Philip R Dash

Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States

Are you Philip R Dash?

Claim your profile

Publications (12)46.77 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Trophoblast invasion is a temporally and spatially regulated scheme of events that can dictate pregnancy outcome. Evidence suggests that the potent mitogen epidermal growth factor (EGF) regulates cytotrophoblast (CTB) differentiation and invasion during early pregnancy. In the present study, the first trimester extravillous CTB cell line SGHPL-4 was used to investigate the signalling pathways involved in the motile component of EGF-mediated CTB migration/invasion. EGF induced the phosphorylation of the phosphatidylinositol 3-kinase (PI3-K)-dependent proteins, Akt and GSK-3beta as well as both p42/44 MAPK and p38 mitogen-activated protein kinases (MAPK). EGF-stimulated motility was significantly reduced following the inhibition of PI3-K (P < 0.001), Akt (P < 0.01) and both p42/44 MAPK (P < 0.001) and p38 MAPKs (P < 0.001) but not the inhibition of GSK-3beta. Further analysis indicated that the p38 MAPK inhibitor SB 203580 inhibited EGF-stimulated phosphorylation of Akt on serine 473, which may be responsible for the effect SB 203580 has on CTB motility. Although Akt activation leads to GSK-3beta phosphorylation and the subsequent expression of beta-catenin, activation of this pathway by 1-azakenpaullone was insufficient to stimulate the motile phenotype. We demonstrate a role for PI3-K, p42/44 MAPK and p38 MAPK in the stimulation of CTB cell motility by EGF, however activation of beta-catenin alone was insufficient to stimulate cell motility.
    Human Reproduction 08/2008; 23(8):1733-41. · 4.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nitric oxide regulates many important cellular processes including motility and invasion. Many of its effects are mediated through the modification of specific cysteine residues in target proteins, a process called S-nitrosylation. Here we show that S-nitrosylation of proteins occurs at the leading edge of migrating trophoblasts and can be attributed to the specific enrichment of inducible nitric oxide synthase (iNOS/NOS2) in this region. Localisation of iNOS to the leading edge is co-incidental with a site of extensive actin polymerisation and is only observed in actively migrating cells. In contrast endothelial nitric oxide synthase (eNOS/NOS3) shows distribution that is distinct and non-colocalised with iNOS, suggesting that the protein S-nitrosylation observed at the leading edge is caused only by iNOS and not eNOS. We have identified MMP-9 as a potential target for S-nitrosylation in these cells and demonstrate that it co-localises with iNOS at the leading edge of migrating cells. We further demonstrate that iNOS plays an important role in promoting trophoblast invasion, which is an essential process in the establishment of a successful pregnancy.
    Experimental Cell Research 06/2008; 314(8):1765-76. · 3.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Apoptosis induced by the death-inducing ligand FasL (CD95L) is a major mechanism of cell death. Trophoblast cells express the Fas receptor yet survive in an environment that is rich in the ligand. We report that basal nitric oxide (NO) production is responsible for the resistance of trophoblasts to FasL-induced apoptosis. In this study we demonstrate that basal NO production resulted in the inhibition of receptor clustering following ligand binding. In addition NO also protected cells through the selective nitrosylation, and inhibition, of protein kinase Cepsilon (PKCepsilon) but not PKCalpha. In the absence of NO production PKCepsilon interacted with, and phosphorylated, the anti-apoptotic protein cFLIP. The interaction is predominantly with the short form of cFLIP and its phosphorylation reduces its recruitment to the death-inducing signaling complex (DISC) that is formed following binding of a death-inducing ligand to its receptor. Inhibition of cFLIP recruitment to the DISC leads to increased activation of caspase 8 and subsequently to apoptosis. Inhibition of PKCepsilon using siRNA significantly reversed the sensitivity to apoptosis induced by inhibition of NO synthesis suggesting that NO-mediated inhibition of PKCepsilon plays an important role in the regulation of Fas-induced apoptosis.
    Experimental Cell Research 11/2007; 313(16):3421-31. · 3.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Heparin can significantly reduce pregnancy complications in women with certain thrombophilias, such as antiphospholipid syndrome. Recent reports suggest that heparin may act by mechanisms other than anticoagulation. However, the effect of heparin on trophoblast biology in the absence of thrombophilia has not been extensively investigated. Therefore, this study aimed to evaluate trophoblast invasion, using an established cell line and primary extravillous trophoblasts (EVTs), following exposure to heparin and fractionated heparin. An EVT cell line (SGHPL-4) was used to study invasion in the presence of hepatocyte growth factor (HGF) and varying concentrations of fractionated and unfractionated heparin. These experiments were repeated using first trimester primary EVTs. Both forms of heparin significantly reduced HGF-induced invasion in the SGHPL-4 cell line. This suppression of invasion appeared to be dose-dependent for fractionated heparin. In primary EVT cells, fractionated heparin also demonstrated significant suppression of invasion. Heparin has the potential to reduce trophoblast invasion in cell lines and first trimester EVT cells. This article highlights the need for further evaluation of these medications in vitro and in vivo, especially when used in the absence of thrombophilic disorders.
