Are you Akihiro Sekiguchi?

Claim your profile

Publications (8)14.5 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To understand the molecular mechanism underlying vigorous proliferative activity of hepatic stem-like (HSL) cells, we performed two-dimensional electrophoresis to identify the proteins statistically more abundant in rapidly growing undifferentiated HSL cells than in sodium butyrate-treated differentiated HSL cells. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry and Mascot search identified 6 proteins including prohibitin, vimentin, ezrin, annexin A3, acidic ribosomal phosphoprotein P0 and Grp75. Prohibitin and vimentin control the mitogen-activated protein (MAP) kinase pathway. Ezrin is phosphorylated by various protein-tyrosine kinases and modulates interactions between cytoskeletal and membrane proteins. Annexin A3 has a role in DNA synthesis. Acidic ribosomal phosphoprotein P0 and Grp75 play in protein synthesis. These results suggest that the proteins related to the MAP kinase cascade had some role in continuous proliferation of HSL cells without differentiation.
    Cytotechnology 07/2008; 57(2):137-43. · 1.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We found that ebselen [2-phenyl-1,2-benzisoselenazol-3(2H)-one] caused phosphorylation of mitogen-activated protein kinase (MAPK), followed by expression of neurofilament-M, a neuron-specific protein, in cultured PC12 rat pheochromocytoma cells. The ebselen-induced MAPK activation was suppressed by U0126, an inhibitor of MAPK kinase (MEK1/2), but not by K252a, a selective inhibitor of Trk family tyrosine kinases; AG1478, an antagonist of epidermal growth factor receptor (EGFR); pertussis toxin, an inhibitor of Gi/o; or GP antagonist-2A, an inhibitor of Gq. Furthermore, we observed that N-acetyl-L-cysteine, an inhibitor of tyrosine kinases, suppressed ebselen-induced MAPK activation and buthionine sulfoximine, an activator of protein tyrosine phosphatases, enhanced the effect, indicating that ebselen activated MEK1/2 through one or more tyrosine kinases. Based on these results, we propose that ebselen stimulated intracellular tyrosine kinase activity, thus activating a MAPK cascade (tyrosine kinase-MEK1/2-ERK1/2) in PC12 cells and that this activation resulted in their neuronal differentiation.
    Journal of Neuroscience Research 03/2008; 86(3):720-5. · 2.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The activation of extracellular receptor kinase (ERK) is one of the checkpoints to assess the activation of the classical Ras/mitogen-activated protein kinase (MAPK) cascade. Therefore, we tested more than 100 selenium-containing compounds for their ability to activate the MAPK signal pathway. Among them, we found that three selenazoles, 5-chloroacetyl-2-piperidino-1,3-selenazole (CS1), 5-chloroacetyl-2-morpholino-1,3-selenazole (CS2), and 5-chloroacetyl-2-dimethylamino-1,3-selenazole (CS3), induced the phosphorylation of ERK. These compounds also enhanced the phosphorylation of Akt, a signal transducing protein kinase for cell survival; and this phosphorylation was followed by suppression of cell death, thus suggesting that they had anti-apoptotic effects. Moreover, CSs 1-3 induced neurite outgrowth and facilitated the expression of neurofilament-M of PC12 cells, demonstrating that they induced neuronal differentiation of these cells. On the other hand, the CS-induced phosphorylation of MAPK was enhanced by buthionine sulfoximine (BSO), an activator of protein tyrosine phosphatases (PTPs), but inhibited by N-acetyl-l-cysteine (NAC), an inhibitor of receptor tyrosine kinase. These results imply that activation of some receptor tyrosine kinase(s) is involved in the mechanism of action of CSs 1-3. The activation of MAPK by CSs 1-3 was suppressed by U0126, a MEK inhibitor, but not by K252a, an inhibitor of TrkA; AG1478, an antagonist of epidermal growth factor receptor (EGFR); or by pertussis toxin. These results demonstrate that the CS-induced phosphorylation of Akt and MAP kinase (receptor tyrosine kinase(s)-MEK1/2-ERK1/2) cascades was responsible for suppression of apoptosis and facilitation of neuronal differentiation of PC12 cells, respectively. Our results suggest that CSs 1-3 are promising candidates as neuroprotective and/or neurotrophic agents for the treatment of various neurodegenerative neurological disorders.
