Christel Thauvin-Robinet

University of Burgundy, Dijon, Bourgogne, France

Are you Christel Thauvin-Robinet?

Claim your profile

Publications (126)537.21 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: This study aimed to evaluate the clinical symptoms of Angelman syndrome (AS) in adults and to identify the neurological pathways affected in this disease. AS is a neurogenetic disorder resulting due to the deletion or inactivation of the ubiquitin-protein-ligase E3A gene on maternal chromosome 15. Summary: A retrospective analysis of data from six adults patients with clinical, electroencephalographic and genetic confirmation of AS was performed. Movement disorders of the hands and mouth, laughing spells, severe expressive speech disorders, a happy nature, hyposomnia and anxiety are the major neurological characteristics of AS in adulthood. Cerebellar ataxia, muscle hypotonia and tremor, though constant in childhood, tend to be attenuated in adulthood. Epilepsy, one of the most frequent symptoms in childhood and in adulthood, is characterised by specific electroencephalographic patterns. Key Messages: These clinical characteristics are important to improve the clinical awareness and genetic diagnosis of AS. Clinicians must be better informed concerning the adult phenotype as it is not well described in the literature. We stress the importance of AS as one of the main causes of intractable epilepsy. The authors suggest frontal and cerebellar dysfunction. Further functional cerebral imaging studies are necessary. © 2014 S. Karger AG, Basel.
    European neurology. 11/2014; 73(1-2):119-125.
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Intellectual disability (ID) is characterised by an extreme genetic heterogeneity. Several hundred genes have been associated to monogenic forms of ID, considerably complicating molecular diagnostics. Trio-exome sequencing was recently proposed as a diagnostic approach, yet remains costly for a general implementation. METHODS: We report the alternative strategy of targeted high-throughput sequencing of 217 genes in which mutations had been reported in patients with ID or autism as the major clinical concern. We analysed 106 patients with ID of unknown aetiology following array-CGH analysis and other genetic investigations. Ninety per cent of these patients were males, and 75% sporadic cases. RESULTS: We identified 26 causative mutations: 16 in X-linked genes (ATRX, CUL4B, DMD, FMR1, HCFC1, IL1RAPL1, IQSEC2, KDM5C, MAOA, MECP2, SLC9A6, SLC16A2, PHF8) and 10 de novo in autosomal-dominant genes (DYRK1A, GRIN1, MED13L, TCF4, RAI1, SHANK3, SLC2A1, SYNGAP1). We also detected four possibly causative mutations (eg, in NLGN3) requiring further investigations. We present detailed reasoning for assigning causality for each mutation, and associated patients' clinical information. Some genes were hit more than once in our cohort, suggesting they correspond to more frequent ID-associated conditions (KDM5C, MECP2, DYRK1A, TCF4). We highlight some unexpected genotype to phenotype correlations, with causative mutations being identified in genes associated to defined syndromes in patients deviating from the classic phenotype (DMD, TCF4, MECP2). We also bring additional supportive (HCFC1, MED13L) or unsupportive (SHROOM4, SRPX2) evidences for the implication of previous candidate genes or mutations in cognitive disorders. CONCLUSIONS: With a diagnostic yield of 25% targeted sequencing appears relevant as a first intention test for the diagnosis of ID, but importantly will also contribute to a better understanding regarding the specific contribution of the many genes implicated in ID and autism.
