Carmen Regla Vargas

Hospital De Clínicas De Porto Alegre, Pôrto de São Francisco dos Casaes, Rio Grande do Sul, Brazil

Are you Carmen Regla Vargas?

Claim your profile

Publications (118)311.95 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Maple syrup urine disease (MSUD), or branched-chain α-keto aciduria, is an inherited disorder that is caused by a deficiency in branched-chain α-keto acid dehydrogenase complex (BCKAD) activity. Blockade of this pathway leads to the accumulation of the branched-chain amino acids (BCAAs), leucine, isoleucine, and valine, and their respective ketoacids in tissues. The main clinical symptoms presented by MSUD patients include ketoacidosis, hypoglycemia, opisthotonos, poor feeding, apnea, ataxia, convulsions, coma, psychomotor delay, and mental retardation. Although increasing evidence indicates that oxidative stress is involved in the pathophysiology of this disease, the mechanisms of the brain damage caused by this disorder remain poorly understood. In the present study, we investigated the effect of BCAAs on some oxidative stress parameters and evaluated the efficacy of L-carnitine (L-car), an efficient antioxidant that may be involved in the reduction of oxidative damage observed in some inherited neurometabolic diseases, against these possible pro-oxidant effects of a chronic MSUD model in the cerebral cortex and cerebellum of rats. Our results showed that chronic BCAA administration was able to promote both lipid and protein oxidation, impair brain antioxidant defenses, and increase reactive species production, particularly in the cerebral cortex, and that L-car was able to prevent these effects. Taken together, the present data indicate that chronic BCAA administration significantly increased oxidative damage in the brains of rats subjected to a chronic model of MSUD and that L-car may be an efficient antioxidant in this disorder.
    Molecular Neurobiology 11/2015; DOI:10.1007/s12035-015-9500-z · 5.14 Impact Factor

  • [Show abstract] [Hide abstract]
    ABSTRACT: Central nervous system is not spared from the deleterious effects of diabetes, since several studies have described neuropsychological and neurobehavioral changes in diabetic subjects, suggesting that diabetic encephalopathy should be recognized as a complication of this complex metabolic disorder. In fact, psychiatric manifestations may accompany this encephalopathy, since the prevalence of depression in diabetic patients is much higher than in the general population. Furthermore, evidences from preclinical and clinical studies suggest that GABA plays a role both in the pathophysiology of the diabetic encephalopathy-related depression. So, this review addresses the GABAergic modulation in diabetic encephalopathy-related depression. Data presented from literature support the association between GABA and depressive-like behaviors in diabetic encephalopathy, being this neurotransmitter a potential target for the treatment of diabetes, depression and related comorbidities.
    Current pharmaceutical design 09/2015; 21(999). DOI:10.2174/1381612821666150914121331 · 3.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phytanic acid (Phyt) accumulates in various peroxisomal diseases including Refsum disease (RD) and Zellweger syndrome (ZS). Since the pathogenesis of the neurological symptoms and especially the cerebellar abnormalities in these disorders are poorly known, we investigated the effects of in vivo intracerebral administration of Phyt on a large spectrum of redox homeostasis parameters in cerebellum of young rats. Malondialdehyde (MDA) levels, sulfhydryl oxidation, carbonyl content, nitrite and nitrate concentrations, 2',7'-dichlorofluorescein (DCFH) oxidation, total (tGS) and reduced glutathione (GSH) levels and the activities of important antioxidant enzymes were determined at different periods after Phyt administration. Immunohistochemical analysis was also carried out in cerebellum. Phyt significantly increased MDA and nitric oxide (NO) production and decreased GSH levels, without altering tGS, DCFH oxidation, sulfhydryl oxidation, carbonyl content and the activities of GPx, SOD, CAT, GR and G6PD. Furthermore, immunohistochemical analysis revealed that Phyt caused astrogliosis and protein nitrosative damage in cerebellum. It was also observed that the nitric oxide synthase inhibitor L-NAME prevented the increase of MDA and NO production as well as the decrease of GSH and the immunohistochemical alterations caused by Phyt, strongly suggesting that reactive nitrogen species (RNS) were involved in these effects. The present data provide in vivo solid evidence that Phyt disrupts redox homeostasis and causes astrogliosis in rat cerebellum probably mediated by RNS production. It is therefore presumed that disequilibrium of redox status may contribute at least in part to the cerebellum alterations characteristic of patients affected by RD and other disorders with Phyt accumulation. Copyright © 2015. Published by Elsevier Ltd.
