstream CD40 signaling pathways, including NF-κB, p38, and JNK, also required SphK1. In mice treated with a SphK1 inhibitor or in SphK1(-/-) mice, isotype switching to antigen-specific IgE was decreased in vivo by 70 and 55%, respectively. Our results indicate that SphK1 is important for CD40-mediated B cell activation and regulation of humoral responses and suggest that targeting SphK1 might be a useful therapeutic approach to control antigen-specific IgE production.-Kim, E. Y., Sturgill, J. L., Hait, N. C., Avni, D., Valencia, E. C., Maceyka, M., Lima, S., Allegood, J., Huang, W.-C., Zhang, S., Milstien, S., Conrad, D., Spiegel, S. Role of sphingosine kinase 1 and sphingosine-1-phosphate in CD40 signaling and IgE class switching.
    The FASEB Journal 07/2014; 28(10). DOI:10.1096/fj.14-251611 · 5.04 Impact Factor
  • Michael Maceyka · Sarah Spiegel
    [Show abstract] [Hide abstract]
    ABSTRACT: Sphingolipids are ubiquitous building blocks of eukaryotic cell membranes. Progress in our understanding of sphingolipid metabolism, state-of-the-art sphingolipidomic approaches and animal models have generated a large body of evidence demonstrating that sphingolipid metabolites, particularly ceramide and sphingosine-1-phosphate, are signalling molecules that regulate a diverse range of cellular processes that are important in immunity, inflammation and inflammatory disorders. Recent insights into the molecular mechanisms of action of sphingolipid metabolites and new perspectives on their roles in regulating chronic inflammation have been reported. The knowledge gained in this emerging field will aid in the development of new therapeutic options for inflammatory disorders.
    Nature 06/2014; 510(7503):58-67. DOI:10.1038/nature13475 · 41.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The reversible inhibition of mitochondrial respiration by complex I inhibition at the onset of reperfusion decreases injury in buffer perfused hearts. Administration of acidic reperfusate for a brief period at reperfusion decreases cardiac injury. We asked if acidification treatment decreased cardiac injury during reperfusion by inhibiting complex I. Exposure of isolated mouse heart mitochondria to acidic buffer decreased the complex I substrate stimulated respiration, whereas respiration with complex II substrates was unaltered. Evidence of the rapid and reversible inhibition of complex I by an acidic environment was obtained at the level of isolated complex, intact mitochondria and in situ mitochondria in digitonin permeabilized cardiac myocytes. Moreover, ischemia-damaged complex I was also reversibly inhibited by an acidic environment. In the buffer-perfused mouse heart, reperfusion with pH 6.6 buffer for the initial 5 min decreased infarction. Compared to untreated hearts, acidification treatment markedly decreased the mitochondrial generation of reactive oxygen species and improved mitochondrial calcium retention capacity and inner mitochondrial membrane integrity. The decrease in infarct size achieved by acidic reperfusion approximates the reduction obtained by a reversible, partial blockade of complex I at reperfusion. Extracellular acidification decreases cardiac injury during reperfusion in part via the transient and reversible inhibition of complex I leading to a reduction of oxyradical generation accompanied by a decreased susceptibility to mitochondrial permeability transition during early reperfusion.