    Journal of Medical Genetics 08/2014; · 5.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Centrioles are microtubule-based, barrel-shaped structures that initiate the assembly of centrosomes and cilia. How centriole length is precisely set remains elusive. The microcephaly protein CPAP (also known as MCPH6) promotes procentriole growth, whereas the oral-facial-digital (OFD) syndrome protein OFD1 represses centriole elongation. Here we uncover a new subtype of OFD with severe microcephaly and cerebral malformations and identify distinct mutations in two affected families in the evolutionarily conserved C2CD3 gene. Concordant with the clinical overlap, C2CD3 colocalizes with OFD1 at the distal end of centrioles, and C2CD3 physically associates with OFD1. However, whereas OFD1 deletion leads to centriole hyperelongation, loss of C2CD3 results in short centrioles without subdistal and distal appendages. Because C2CD3 overexpression triggers centriole hyperelongation and OFD1 antagonizes this activity, we propose that C2CD3 directly promotes centriole elongation and that OFD1 acts as a negative regulator of C2CD3. Our results identify regulation of centriole length as an emerging pathogenic mechanism in ciliopathies.
    Nature genetics. 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epileptic encephalopathy (EE) refers to a clinically and genetically heterogeneous group of severe disorders characterized by seizures, abnormal interictal electro-encephalogram, psychomotor delay, and/or cognitive deterioration. We ascertained two multiplex families (including one consanguineous family) consistent with an autosomal-recessive inheritance pattern of EE. All seven affected individuals developed subclinical seizures as early as the first day of life, severe epileptic disease, and profound developmental delay with no facial dysmorphism. Given the similarity in clinical presentation in the two families, we hypothesized that the observed phenotype was due to mutations in the same gene, and we performed exome sequencing in three affected individuals. Analysis of rare variants in genes consistent with an autosomal-recessive mode of inheritance led to identification of mutations in SLC13A5, which encodes the cytoplasmic sodium-dependent citrate carrier, notably expressed in neurons. Disease association was confirmed by cosegregation analysis in additional family members. Screening of 68 additional unrelated individuals with early-onset epileptic encephalopathy for SLC13A5 mutations led to identification of one additional subject with compound heterozygous mutations of SLC13A5 and a similar clinical presentation as the index subjects. Mutations affected key residues for sodium binding, which is critical for citrate transport. These findings underline the value of careful clinical characterization for genetic investigations in highly heterogeneous conditions such as EE and further highlight the role of citrate metabolism in epilepsy.
    The American Journal of Human Genetics 07/2014; 95(1):113-20. · 11.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oral-facial-digital type 1 syndrome (OFD1; OMIM 311200) belongs to the expanding group of disorders ascribed to ciliary dysfunction. With the aim of contributing to the understanding of the role of primary cilia in the central nervous system (CNS), we performed a thorough characterization of CNS involvement observed in this disorder.
    Orphanet Journal of Rare Diseases 05/2014; 9(1):74. · 4.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Hedgehog (Hh) family of secreted proteins act as morphogens to control embryonic patterning and development in a variety of organ systems. Post-translational covalent attachment of cholesterol and palmitate to Hh proteins are critical for multimerization and long range signaling potency. However, the biological impact of lipid modifications on Hh ligand distribution and signal reception in humans remains unclear. In the present study, we report a unique case of autosomal recessive syndromic 46,XY Disorder of Sex Development (DSD) with testicular dysgenesis and chondrodysplasia resulting from a homozygous G287V missense mutation in the hedgehog acyl-transferase (HHAT) gene. This mutation occurred in the conserved membrane bound O-acyltransferase (MBOAT) domain and experimentally disrupted the ability of HHAT to palmitoylate Hh proteins such as DHH and SHH. Consistent with the patient phenotype, HHAT was found to be expressed in the somatic cells of both XX and XY gonads at the time of sex determination, and Hhat loss of function in mice recapitulates most of the testicular, skeletal, neuronal and growth defects observed in humans. In the developing testis, HHAT is not required for Sertoli cell commitment but plays a role in proper testis cord formation and the differentiation of fetal Leydig cells. Altogether, these results shed new light on the mechanisms of action of Hh proteins. Furthermore, they provide the first clinical evidence of the essential role played by lipid modification of Hh proteins in human testicular organogenesis and embryonic development.