    Neuroscience 07/2015; 304. DOI:10.1016/j.neuroscience.2015.07.028 · 3.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: X-linked adrenoleukodystrophy (X-ALD) is the most frequent peroxisomal disorder that is characterized by progressive demyelination of the white matter, adrenal insufficiency, and accumulation of very long-chain fatty acids in body fluid and tissues. This disorder is clinically heterogeneous with seven different phenotypes in male patients and five phenotypes in female carriers. An ultimate treatment for X-ALD is not available. Depending on the rate of the disease progression and the degree of an individual handicap, special needs and challenges vary greatly. The exact mechanisms underlying the pathophysiology of this multifactorial neurodegenerative disorder remains obscure. Previous studies has been related oxidative stress with the pathogenesis of several disease that affecting the central nervous system, such as neurodegenerative disease, epilepsy, multiple sclerosis, Alzheimer, and Parkinson diseases. In addition, oxidative damage has been observed in various in vivo and in vitro studies with inborn errors of metabolism, including X-ALD. In this context, this review is focused on oxidative stress in X-ALD, with emphasis on studies using biological samples from patients affected by this disease.
    Cellular and Molecular Neurobiology 07/2015; DOI:10.1007/s10571-015-0234-2 · 2.51 Impact Factor
  • Guilhian Leipnitz · Carmen Regla Vargas · Moacir Wajner ·
    [Show abstract] [Hide abstract]
    ABSTRACT: 3-Hydroxy-3-methylglutaryl-CoA lyase (HL) deficiency is an inherited disorder of organic acid metabolism biochemically characterized by tissue accumulation and high urinary excretion of 3-hydroxy-3-methylgutarate, 3-methylglutarate, 3-methylglutaconate and 3-hydroxyisovalerate. Affected patients predominantly present neurological symptoms that are accompanied by mild hepatopathy during episodes of catabolic crisis. The pathophysiology of this disease is poorly known, although recent animal and human in vitro and in vivo studies have suggested that oxidative stress caused by the major accumulating organic acids may represent a pathomechanism of brain and liver damage in HL deficiency. In this review we focus on the deleterious effects of these carboxylic acids on redox homeostasis in rat and human tissues that may offer new perspectives for potential novel adjuvant therapeutic strategies in this disorder.
    Journal of Inherited Metabolic Disease 06/2015; DOI:10.1007/s10545-015-9863-3 · 3.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The understanding of the consequences of chronic treatment with methylphenidate is very important since this psychostimulant is extensively prescribed to preschool age children, and little is known about the mechanisms underlying the persistent changes in behavior and neuronal function related with the use of methylphenidate. In this study, we initially investigate the effect of early chronic treatment with methylphenidate on amino acids profile in cerebrospinal fluid and prefrontal cortex of juvenile rats, as well as on glutamatergic homeostasis, Na(+),K(+)-ATPase function, and balance redox in prefrontal cortex of rats. Wistar rats at early age received intraperitoneal injections of methylphenidate (2.0 mg/kg) or an equivalent volume of 0.9 % saline solution (controls), once a day, from the 15th to the 45th day of age. Twenty-four hours after the last injection, the animals were decapitated and the cerebrospinal fluid and prefrontal cortex were obtained. Results showed that methylphenidate altered amino acid profile in cerebrospinal fluid, increasing the levels of glutamate. Glutamate uptake was decreased by methylphenidate administration, but GLAST and GLT-1 were not altered by this treatment. In addition, the astrocyte marker GFAP was not altered by MPH. The activity and immunocontent of catalytic subunits (α1, α2, and α3) of Na(+),K(+)-ATPase were decreased in prefrontal cortex of rats subjected to methylphenidate treatment, as well as changes in α1 and α2 gene expression of catalytic α subunits of Na(+),K(+)-ATPase were also observed. CAT activity was increased and SOD/CAT ratio and sulfhydryl content were decreased in rat prefrontal cortex. Taken together, our results suggest that chronic treatment with methylphenidate at early age induces excitotoxicity, at least in part, due to inhibition of glutamate uptake probably caused by disturbances in the Na(+),K(+)-ATPase function and/or in protein damage observed in the prefrontal cortex.