    Human Reproduction 10/2007; 22(9):2523-7. · 4.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Preeclampsia complicates 5 to 10% of pregnancies and is a leading cause of maternal and fetal mortality and morbidity. Although the cause is unknown, inadequate invasion and remodeling of maternal uterine arteries by extravillous trophoblasts (EVTs) in the first trimester is a common feature. Uterine spiral artery resistance as detected by Doppler ultrasound is commonly used in the second trimester to identify pregnancies destined to develop preeclampsia. Correlation between high uterine resistance and the failure of trophoblast invasion has been reported as early as 12 weeks. However, the reason for this failure has not been established. Understanding the processes involved would significantly improve our diagnostic potential. In this study, we correlated increased first trimester uterine artery resistance with a biological abnormality in trophoblast function. EVTs derived from high-resistance pregnancies were more sensitive to apoptotic stimuli than those from normal-resistance pregnancies. Survival of EVTs from high-resistance pregnancies could be increased by nitric oxide, whereas inhibition of nitric oxide in cells from normal-resistance pregnancies increased apoptotic sensitivity. This predates the onset of symptoms by several weeks and provides evidence for a mechanism responsible for the incomplete uterine vessel remodeling and the differences in artery resistance between preeclamptic and normal pregnancies.
    American Journal Of Pathology 07/2007; 170(6):1903-9. · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Excessive apoptosis of trophoblast cells is thought to be a contributing factor in complications of pregnancy such as pre-eclampsia. Hepatocyte growth factor (HGF) inhibits apoptosis in trophoblasts and we have investigated the signalling pathways through which this anti-apoptotic effect is mediated. Treatment of cells with HGF led to rapid phosphorylation of Akt while an Akt inhibitor blocked the protective effect of HGF. Glycogen synthase kinase-3beta (GSK-3beta) was found to be one of the downstream targets of Akt. HGF treatment inactivated GSK-3beta which in turn led to the activation of the transcription factor beta-catenin. Pharmacological inhibition of GSK-3beta, independently of HGF treatment, strongly increased both beta-catenin activity and cell survival, suggesting that beta-catenin alone has a pronounced anti-apoptotic effect. We also found that both HGF treatment and pharmacological activation of beta-catenin leads to increased expression of inducible nitric oxide synthase (iNOS). We suggest that the Akt mediated activation of beta-catenin leads to inhibition of trophoblast apoptosis following increased expression of iNOS.
    Cellular Signalling 06/2005; 17(5):571-80. · 4.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Invasion of uterine spiral arteries by extravillous trophoblasts in the first trimester of pregnancy results in loss of endothelial and musculoelastic layers. This remodeling is crucial for an adequate blood supply to the fetus with a failure to remodel implicated in the etiology of the hypertensive disorder preeclampsia. The mechanism by which trophoblasts induce this key process is unknown. This study gives the first insights into the potential mechanisms involved. Spiral arteries were dissected from nonplacental bed biopsies obtained at Caesarean section, and a novel model was used to mimic in vivo events. Arteries were cultured with trophoblasts in the lumen, and apoptotic changes in the endothelial layer were detected after 20 hours, leading to loss of endothelium by 96 hours. In vitro, coculture experiments showed that trophoblasts stimulated apoptosis of primary decidual endothelial cells and an endothelial cell line. This was blocked by caspase inhibition and NOK2, a FasL blocking antibody. NOK2 also abrogated trophoblast-induced endothelial apoptosis in the vessel model. Extravillous trophoblast induction of endothelial apoptosis is a possible mechanism by which the endothelium is removed, and vascular remodeling may occur in uterine spiral arteries. Fas/FasL interactions have an important role in trophoblast-induced endothelial apoptosis.
    Arteriosclerosis Thrombosis and Vascular Biology 02/2005; 25(1):102-8. · 6.34 Impact Factor
  • Source
    Ultrasound in Obstetrics and Gynecology 08/2004; 24(3):234 - 234. · 3.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Apoptosis is thought to play an important regulatory role in placental development and inappropriate trophoblast apoptosis has been implicated in complications of pregnancy such as pre-eclampsia. Here we show that apoptosis of a human extravillous trophoblast-derived cell line (SGHPL-4) can be regulated by nitric oxide (NO). Nitric oxide produced exogenously by the addition of NO donors was able to delay or inhibit apoptosis induced by a combination of tumour necrosis factor alpha and actinomycin D and to suppress the activity of caspase 3. Treatment with hepatocyte growth factor (HGF) stimulated expression of the inducible isoform of NO synthase and was also able to protect SGHPL-4 cells from caspase 3 activation and apoptosis. The inhibition of basal NO production with NO synthase inhibitors was shown to sensitise cells to apoptotic stimuli and to reduce the level of endogenous caspase 3 nitrosylation. The anti-apoptotic effects of NO in these extravillous trophoblast cells appear to be mediated through the production of cyclic GMP as inhibitors of soluble guanylate cyclase inhibited the protective effect of both HGF and NO donors.