    PLoS Genetics 05/2014; 10(5):e1004340. · 8.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To clarify the phenotypic spectrum and incidence of TRPV4 mutations in patients with inherited axonal neuropathies. We screened for TRPV4 mutations in 169 French unrelated patients with inherited axonal peripheral neuropathy. Ninety-five patients had dominant Charcot-Marie-Tooth type 2 (CMT2) disease, and 74 patients, including 39 patients with distal hereditary motor neuropathy, 14 with congenital spinal muscular atrophy and arthrogryposis, 13 with CMT2, and 8 with scapuloperoneal spinal muscular atrophy, presented with additional vocal cord paralysis and/or skeletal dysplasia. No deleterious TRPV4 mutation was identified in the 95 patients with "pure" CMT2 (0/95). In contrast, 12 of 74 patients (16%) with neuropathy and vocal cord paralysis and/or skeletal dysplasia presented pathogenic TRPV4 mutations, including 7 patients with distal hereditary motor neuropathy, 2 with scapuloperoneal spinal muscular atrophy, 2 with congenital spinal muscular atrophy and arthrogryposis, and one with CMT2. Investigation of affected relatives allowed us to study 17 patients. All patients had childhood-onset motor neuropathy and showed a variety of associated findings, including foot deformities (100% of cases), kyphoscoliosis (100%), elevated serum creatine kinase levels (100%), vocal cord paralysis (94%), scapular winging (53%), respiratory insufficiency (29%), hearing loss (24%), skeletal dysplasia (18%), and arthrogryposis (12%). Eight missense mutations were observed in these 12 families, including 2 previously unreported. Six mutations were de novo events, and 2 asymptomatic carriers were identified. With 16% of patients affected in our series, this study demonstrates that TRPV4 mutations are a major cause of inherited axonal neuropathy associated with a large spectrum of additional features.
    Neurology 04/2014; · 8.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Three overlapping conditions, namely Rothmund-Thomson (RTS), Baller-Gerold (BGS) and RAPADILINO syndromes, have been attributed to RECQL4 mutations. Differential diagnoses depend on the clinical presentation, but the number of known genes remains low, leading to the widespread prescription of RECQL4 sequencing. The aim of our study was therefore to determine the best clinical indicators for the presence of RECQL4 mutations in a series of 39 patients referred for RECQL4 molecular analysis and belonging to the RTS (27 cases) and BGS (12 cases) spectrum. One or two deleterious RECQL4 mutations were found in 10/27 patients referred for RTS diagnosis. Clinical and molecular reevaluation led to a different diagnosis in 7/17 negative cases, including Clericuzio-type Poikiloderma with Neutropenia, hereditary sclerosing poikiloderma, and Craniosynostosis/anal anomalies/porokeratosis. No RECQL4 mutations were found in the BGS group without poikiloderma, confirming that RECQL4 sequencing was not indicated in this phenotype. One chromosomal abnormality and one TWIST mutation was found in this cohort. This study highlights the search for differential diagnoses before the prescription of RECQL4 sequencing in this clinically heterogeneous group. The combination of clinically-defined subgroups and next-generation sequencing will hopefully bring to light new molecular bases of syndromes with poikiloderma, as well as BGS without poikiloderma.
    Clinical Genetics 02/2014; · 4.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Idiopathic basal ganglia calcification (IBGC) is characterized by brain calcification and a wide variety of neurologic and psychiatric symptoms. In families with autosomal dominant inheritance, three causative genes have been identified: SLC20A2, PDGFRB, and, very recently, PDGFB. Whereas in clinical practice sporadic presentation of IBGC is frequent, well-documented reports of true sporadic occurrence are rare. We report the case of a 20-year-old woman who presented laryngeal dystonia revealing IBGC. Her healthy parents' CT scans were both normal. We identified in the proband a new nonsense mutation in exon 4 of PDGFB, c.439C>T (p.Gln147*), which was absent from the parents' DNA. This mutation may result in a loss-of-function of PDGF-B, which has been shown to cause IBGC in humans and to disrupt the blood-brain barrier in mice, resulting in brain calcification. The c.439C>T mutation is located between two previously reported nonsense mutations, c.433C>T (p.Gln145*) and c.445C>T (p.Arg149*), on a region that could be a hot spot for de novo mutations. We present the first full demonstration of the de novo occurrence of an IBGC-causative mutation in a sporadic case.European Journal of Human Genetics advance online publication, 12 February 2014; doi:10.1038/ejhg.2014.9.