    AJP Cell Physiology 04/2014; 306(12). DOI:10.1152/ajpcell.00241.2013 · 3.78 Impact Factor
  • Source
    Yasuyuki Kihara · Michael Maceyka · Sarah Spiegel · Jerold Chun
    [Show abstract] [Hide abstract]
    ABSTRACT: Lysophospholipids encompass a diverse range of small, membrane-derived phospholipids that act as extracellular signals. The signaling properties are mediated by 7-transmembrane, G protein-coupled receptors (GPCRs), constituent members of which have continued to be identified after their initial discovery in the mid-1990s. Here we briefly review this class of receptors, with a particular emphasis on their protein and gene nomenclatures that reflect their cognate ligands. There are six lysophospholipid receptors that interact with lysophosphatidic acid (LPA): protein names LPA1 – LPA6, and italicized gene names LPAR1-LPAR6 (human) and Lpar1-Lpar6 (non-human). There are five sphingosine 1-phosphate (S1P) receptors: protein names S1P1-S1P5, with gene names S1PR1-S1PR5 (human), S1pr1-S1pr5 (non-human). Recent additions to the lysophospholipid receptor family have resulted in the proposed names for a lysophosphatidyl inositol receptor: protein name LPI1, gene name LPIR1 (human) and Lpir1 (non-human); and three lysophosphatidyl serine receptors: protein names LyPS1, LyPS2, LyPS3 and gene names LYPSR1-LYPSR3 (human) and Lypsr1-Lypsr3 (non-human); a variant form that does not appear to exist in humans is provisionally named LyPS2L, without a name recommendation for its mouse-specific gene. This nomenclature incorporates prior recommendations from International Union of Basic and Clinical Pharmacology (IUPHAR), Human Genome Organization (HUGO) gene nomenclature committee (HGNC), and Mouse Genome Informatix (MGI).
    British Journal of Pharmacology 03/2014; 171(15). DOI:10.1111/bph.12678 · 4.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sphingosine-1-phosphate (S1P), a pleiotropic bioactive lipid mediator, and the kinase that produces it have now emerged as key regulators of numerous cellular processes involved in inflammation and cancer. Here, we review the importance of S1P in colitis and colitis-associated cancer (CAC) and discuss our recent work demonstrating that S1P produced by upregulation of SphK1 during colitis and associated cancer is essential for production of the multifunctional NF-κB-regulated cytokine IL-6, persistent activation of the transcription factor Stat3, and consequent upregulation of the S1P receptor, S1PR1. The effectiveness of the pro-drug FTY720 (known as fingolimod), approved for the treatment of multiple sclerosis, has become the gold standard for S1P-centric drugs, and will be used to illustrate the therapeutic value of modulating SphK1 and S1P receptor functions. We will discuss our recent results showing that FTY720/fingolimod administration interferes with the SphK1/S1P/S1PR1 axis and suppresses the NF-κB/IL-6/Stat3 malicious amplification loop and CAC. These preclinical studies suggest that FTY720/fingolimod may be useful in treating colon cancer in individuals with ulcerative colitis.
    10/2013; 54(1). DOI:10.1016/j.jbior.2013.10.001
  • Source
    Michael Maceyka · Sheldon Milstien · Sarah Spiegel
    [Show abstract] [Hide abstract]
    ABSTRACT: Niemann-Pick type C (NPC) disease is a fatal complex neurodegenerative lysosomal storage disorder caused by genetic mutations in either NPC1 (95% of patients) or NPC2 that decrease intracellular cholesterol trafficking resulting in accumulation of unesterified cholesterol and sphingolipids in lysosomal storage organelles. Unfortunately, treatment options for NPC disease are still very limited although miglustat, which inhibits glucosylceramide synthase, limiting ganglioside accumulation, has been approved for treatment of NPC disease. Here we discuss advances in understanding of NPC1 and its functions and several new strategies for interfering with cholesterol and sphingolipid accumulation in NPC1 null mice. We also describe several recent intriguing studies demonstrating that histone deacetylase inhibitors can correct cholesterol storage defects in human NPC1 mutant fibroblasts by increasing expression of the low transport activity NPC1 mutant protein. These studies might lead to development of new therapeutic approaches for treatment of NPC disease. This article is protected by copyright. All rights reserved.
    FEBS Journal 08/2013; 280(24). DOI:10.1111/febs.12505 · 4.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The bioactive lipid sphingosine-1-phosphate (S1P) is involved in multiple cellular signalling systems and has a pivotal role in the control of immune cell trafficking. As such, S1P has been implicated in disorders such as cancer and inflammatory diseases. This Review discusses the ways in which S1P might be therapeutically targeted - for example, via the development of chemical inhibitors that target the generation, transport and degradation of S1P and via the development of specific S1P receptor agonists. We also highlight recent conflicting results observed in preclinical studies targeting S1P and discuss ongoing clinical trials in this field.