    Molecular Neurobiology 05/2015; DOI:10.1007/s12035-015-9219-x · 5.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Maple Syrup Urine Disease (MSUD) is a metabolic disorder caused by a severe deficiency of the branched-chain α-keto acid dehydrogenase complex activity which leads to the accumulation of branched-chain amino acids (BCAA) leucine (Leu), isoleucine and valine and their respective α-keto-acids in body fluids. The main symptomatology presented by MSUD patients includes ketoacidosis, failure to thrive, poor feeding, apnea, ataxia, seizures, coma, psychomotor delay and mental retardation, but, the neurological pathophysiologic mechanisms are poorly understood. The treatment consists of a low protein diet and a semi-synthetic formula restricted in BCAA and supplemented with essential amino acids. It was verified that MSUD patients present L-carnitine (L-car) deficiency and this compound has demonstrated an antioxidant and anti-inflammatory role in metabolic diseases. Since there are no studies in the literature reporting the inflammatory profile of MSUD patients and the L-car role on the inflammatory response in this disorder, the present study evaluates the effect of L-car supplementation on plasma inflammatory cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6), interferon-gamma (INF-ɣ), and a correlation with malondialdehyde (MDA), as a marker of oxidative damage, and with free L-car plasma levels in treated MSUD patients. Significant increases of IL-1β, IL-6, and INF-ɣ were observed before the treatment with L-car. Moreover, there is a negative correlation between all cytokines tested and L-car concentrations and a positive correlation among the MDA content and IL-1β and IL-6 values. Our data show that L-car supplementation can improve cellular defense against inflammation and oxidative stress in MSUD patients and may represent an additional therapeutic approach to the patients affected by this disease.
    Metabolic Brain Disease 05/2015; 30(5). DOI:10.1007/s11011-015-9686-9 · 2.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: X-linked adrenoleukodystrophy heterozygote women can present adult onset myeloneuropathy and little is known about its natural history. We aimed to describe the progression rate of the neurological impairment in the prospective follow-up of our cohort and to look for prognostic factors. The neurological scales Japanese Orthopaedic Association (JOA) and Severity Score System for Progressive Myelopathy (SSPROM) were applied at baseline in 29 symptomatic carriers and in follow-up visits. Age at onset, disease duration, X inactivation pattern, determination of the allele expressed, plasma levels of the very long chain fatty acids and of the neuron-specific enolase, and somato-sensory evoked potentials, were taken at baseline. The slope of the linear regression of both JOA and SSPROM versus disease duration since the first symptom was estimated using mixed modeling. JOA and SSPROM decreased 0.42 and 1.87 points per year, respectively (p < 0.001). None of the parameters under study influenced these rates. We estimated that the number of carriers per arm needed in a future 12 month trial with 80 % power and a 50 % reduction in disease progression would be 225 women for JOA and 750 for SSPROM. The progression rates of the studied neurological scales were small, did not depend on any modifier factor known, and reflected the characteristically slow worsening of symptoms in X-ALD heterozygotes. Better biomarkers are still necessary for future studies.
    Metabolic Brain Disease 04/2015; 30(5). DOI:10.1007/s11011-015-9672-2 · 2.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fabry disease (FD) is a lysosomal storage disorder associated with loss of activity of the enzyme α-galactosidase A. In addition to accumulation of α-galactosidase A substrates, other mechanisms may be involved in FD pathophysiology, such as inflammation and oxidative stress. Higher levels of oxidative damage to proteins and lipids in Fabry patients were previously reported. However, DNA damage by oxidative species in FD has not yet been studied. We investigated basal DNA damage, oxidative DNA damage, DNA repair capacity, and reactive species generation in Fabry patients and controls. To measure oxidative damage to purines and pyrimidines, the alkaline version of the comet assay was used with two endonucleases, formamidopyrimidine DNA-glycosylase (FPG) and endonuclease III (EndoIII). To evaluate DNA repair, a challenge assay with hydrogen peroxide was performed. Patients presented significantly higher levels of basal DNA damage and oxidative damage to purines. Oxidative DNA damage was induced in both DNA bases by H2O2 in patients. Fabry patients presented efficient DNA repair in both assays (with and without endonucleases) as well as significantly higher levels of oxidative species (measured by dichlorofluorescein content). Even if DNA repair be induced in Fabry patients (as a consequence of continuous exposure to oxidative species), the repair is not sufficient to reduce DNA damage to control levels. Copyright © 2015 Elsevier B.V. All rights reserved.
