X Y Weng

Zhejiang University, Hangzhou, Zhejiang Sheng, China

Are you X Y Weng?

Claim your profile

Publications (7)7.11 Total impact

  • X. Y. Weng, J. Y. Sun
    [Show abstract] [Hide abstract]
    ABSTRACT: Escherichia coli-expressed a hybrid xylanase, Btx, encoded by a designed hybrid xylanase gene btx was purified. The molecular mass of the enzyme was estimated to be 22 kDa. The K m and k cat values for Btx were 1.9 mg/ml and 140 s−1, respectively. It hydrolyzed xylan principally to xylobiose and xylotriose, and was functionally similar to family 11 xylanases. As some differences were found in the hydrolytic products between birchwood xylan and wheat bran insoluble xylan, the xylan binding domains in xylanase Btx must have different effects on soluble and insoluble xylan.
    Applied Biochemistry and Microbiology 01/2010; 46(5):511-514. · 0.69 Impact Factor
  • X. -Y. Weng, Y. -Y. Huang, H. Gao, J. -Y. Sun
    [Show abstract] [Hide abstract]
    ABSTRACT: Xylanase inhibitor TAXI-I gene was cloned from wheat (Triticum aestivum L.) and then TAXI-I encoding sequence was expressed in Escherichia coli. The recombinant TAXI-I protein inhibited glycoside hydrolase (GH) family 11 xylanases in Aspergillus niger (Anx; a fungal xylanase), and Thermomonospora fusca (Tfx; a bacterial xylanase), and also inhibited hybrid xylanases Atx (a hybrid xylanase whose parents are T. fusca and A. niger) and Btx (a hybrid xylanase whose parents are T. fusca and Bacillus subtilis). Among the tested xylanases, A. niger xylanase was the most inhibited one by wheat xylanase inhibitor TAXI-I, while T. fusca xylanase was the least inhibited one. The profile of TAXI-I gene expression in wheat in response to phytohormones was also investigated. TAXI-I gene expression was drastically induced by methyl jasmonate (MeJa), and hardly detected in gibberellic acid (GA) treatment. Therefore, TAXI-I might be involved in plant defense against fungal and bacteria xylanases.
    Biologia Plantarum 01/2010; 54(1):154-158. · 1.69 Impact Factor
  • M Y Jing, J Y Sun, X Y Weng, J F Wang
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study investigated the effect of different zinc (Zn) levels on activities of gastrointestinal digestive enzymes of growing rats. Four diets including Zn-adequate (ZA; 46 mg/kg, control), Zn-deficient (ZD; 3 mg/kg), high Zn supply (ZH; 234 mg/kg) and pair-fed in which animals received the ZA diet at restricted amounts reflecting feed intake of the ZD group were fed to rats for 5 weeks. Dietary Zn was supplemented with ZnO. The results showed that Zn deficiency resulted in decreases in body weight, while ZH supply stimulated growth. The activities of sucrase, lactase and lipase were unaffected by dietary Zn levels. Maltase activity, however, was reduced in ZD group and elevated in ZH group. Amylase and protease activities were depressed by zinc deficiency. However, rats fed the Zn-repletion diet displayed higher activity of pepsin, pancreatic amylase and protease. In particular, ZH supply did have no effect on intestinal hydrolases activities. The present study suggested that zinc deficiency impaired the activities of digestive enzymes and growth of animals. However, ZH supply might improve the digestion of nutrients via increasing activities of gastrointestinal hydrolase and probably enhanced animal health.
    J Anim Physiol a Anim Nutr 11/2008; 93(5):606-12. · 1.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effects of zinc on growing rats were characterized using the dietary zinc-deficient (ZD) and Zinc-overdose (ZO) models. Zinc deficiency had negative effects on the host final body weight and liver zinc content, whereas zinc overdose had positive effects. In order to identify the molecular changes in the liver responding to dietary zinc status, cDNA microarrays were used to analyze the expression pattern of 9753 genes in the livers of rats fed ZD and ZO diet for 6 wk, compared with zinc-adequate ZA. The mRNA levels for 62 genes were affected significantly by the ZD diet, whereas 66 gene transcriptions were markedly changed in the ZO diet. Those predominant gene products involved in nitrogen metabolism (glutaminase), carbohydrate metabolism (aldolase), lipid metabolism (stearoyl-CoA desaturase), growth (insulin-like growth factor-binding protein), transcription and translation (zinc-finger protein), immune (natural-killer cell), signal transduction (mitogen- activated protein kinase), and ion transportation (ATPase Na+/K+ transporting peptide) were clustered. In conclusion, a number of mammalian genes related to zinc in the liver were identified. The characterization of the genes and their products will allow a more comprehensive analysis of the role of zinc in metabolism. Furthermore, the mRNA identified could be useful in establishing the mechanisms of zinc in the pleiotropic metabolisms in vivo.