    Nature Reviews Drug Discovery 08/2013; 12(9). DOI:10.1038/nrd4099 · 41.91 Impact Factor
  • Cancer Research 08/2013; 73(8 Supplement):5000-5000. DOI:10.1158/1538-7445.AM2013-5000 · 9.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sphingosine-1-phosphate (S1P), a ligand for 5 specific receptors, is a potent lipid mediator that plays important roles in lymphocyte trafficking and immune responses. S1P is produced inside cells and therefore must be secreted to exert its effects through these receptors. Spinster 2 (Spns2) is one of the cell surface transporters thought to secrete S1P. We have shown that Spns2 can export endogenous S1P from cells and also dihydro-S1P, which is active at all cell surface S1P receptors. Moreover, Spns2(-/-) mice have decreased levels of both of these phosphorylated sphingoid bases in blood, accompanied by increases in very long chain ceramide species, and have defective lymphocyte trafficking. Surprisingly, levels of S1P and dihydro-S1P were increased in lymph from Spns2(-/-) mice as well as in specific tissues, including lymph nodes, and interstitial fluid. Moreover, lymph nodes from Spns2(-/-) mice have aberrant lymphatic sinus that appeared collapsed, with reduced numbers of lymphocytes. Our data suggest that Spns2 is an S1P transporter in vivo that plays a role in regulation not only of blood S1P but also lymph node and lymph S1P levels and consequently influences lymphocyte trafficking and lymphatic vessel network organization.-Nagahashi, M., Kim, E. Y., Yamada, A., Ramachandran, S., Allegood, J. C., Hait, N. C., Maceyka, M., Milstien, S., Takabe, K., Spiegel, S. Spns2, a transporter of phosphorylated sphingoid bases, regulates their blood and lymph levels and the lymphatic network.
    The FASEB Journal 11/2012; 27(3). DOI:10.1096/fj.12-219618 · 5.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The bioactive sphingolipid metabolite sphingosine-1-phosphate (S1P) is now recognized as a critical regulator of many physiological and pathophysiological processes, including cancer, atherosclerosis, diabetes and osteoporosis. S1P is produced in cells by two sphingosine kinase isoenzymes, SphK1 and SphK2. Many cells secrete S1P, which can then act in an autocrine or paracrine manner. Most of the known actions of S1P are mediated by a family of five specific G protein-coupled receptors. More recently, it was shown that S1P also has important intracellular targets involved in inflammation, cancer and Alzheimer's disease. This suggests that S1P actions are much more complex than previously thought, with important ramifications for development of therapeutics. This review highlights recent advances in our understanding of the mechanisms of action of S1P and its roles in disease.
    Trends in cell biology 01/2012; 22(1):50-60. DOI:10.1016/j.tcb.2011.09.003 · 12.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The potent lipid mediator sphingosine-1-phosphate (S1P) regulates diverse physiological processes by binding to 5 specific GPCRs, although it also has intracellular targets. Here, we demonstrate that S1P, produced in the mitochondria mainly by sphingosine kinase 2 (SphK2), binds with high affinity and specificity to prohibitin 2 (PHB2), a highly conserved protein that regulates mitochondrial assembly and function. In contrast, S1P did not bind to the closely related protein PHB1, which forms large, multimeric complexes with PHB2. In mitochondria from SphK2-null mice, a new aberrant band of cytochrome-c oxidase was detected by blue native PAGE, and interaction between subunit IV of cytochrome-c oxidase and PHB2 was greatly reduced. Moreover, depletion of SphK2 or PHB2 led to a dysfunction in mitochondrial respiration through cytochrome-c oxidase. Our data point to a new action of S1P in mitochondria and suggest that interaction of S1P with homomeric PHB2 is important for cytochrome-c oxidase assembly and mitochondrial respiration.