    Mutation Research/Genetic Toxicology and Environmental Mutagenesis 04/2015; 784-785C. DOI:10.1016/j.mrgentox.2015.04.012 · 2.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Maple syrup urine disease (MSUD) is an inherited disorder caused by severe deficient activity of the branched-chain α-keto acid dehydrogenase complex involved in the degradation pathway of branched-chain amino acids (BCAAs) and their α-ketoacid derivatives. MSUD patients generally present ketoacidosis, poor feeding, ataxia, coma, psychomotor delay, mental retardation and brain abnormalites. Treatment consists of dietary restriction of the BCAA (low protein intake) supplemented by a BCAA-free amino acid mixture. Although the mechanisms of brain damage in MSUD are poorly known, previous studies have shown that oxidative stress may be involved in the neuropathology of this disorder. In this regard, it was recently reported that MSUD patients have deficiency of l-carnitine (l-car), a compound with antioxidant properties that is used as adjuvant therapy in various inborn errors of metabolism. In this work, we investigated DNA damage determined by the alkaline comet assay in peripheral whole blood leukocytes of MSUD patients submitted to a BCAA-restricted diet supplemented or not with l-car. We observed a significant increase of DNA damage index (DI) in leukocytes from MSUD patients under BCAA-restricted diet as compared to controls and that l-car supplementation significantly decreased DNA DI levels. It was also found a positive correlation between DI and MDA content, a marker of lipid peroxidation, and an inverse correlation between DI and l-car levels. Taken together, our present results suggest a role for reactive species and the involvement of oxidative stress in DNA damage in this disorder. Since l-car reduced DNA damage, it is presumed that dietary supplementation of this compound may serve as an adjuvant therapeutic strategy for MSUD patients in addition to other therapies. Copyright © 2015 Elsevier B.V. All rights reserved.
    03/2015; 775. DOI:10.1016/j.mrfmmm.2015.03.008
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cystathionine-β-synthase (CBS) deficiency is the main cause of homocystinuria. Homocysteine (Hcy), methionine, and other metabolites of Hcy accumulate in the body of affected patients. Despite the fact that thromboembolism represents the major cause of morbidity in CBS-deficient patients, the mechanisms of cardiovascular alterations found in homocystinuria remain unclear. In this work, we evaluated the lipid and inflammatory profile, oxidative protein damage, and the activities of the enzymes paraoxonase (PON1) and butyrylcholinesterase (BuChE) in plasma of CBS-deficient patients at diagnosis and during the treatment (protein-restricted diet supplemented with pyridoxine, folic acid, betaine, and vitamin B12). We also investigated the effect of folic acid and vitamin B12 on these parameters. We found a significant decrease in HDL cholesterol and apolipoprotein A1 (ApoA-1) levels, as well as in PON1 activity in both untreated and treated CBS-deficient patients when compared to controls. BuChE activity and IL-6 levels were significantly increased in not treated patients. Furthermore, significant positive correlations between PON1 activity and sulphydryl groups and between IL-6 levels and carbonyl content were verified. Moreover, vitamin B12 was positively correlated with PON1 and ApoA-1 levels, while folic acid was inversely correlated with total Hcy concentration, demonstrating the importance of this treatment. Our results also demonstrated that CBS-deficient patients presented important alterations in biochemical parameters, possibly caused by the metabolites of Hcy, as well as by oxidative stress, and that the adequate adherence to the treatment is essential to revert or prevent these alterations.
    Cellular and Molecular Neurobiology 03/2015; 35(6). DOI:10.1007/s10571-015-0185-7 · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is an inborn error of metabolism caused by a defect in the transport of ornithine (Orn) into mitochondrial matrix leading to accumulation of Orn, homocitrulline (Hcit), and ammonia. Affected patients present a variable clinical symptomatology, frequently associated with cerebellar symptoms whose pathogenesis is poorly known. Although in vitro studies reported induction of oxidative stress by the metabolites accumulating in HHH syndrome, so far no report evaluated the in vivo effects of these compounds on redox homeostasis in cerebellum. Therefore, the present work was carried out to investigate the in vivo effects of intracerebellar administration of Orn and Hcit on antioxidant defenses (reduced glutathione concentrations and the activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glucose-6-phosphate dehydrogenase), lipid oxidation (malondialdehyde concentrations), as well as on the activity of synaptic Na(+), K(+)-ATPase, an enzyme highly vulnerable to free radical attack, in the cerebellum of adolescent rats. Orn significantly increased malondialdehyde levels and the activities of all antioxidant enzymes, and reduced Na(+), K(+)-ATPase activity. In contrast, glutathione concentrations were not changed by Orn treatment. Furthermore, intracerebellar administration of Hcit was not able to alter any of these parameters. The present data show for the first time that Orn provokes in vivo lipid oxidative damage, activation of the enzymatic antioxidant defense system, and reduction of the activity of a crucial enzyme involved in neurotransmission. It is presumed that these pathomechanisms may contribute at least partly to explain the neuropathology of cerebellum abnormalities and the ataxia observed in patients with HHH syndrome.