    Experimental Cell Research 08/2003; 287(2):314-24. · 3.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Polyamines are regulators of proliferation and differentiation in mammalian cells. They are also known to regulate cell survival and apoptosis, although their precise function varies between cell types. We have investigated the effect of polyamines on the apoptosis of human extravillous trophoblasts. Using the extravillous trophoblast-derived cell line SGHPL-4 we performed time-lapse microscopy studies to evaluate the induction of apoptosis following exposure to polyamines. The polyamines spermine, and to a lesser extent spermidine, were able to induce apoptosis in extravillous trophoblasts. The induction of apoptosis occurred rapidly and was accompanied by DNA fragmentation and morphological changes consistent with the onset of apoptosis. Apoptosis was inhibited by the broad-spectrum caspase inhibitor Z-VAD-fmk, although no activity was detected using assays for caspase-2, -3, -6, -8 or -9 activity. We demonstrated that an oxidation product of spermine accounted for the induction of apoptosis and implicated the formation of hydrogen peroxide as this oxidation product. We have also demonstrated that exposure to nitric oxide inhibited the onset of spermine-induced apoptosis. Spermine and spermidine induce apoptosis in extravillous trophoblasts following their oxidation and the production of hydrogen peroxide. Nitric oxide is able to inhibit this apoptosis.
    Human Reproduction 06/2003; 18(5):959-68. · 4.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Extravillous trophoblasts invade the uterine wall (interstitial invasion) and the spiral arteries (endovascular invasion), replacing the cells of the vessel wall and creating a high-flow low-resistance vessel. We have developed a novel model to allow the interactions between the invading trophoblast cells and the cells of the spiral artery to be directly examined. Unmodified (non-placental bed) spiral arteries were obtained from uterine biopsies at caesarean section. Fluorescently labelled trophoblasts were seeded on top of artery segments embedded in fibrin gels (to study interstitial invasion) or perfused into the lumen of arteries mounted on a pressure myograph (to study endovascular invasion). Trophoblasts were incubated with the vessels for 3-5 days prior to cryo-sectioning. Both interstitial and endovascular interactions/invasion could clearly be detected and a comparison of the extravillous trophoblast cell line, SGHPL-4 and primary first trimester cytotrophoblasts showed both to be invasive in this model. This novel method will prove useful in an area where in vitro studies have been hampered by the lack of suitable models directly examining cellular interactions during invasion.
    Placenta 01/2002; 23(2-3):232-5. · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Extravillous trophoblasts invade the uterine wall (interstitial invasion) and the spiral arteries (endovascular invasion), replacing the cells of the vessel wall and creating a high-flow low-resistance vessel. We have developed a novel model to allow the interactions between the invading trophoblast cells and the cells of the spiral artery to be directly examined. Unmodified (non-placental bed) spiral arteries were obtained from uterine biopsies at caesarean section. Fluorescently labelled trophoblasts were seeded on top of artery segments embedded in fibrin gels (to study interstitial invasion) or perfused into the lumen of arteries mounted on a pressure myograph (to study endovascular invasion). Trophoblasts were incubated with the vessels for 3-5 days prior to cryo-sectioning. Both interstitial and endovascular interactions/invasion could clearly be detected and a comparison of the extravillous trophoblast cell line, SGHPL-4 and primary first trimester cytotrophoblasts showed both to be invasive in this model. This novel method will prove useful in an area where in vitro studies have been hampered by the lack of suitable models directly examining cellular interactions during invasion.

Publication Stats

336 Citations
46.77 Total Impact Points

Institutions

  • 2008
    • Louisiana State University Health Sciences Center New Orleans
      • Department of Microbiology, Immunology & Parasitology
      New Orleans, LA, United States
    • The University of Manchester
      • Manchester Maternal and Fetal Health Research Centre
      Manchester, ENG, United Kingdom
  • 2007–2008
    • St George's, University of London
      • Division of Biomedical Sciences
      Londinium, England, United Kingdom
  • 2003–2008
    • University of London
      Londinium, England, United Kingdom
  • 2004–2005
    • St. George's School
      Middletown, Rhode Island, United States