    The FASEB Journal 10/2010; 25(2):600-12. DOI:10.1096/fj.10-167502 · 5.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumour-necrosis factor (TNF) receptor-associated factor 2 (TRAF2) is a key component in NF-kappaB signalling triggered by TNF-alpha. Genetic evidence indicates that TRAF2 is necessary for the polyubiquitination of receptor interacting protein 1 (RIP1) that then serves as a platform for recruitment and stimulation of IkappaB kinase, leading to activation of the transcription factor NF-kappaB. Although TRAF2 is a RING domain ubiquitin ligase, direct evidence that TRAF2 catalyses the ubiquitination of RIP1 is lacking. TRAF2 binds to sphingosine kinase 1 (SphK1), one of the isoenzymes that generates the pro-survival lipid mediator sphingosine-1-phosphate (S1P) inside cells. Here we show that SphK1 and the production of S1P is necessary for lysine-63-linked polyubiquitination of RIP1, phosphorylation of IkappaB kinase and IkappaBalpha, and IkappaBalpha degradation, leading to NF-kappaB activation. These responses were mediated by intracellular S1P independently of its cell surface G-protein-coupled receptors. S1P specifically binds to TRAF2 at the amino-terminal RING domain and stimulates its E3 ligase activity. S1P, but not dihydro-S1P, markedly increased recombinant TRAF2-catalysed lysine-63-linked, but not lysine-48-linked, polyubiquitination of RIP1 in vitro in the presence of the ubiquitin conjugating enzymes (E2) UbcH13 or UbcH5a. Our data show that TRAF2 is a novel intracellular target of S1P, and that S1P is the missing cofactor for TRAF2 E3 ubiquitin ligase activity, indicating a new paradigm for the regulation of lysine-63-linked polyubiquitination. These results also highlight the key role of SphK1 and its product S1P in TNF-alpha signalling and the canonical NF-kappaB activation pathway important in inflammatory, antiapoptotic and immune processes.
    Nature 06/2010; 465(7301):1084-8. DOI:10.1038/nature09128 · 41.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sphingosine-1-phosphate (S1P) is a bioactive lipid mediator with crucial roles in a wide variety of cellular functions across a broad range of organisms. Though a simple molecule in structure, S1P functions are complex. The formation of S1P is catalyzed by one of two sphingosine kinases that have differential cellular distributions as well as both overlapping and opposing functions and which are activated by many different stimuli. S1P can act on a family of G protein-coupled receptors (S1PRs) that are also differentially expressed in different cell types, which influences the cellular responses to S1P. In addition to acting on receptors located on the plasma membrane, S1P can also function inside the cell, independently of S1PRs. It also appears that both the intracellular location and the isotype of sphingosine kinase involved are major determinants of inside-out signaling of S1P in response to many extracellular stimuli. This chapter is focused on the current literature on extracellular and intracellular actions of S1P.
    Advances in Experimental Medicine and Biology 01/2010; 688:141-55. DOI:10.1007/978-1-4419-6741-1_10 · 1.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pleiotropic lipid mediator sphingosine-1-phosphate (S1P) can act intracellularly independently of its cell surface receptors through unknown mechanisms. Sphingosine kinase 2 (SphK2), one of the isoenzymes that generates S1P, was associated with histone H3 and produced S1P that regulated histone acetylation. S1P specifically bound to the histone deacetylases HDAC1 and HDAC2 and inhibited their enzymatic activity, preventing the removal of acetyl groups from lysine residues within histone tails. SphK2 associated with HDAC1 and HDAC2 in repressor complexes and was selectively enriched at the promoters of the genes encoding the cyclin-dependent kinase inhibitor p21 or the transcriptional regulator c-fos, where it enhanced local histone H3 acetylation and transcription. Thus, HDACs are direct intracellular targets of S1P and link nuclear S1P to epigenetic regulation of gene expression.
    Science 10/2009; 325(5945):1254-7. DOI:10.1126/science.1176709 · 33.61 Impact Factor
  • Michael Maceyka · Sheldon Milstien · Sarah Spiegel
    [Show abstract] [Hide abstract]
    ABSTRACT: The sphingolipid metabolite sphingosine-1-phosphate (S1P) and the kinases that produce it have emerged as critical regulators of numerous fundamental biological processes important for health and disease. Activation of sphingosine kinases (SphKs) by a variety of agonists increases intracellular S1P, which in turn can be secreted out of the cell and bind to and signal through S1P receptors (S1PRs) in an autocrine and/or paracrine manner. Recent studies suggest that this "inside-out" signaling by S1P may play a role in many human diseases. As the roles of the S1PRs in cell and organismal physiology are discussed elsewhere in this volume, we focus this review mainly on recent reports showing how SphKs are activated and S1P reaches its receptors, the role of SphKs and S1P in regulating sphingolipid homeostasis, and the potential importance of the SphK/S1P axis as a therapeutic target in human diseases.