    European journal of human genetics: EJHG 02/2014; · 3.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mandibulofacial dysostosis, Guion-Almeida type (MFDGA) is a recently delineated multiple congenital anomalies/mental retardation syndrome characterized by the association of mandibulofacial dysostosis (MFD) with external ear malformations, hearing loss, cleft palate, choanal atresia, microcephaly, intellectual disability, oesophageal atresia (OA), congenital heart defects (CHDs) and radial ray defects. MFDGA emerges as a clinically recognizable entity, long underdiagnosed due to highly variable presentations. The main differential diagnoses are CHARGE and Feingold syndromes, oculoauriculovertebral spectrum and other MFDs. EFTUD2, located on 17q21.31, encodes a component of the major spliceosome and is disease-causing in MFDGA, due to heterozygous loss-of-function mutations. Here, we describe a series of 36 cases of MFDGA, including 24 previously unreported cases, and we review the literature in order to delineate the clinical spectrum ascribed to EFTUD2 loss-of-function. MFD, external ear anomalies and intellectual deficiency occur at a higher frequency than microcephaly. We characterize the evolution of the facial gestalt at different ages and describe novel renal and cerebral malformations. The most frequent extracranial malformation in this series is OA, followed by CHDs and skeletal abnormalities. MFDGA is probably more frequent than other syndromic MFDs such as Nager or Miller syndromes. Although the wide spectrum of malformations complicates diagnosis, characteristic facial features provide a useful handle. This article is protected by copyright. All rights reserved.
    Human Mutation 01/2014; · 5.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In 2007, 250 families with X-linked intellectual disability (XLID) were screened for mutations in genes on the X-chromosome, and in 4 of these families, mutations in the ZDHHC9 gene were identified. The ID was either isolated or associated with a marfanoid habitus. ZDHHC9 encodes a palmitoyl transferase that catalyzes the posttranslational modification of NRAS and HRAS. Since this first description, no additional patient with a ZDHHC9 mutation has been reported in the literature. Here, we describe a large family in which we identified a novel pathogenic ZDHHC9 nonsense mutation (p.Arg298*) by parallel sequencing of all X-chromosome exons. The mutation cosegregated with the clinical phenotype in this family. An 18-year-old patient and his 40-year-old maternal uncle were evaluated. Clinical examination showed normal growth parameters, lingual fasciculation, limited extension of the elbows and metacarpophalangeal joints, and acrocyanosis. There was neither facial dysmorphism nor marfanoid habitus. Brain MRI detected a dysplastic corpus callosum. Neuropsychological testing showed mild intellectual disability. They both displayed generalized anxiety disorder, and the younger patient also suffered from significant behavior impairment that required attention or treatment. Speech evaluation detected satisfactory spoken language since both were able to provide information and to understand conversations of everyday life. Occupational therapy examination showed impaired visual-spatial and visual-motor performance with poor drawing/graphic skills. These manifestations are not specific enough to guide ZDHHC9 screening in patients with ID, and emphasize the value of next generation sequencing for making a molecular diagnosis and genetic counseling in families with XLID. © 2013 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part A 12/2013; · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cohen syndrome (CS) is a rare autosomal recessive disorder with multisytemic clinical features due to mutations in the VPS13B gene, which has recently been described encoding a mandatory membrane protein involved in Golgi integrity. As the Golgi complex is the place where glycosylation of newly synthesized proteins occurs, we hypothesized that VPS13B deficiency, responsible of Golgi apparatus disturbance, could lead to glycosylation defects and/or mysfunction of this organelle, and thus be a cause of the main clinical manifestations of CS. The glycosylation status of CS serum proteins showed a very unusual pattern of glycosylation characterized by a significant accumulation of agalactosylated fucosylated structures as well as asialylated fucosylated structures demonstrating a major defect of glycan maturation in CS. However, CS transferrin and α1-AT profiles, two liver derived proteins, were normal. We also showed that ICAM-1 and LAMP-2, two highly glycosylated cellular proteins, presented an altered migration profile on SDS-polyacrylamide gels in peripheral blood mononuclear cells (PBMCs) from CS patients. RNA interference against VPS13B confirmed these glycosylation defects. Experiments with Brefeldin A demonstrated that intracellular retrograde cell trafficking was normal in CS fibroblasts. Furthermore, early endosomes were almost absent in these cells and lysosomes were abnormally enlarged, suggesting a crucial role of VPS13B in endosomal-lysosomal trafficking. Our work provides evidence that CS is associated to a tissue-specific major defect of glycosylation and endosomal-lysosomal trafficking defect, suggesting that this could be a new key element to decipher the mechanisms of CS physiopathology.