    Biochemical and Biophysical Research Communications 02/2007; 352(2):360-5. · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We found that Grifola frondosa extracts induced the activation of mitogen-activated protein kinase (MAPK) in cultured PC12 cells, a line of rat pheochromocytoma cells. The active substance was isolated by a few chromatographic steps, including high-performance liquid chromatography, and was identified to be lysophosphatidylethanolamine (LPE) from various structural analyses. LPE from G. frondosa (GLPE) was confirmed to induce the activation of MAPK of cultured PC12 cells and was found to suppress cell condensation and DNA ladder generation evoked by serum deprivation, suggesting that the GLPE had antiapoptotic effects. Moreover, GLPE caused morphological changes in and upregulation of neurofilament M expression of PC12 cells, demonstrating that the GLPE could induce neuronal differentiation of these cells. The activation of MAPK by GLPE was suppressed by AG1478, an antagonist of epidermal growth factor receptor (EGFR), and by U0126, an inhibitor of MAPK kinase (MEK1/2), but not by K252a, an inhibitor of TrkA, or by pertussis toxin. These results demonstrate that GLPE induced the MAPK cascade [EGFR-MEK1/2-extracellular signal-regulated protein kinases (ERK1/2)] of PC12 cells, the activation of which induced neuronal differentiation and suppressed serum deprivation-induced apoptosis. This study has clarified for the first time the involvement of the MAPK signal cascade in LPE actions.
    The Journal of Lipid Research 08/2006; 47(7):1434-43. · 4.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the superoxide anion scavenging effects of 2-amino-1,3- selenazoles and bis-(2-amino-5-selenazoyl) ketones using a highly sensitive quantitative chemiluminescence method. At 166 microM, the 2-amino-1,3-selenazoles and bis-(2-amino-5-selenazoyl) ketones scavenged in the range of 10.0 to 80.0% of O(2)(-). Bis[2-dimethylamino-5-(1,3-selenazolyl)] ketone exhibited the strongest superoxide anion-scavenging activity among the six kinds of 2-amino-1,3-selenazoles and three kinds of bis-(2-amino-5-selenazoyl) ketones. The 50% inhibitory concentration (IC(50)) of bis[2-dimethylamino-5-(1,3-selenazolyl)] ketone was determined to be 37.1 microM. Thus, bis[2-dimethylamino-5-(1,3-selenazolyl)] ketone acted in vitro as effective and potentially useful O(2)(-) scavenger.
    Biological & Pharmaceutical Bulletin 08/2006; 29(7):1404-7. · 1.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the superoxide anion scavenging effects of thirteen 2-amino-1,3-selenazoles using a highly sensitive quantitative chemiluminescence method. At 166 microM, the 2-amino-1,3-selenazoles scavenged in the range of 14.3 to 96.7% of O2-. 2-Piperidino-1,3-selenazole and 4-phenyl-2-piperidino-1,3-selenazole exhibited the strongest superoxide anion-scavenging activity among the 2-amino-1,3-selenazoles. The 50% inhibitory concentrations (IC50) of 2-piperidino-1,3-selenazole and 4-phenyl-2-piperidino-1,3-selenazole were determined to be 4.03 microM and 92.6 microM, respectively. Thus, these compounds acted in vitro as effective O2- scavengers.
    Chemical & pharmaceutical bulletin 12/2005; 53(11):1439-42. · 1.70 Impact Factor
  • Chemical & Pharmaceutical Bulletin - CHEM PHARM BULL TOKYO. 01/2005; 53(11):1439-1442.
  • Source