    The Journal of Lipid Research 12/2008; 50 Suppl(Supplement):S272-6. DOI:10.1194/jlr.R800065-JLR200 · 4.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sphingosine kinase 1 (SphK1) catalyzes the phosphorylation of sphingosine to produce the potent lipid mediator sphingosine-1-phosphate (S1P), which plays a critical role in cell motility via its cell surface receptors. Here, we have identified filamin A (FLNa), an actin-cross-linking protein involved in cell movement, as a bona fide SphK1-interacting protein. Heregulin stimulated SphK1 activity only in FLNa-expressing A7 melanoma cells but not in FLNa-deficient cells and induced its translocation and colocalization with FLNa at lamellipodia. SphK1 was required for heregulin-induced migration, lamellipodia formation, activation of PAK1, and subsequent FLNa phosphorylation. S1P directly stimulated PAK1 kinase, suggesting that it may be a target of intracellularly generated S1P. Heregulin also induced colocalization of S1P(1) (promotility S1P receptor) but not S1P(2), with SphK1 and FLNa at membrane ruffles. Moreover, an S1P(1) antagonist inhibited the lamellipodia formation induced by heregulin. Hence, FLNa links SphK1 and S1P(1) to locally influence the dynamics of actin cytoskeletal structures by orchestrating the concerted actions of the triumvirate of SphK1, FLNa, and PAK1, each of which requires and/or regulates the actions of the others, at lamellipodia to promote cell movement.
    Molecular and Cellular Biology 09/2008; 28(18):5687-97. DOI:10.1128/MCB.00465-08 · 4.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In yeast, the long-chain sphingoid base phosphate phosphohydrolase Lcb3p is required for efficient ceramide synthesis from exogenous sphingoid bases. Similarly, in this study, we found that incorporation of exogenous sphingosine into ceramide in mammalian cells was regulated by the homologue of Lcb3p, sphingosine-1-phosphate phosphohydrolase 1 (SPP-1), an endoplasmic reticulum resident protein. Sphingosine incorporation into endogenous long-chain ceramides was increased by SPP-1 overexpression, whereas recycling of C(6)-ceramide into long-chain ceramides was not altered. The increase in ceramide was inhibited by fumonisin B(1), an inhibitor of ceramide synthase, but not by ISP-1, an inhibitor of serine palmitoyltransferase, the rate-limiting step in the de novo biosynthesis of ceramide. Mass spectrometry analysis revealed that SPP-1 expression increased the incorporation of sphingosine into all ceramide acyl chain species, particularly enhancing C16:0, C18:0, and C20:0 long-chain ceramides. The increased recycling of sphingosine into ceramide was accompanied by increased hexosylceramides and, to a lesser extent, sphingomyelins. Sphingosine kinase 2, but not sphingosine kinase 1, acted in concert with SPP-1 to regulate recycling of sphingosine into ceramide. Collectively, our results suggest that an evolutionarily conserved cycle of phosphorylation-dephosphorylation regulates recycling and salvage of sphingosine to ceramide and more complex sphingolipids.
    Journal of Biological Chemistry 12/2007; 282(47):34372-80. DOI:10.1074/jbc.M703329200 · 4.57 Impact Factor

Publication Stats

3k Citations
344.20 Total Impact Points


  • 2002–2015
    • Virginia Commonwealth University
      • Department of Biochemistry and Molecular Biology
      Ричмонд, Virginia, United States
  • 2008
    • Northern Inyo Hospital
      BIH, California, United States
  • 2006
    • Georgia Institute of Technology
      • School of Biology
      Atlanta, GA, United States
  • 2001–2002
    • Georgetown University
      • Department of Biochemistry and Molecular and Cellular Biology
      Washington, Washington, D.C., United States
  • 1998
    • Johns Hopkins Medicine
      Baltimore, Maryland, United States