    Human Molecular Genetics 12/2013; · 7.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Over one hundred VPS13B mutations are reported in Cohen syndrome (CS). Most cases exhibit a homogeneous phenotype that includes intellectual deficiency (ID), microcephaly, facial dysmorphism, slender extremities, truncal obesity, progressive chorioretinal dystrophy, and neutropenia. We report on a patient carrying two VPS13B splicing mutations with an atypical phenotype that included microcephaly, retinopathy, and congenital neutropenia, but neither obesity nor ID. RNA analysis of the IVS34+2T_+3AinsT mutation did not reveal any abnormal splice fragments but mRNA quantification showed a significant decrease in VPS13B expression. RNA sequencing analysis up- and downstream from the IVS57+2T>C mutation showed abnormal splice isoforms. In contrast to patients with typical CS, who express only abnormal VPS13B mRNA and truncated protein, a dose effect of residual normal VPS13B protein possibly explains the incomplete phenotype in the patient. This observation emphasizes that VPS13B analysis should be performed in cases of congenital neutropenia associated with retinopathy, even in the absence of ID, therefore extending the VPS13B phenotype spectrum. © 2013 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part A 12/2013; · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oral-facial-digital syndrome type VI (OFD VI) is a recessive ciliopathy defined by two diagnostic criteria: molar tooth sign (MTS) and one or more of the following: (1) tongue hamartoma (s) and/or additional frenula and/or upper lip notch; (2) mesoaxial polydactyly of one or more hands or feet; (3) hypothalamic hamartoma. Because of the MTS, OFD VI belongs to the "Joubert syndrome related disorders". Its genetic aetiology remains largely unknown although mutations in the TMEM216 gene, responsible for Joubert (JBS2) and Meckel-Gruber (MKS2) syndromes, have been reported in two OFD VI patients. To explore the molecular cause(s) of OFD VI syndrome, we used an exome sequencing strategy in six unrelated families followed by Sanger sequencing. We identified a total of 14 novel mutations in the C5orf42 gene in 9/11 families with positive OFD VI diagnostic criteria including a severe fetal case with microphthalmia, cerebellar hypoplasia, corpus callosum agenesis, polydactyly and skeletal dysplasia. C5orf42 mutations have already been reported in Joubert syndrome confirming that OFD VI and JBS are allelic disorders, thus enhancing our knowledge of the complex, highly heterogeneous nature of ciliopathies.