    Biological Trace Element Research 03/2007; 115(2):169-85. · 1.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Zinc (Zn) is an essential nutrient that is required in humans and animals for many physiological functions, including immune and antioxidant function, growth, and reproduction. The present study was performed to investigate the effects of three Zn levels, including Zn adequate (35.94 mg/kg, as a control), Zn deficiency (3.15 mg/kg), and Zn overload (347.50 mg/kg) in growing male rats for 6 wk. This allowed for evaluation of the effects that these Zn levels might have on body weight, organ weight, enzymes activities, and tissues concentrations of Zn and Cu. The results showed that Zn deficiency has negative effects on growth, organ weight, and biological parameters such as alkaline phosphatase (ALP) and Cu-Zn superoxide dismutase (Cu-Zn SOD) activities, whereas Zn overload played an effective role in promoting growth, improving the developments of organs and enhancing immune system. Hepatic metallothionein (MT) concentration showed an identical increase tendency in rats fed both Zn-deficient and Zn-overload diets. The actual mechanism of reduction of Cu concentration of jejunum in rats fed a Zn-overload diet might involve the modulation or inhibition of a Cu transporter protein by Zn and not by the induction of MT.
    Biological Trace Element Research 12/2005; 107(2):153-65. · 1.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In Amaranthus tricolor the leaf structure included three layers of chlorenchyma on the vascular bundle periphery, namely, mesophyll cells (MSCs) with few chloroplasts, outer larger round bundle sheath cells (BSCs) with many chloroplasts in a centripetal position, and inner smaller BSCs with few chloroplasts around the vascular bundle cells. The ultra-thin sections showed that BSCs had abundant organelles, namely many large and round mitochondria with well-developed cristae in the cytoplasm. The chloroplasts in the BSCs were lens-like bodies, which seemed to be oval on cross sections. Granal and intergranal thylakoids were usually distinguished. Grana were stacked in parallel with prevailing plane of thylakoid lamellae. The chloroplasts in the MSCs appeared smaller than those in the BSCs and contained less stacked thylakoids but abundant peripheral reticulum. The ultra-thin sections of immunogold-labelled anti-ribulose-1,5-bisphosphate carboxylase/oxygenase (anti-RuBPCO) exhibited high density of RuBPCO labelling in the stroma region of chloroplasts of the BSCs. Some anti-RuBPCO immunogold particles were observed in the stromal region of MSCs chloroplasts. The anti-activase (A) immunogold-labelling indicated that RuBPCOA was mainly distributed in the stroma region of both BSCs and MSCs chloroplasts. From the chloroplast ultrastructure and localisation of RuBPCO and RuBPCOA we deduced that the photosynthetic carbon reduction cycle and the formation of assimilatory power function in both MSC and BSC chloroplasts of A. tricolor.
    Photosynthetica 11/2005; 43(4):519-528. · 0.86 Impact Factor
  • X Y Weng, J Y Sun
    [Show abstract] [Hide abstract]
    ABSTRACT: Escherichia coli-expressed a hybrid xylanase, Btx, encoded by a designed hybrid xylanase gene Btx was purified. The molecular mass of the enzyme was estimated to be 22 kDa. The K(m) and k(cat) values for Btx were 1.9 mg/ml and 140 s(-1), respectively. It hydrolyzed xylan principally to xylobiose and xylotriose, and was functionally similar to family 11 xylanases. As some differences were found in the hydrolytic products between birchwood xylan and wheat bran insoluble xylan, the xylan binding domains in xylanase Btx must have different effects on soluble and insoluble xylan.
    Prikladnaia biokhimiia i mikrobiologiia 46(5):558-61.