    Human Genetics 11/2013; · 4.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intellectual disability (ID) is characterized by an extraordinary genetic heterogeneity, with >250 genes that have been implicated in monogenic forms of ID. Because this complexity precluded systematic testing for mutations and because clinical features are often non-specific, for some of these genes only few cases or families have been unambiguously documented. It is the case of the X-linked gene encoding monoamine oxidase A (MAOA), for which only one nonsense mutation has been identified in Brunner syndrome, characterized in a single family by mild non-dysmorphic ID and impulsive, violent and aggressive behaviors. We have performed targeted high-throughput sequencing of 220 genes, including MAOA, in patients with undiagnosed ID. We identified a c.797_798delinsTT (p.C266F) missense mutation in MAOA in a boy with autism spectrum disorder, attention deficit and autoaggressive behavior. Two maternal uncles carry the mutation and have severe ID, with a history of maltreatment in early childhood. This novel missense mutation decreases MAOA enzymatic activity, leading to abnormal levels of urinary monoamines. The identification of this new point mutation confirms, for the first time since 1993, the monogenic implication of the MAOA gene in ID of various degrees, autism and behavioral disturbances. The variable expressivity of the mutation observed in male patients of this family may involve gene-environment interactions, and the identification of a perturbation in monoamine metabolism should be taken into account when prescribing psychoactive drugs in such patients.European Journal of Human Genetics advance online publication, 30 October 2013; doi:10.1038/ejhg.2013.243.
    European journal of human genetics: EJHG 10/2013; · 3.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background/Aims: CAMTA1 mutations have recently been reported in families with intellectual disability and/or non-progressive congenital ataxias. The objective of this study was to describe the neuropsychological and neuroimaging phenotype of CAMTA1 mutation. Methods: We performed neuropsychological examinations, MRI and FDG-PET imaging in three patients with autosomal dominant mild intellectual disabilities and ataxia induced by a CAMTA1 intragenic deletion at 1p36.31p36.23. Results: Neuropsychological tests showed similar findings in two patients, with low information processing speed, slow memory consolidation, phonological disorders, working memory deficits, but mainly preserved executive function. Bilateral parietal and medial temporal abnormalities were found on brain MRI. Diffuse parieto-occipital and local left temporo-parietal decrease of FDG uptake was observed on PET images. Conclusion: These results suggest that CAMTA1 mutation may induce an unusual neuropsychological profile and parieto-temporal developmental abnormalities. We recommend screening for CAMTA1 mutations in patients with autosomal dominant mild intellectual disability presenting with similar a phenotype.
    Brain & development 10/2013; · 1.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since the advent of array-CGH, numerous new microdeletional syndromes have been delineated while others remain to be described. Although 3q29 subtelomeric deletion is a well-described syndrome, there is no report on 3q interstitial deletions. We report for the first time seven patients with interstitial deletions at the 3q27.3q28 locus gathered through the Decipher database, and suggest this locus as a new microdeletional syndrome. The patients shared a recognisable facial dysmorphism and marfanoid habitus, associated with psychosis and mild to severe intellectual disability (ID). Most of the patients had no delay in gross psychomotor acquisition, but had severe impaired communicative and adaptive skills. Two small regions of overlap were defined. The first one, located on the 3q27.3 locus and common to all patients, was associated with psychotic troubles and mood disorders as well as recognisable facial dysmorphism. This region comprised several candidate genes including SST, considered a candidate for the neuropsychiatric findings because of its implication in interneuronal migration and differentiation processes. A familial case with a smaller deletion allowed us to define a second region of overlap at the 3q27.3q28 locus for marfanoid habitus and severe ID. Indeed, the common morphological findings in the first four patients included skeletal features from the marfanoid spectrum: scoliosis (4/4), long and thin habitus with leanness (average Body Mass Index of 15 (18.5<N<25)) (4/4), arachnodactyly (3/4) and pectus excavatum (2/4)). This phenotype could be explained by the deletion of the AHSG gene, which encodes a secreted protein implicated in bone maturation and the TGFb signalling pathway. We report on a new microdeletional syndrome that associates with a recognisable facial dysmorphism and marfanoid habitus including scoliosis, neuropsychiatric disorders of the psychotic spectrum and moderate to severe ID.
    Journal of Medical Genetics 10/2013; · 5.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: CDAGS syndrome is an autosomal recessive syndrome characterized by craniosynostosis, large open fontanelles, hearing loss, anal anomalies, genitourinary malformations and porokeratosis. To our knowledge, only four families from different geographic regions and ethnic backgrounds have been reported until now and no molecular defect has been identified. Here we report two sisters presenting with craniosynostosis, microcephaly, short downslanting palpebral fissures, sparse hair, eyelashes, and eyebrows and porokeratosis that appeared at the age of one month. The youngest sister had an imperforate anus with rectoperineal fistula. Array-CGH did not reveal any pathological CNV. Molecular analysis of the c16orf57, RECQL4 and MCM5 genes was normal.
    European journal of medical genetics 10/2013; · 1.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Idiopathic basal ganglia calcification is characterized by mineral deposits in the brain, an autosomal dominant pattern of inheritance in most cases and genetic heterogeneity. The first causal genes, SLC20A2 and PDGFRB, have recently been reported. Diagnosing idiopathic basal ganglia calcification necessitates the exclusion of other causes, including calcification related to normal ageing, for which no normative data exist. Our objectives were to diagnose accurately and then describe the clinical and radiological characteristics of idiopathic basal ganglia calcification. First, calcifications were evaluated using a visual rating scale on the computerized tomography scans of 600 consecutively hospitalized unselected controls. We determined an age-specific threshold in these control computerized tomography scans as the value of the 99th percentile of the total calcification score within three age categories: <40, 40-60, and >60 years. To study the phenotype of the disease, patients with basal ganglia calcification were recruited from several medical centres. Calcifications that rated below the age-specific threshold using the same scale were excluded, as were patients with differential diagnoses of idiopathic basal ganglia calcification, after an extensive aetiological assessment. Sanger sequencing of SLC20A2 and PDGFRB was performed. In total, 72 patients were diagnosed with idiopathic basal ganglia calcification, 25 of whom bore a mutation in either SLC20A2 (two families, four sporadic cases) or PDGFRB (one family, two sporadic cases). Five mutations were novel. Seventy-one per cent of the patients with idiopathic basal ganglia calcification were symptomatic (mean age of clinical onset: 39 ± 20 years; mean age at last evaluation: 55 ± 19 years). Among them, the most frequent signs were: cognitive impairment (58.8%), psychiatric symptoms (56.9%) and movement disorders (54.9%). Few clinical differences appeared between SLC20A2 and PDGFRB mutation carriers. Radiological analysis revealed that the total calcification scores correlated positively with age in controls and patients, but increased more rapidly with age in patients. The expected total calcification score was greater in SLC20A2 than PDGFRB mutation carriers, beyond the effect of the age alone. No patient with a PDGFRB mutation exhibited a cortical or a vermis calcification. The total calcification score was more severe in symptomatic versus asymptomatic individuals. We provide the first phenotypical description of a case series of patients with idiopathic basal ganglia calcification since the identification of the first causative genes. Clinical and radiological diversity is confirmed, whatever the genetic status. Quantification of calcification is correlated with the symptomatic status, but the location and the severity of the calcifications don't reflect the whole clinical diversity. Other biomarkers may be helpful in better predicting clinical expression.
    Brain 09/2013; · 10.23 Impact Factor

Publication Stats

1k Citations
537.21 Total Impact Points

Institutions

  • 2011–2013
    • University of Burgundy
      • L’équipe Génétique des Anomalies du Développement (GAD)
      Dijon, Bourgogne, France
  • 2004–2013
    • Centre Hospitalier Universitaire de Dijon
      • Cytogenetics Laboratory
      Dijon, Bourgogne, France
  • 2012
    • Université René Descartes - Paris 5
      Lutetia Parisorum, Île-de-France, France
  • 2010
    • Hôpital Charles-Nicolle
      Tunis-Ville, Tūnis, Tunisia