    Cellular and Molecular Neurobiology 03/2015; 35(6). DOI:10.1007/s10571-015-0173-y · 2.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Toxic metabolites accumulation and oxidative stress have been associated to the pathophysiology of X-linked adrenoleukodistrophy (X-ALD), an inborn error of peroxisome metabolism. Parameters of oxidative damage to proteins and lipids in X-ALD patients were already described in literature; however, DNA injuries were not studied yet. Considering that, the aims were to investigate DNA damage by comet assay in heterozygotes and symptomatic X-ALD patients, to look for associations between DNA damage and lipid peroxidation as measured by urinary 15-F2t-isoprostane; and to evaluate the in vitro effect of N-acetyl-L-cysteine (NAC), trolox (TRO) and rosuvastatin (RSV) on DNA damage in leukocytes from symptomatic patients. Symptomatic patients presented higher DNA damage levels than those found in heterozygotes and controls; heterozygotes and controls showed similar results. In order to investigate the in vitro antioxidant effect on DNA damage, whole blood cells from symptomatic patients were incubated with NAC (1 and 2.5mM), TRO (25 and 75μM) and RSV (0.5, 2 and 5μM) before DNA damage analysis. NAC, TRO and RSV, at all tested concentrations, were all capable to reduce DNA damage in symptomatic X-ALD patients until control levels. Finally, DNA damage correlated with urinary isoprostanes and plasmatic levels of TBA-RS and DCFH-DA, allowing to hypothesize that DNA damage might be induced by lipid peroxidation in symptomatic patients. The present work yields experimental evidence that NAC, TRO and RSV reduce the in vitro DNA injury in symptomatic X-ALD patients, what may suggest that the administration of these antioxidants might be considered as an adjuvant therapy for X-ALD. Copyright © 2015. Published by Elsevier Ltd.
    International Journal of Developmental Neuroscience 03/2015; 43. DOI:10.1016/j.ijdevneu.2015.03.004 · 2.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mucopolysaccharidosis type IVA (MPS IVA) is an inborn error of glycosaminoglycans (GAGs) catabolism due to the deficient activity of N-acetylgalactosamine-6-sulfate sulfatase that leads to accumulation of the keratan sulfate and chondroitin 6-sulfate in body fluids and in lysosomes. The pathophysiology of this lysosomal storage disorder is not completely understood. The aim of this study was to investigate oxidative stress parameters, pro-inflammatory cytokine and GAGs levels in MPS IVA patients. We analyzed urine and blood samples from patients under ERT (n=17) and healthy age-matched controls (n=10-15). Patients presented a reduction of antioxidant defenses levels, assessed by a decrease in glutathione content and by an increase in superoxide dismutase activity in erythrocytes. Concerning to lipids and proteins damage, it was verified increased urine isoprostanes and di-tyrosine levels and decreased plasma sulfhydryl groups in MPS IVA patients compared to controls. MPS IVA patients showed higher DNA damage than control group and this damage had an oxidative origin in both pyrimidines and purines bases. Interleukin 6 was increased in patients and presented an inverse correlation with GSH levels, showing a possible link between inflammation and oxidative stress in MPS IVA disease. The data presented suggest that pro-inflammatory and pro-oxidant states occur in MPS IVA patients even under ERT. Taking these results into account, supplementation of antioxidants in combination with ERT can be a tentative therapeutic approach with the purpose of improving the patient's quality life. To the best of our knowledge, this is the first study relating MPS IVA patients with oxidative stress. Copyright © 2015. Published by Elsevier B.V.
    Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 02/2015; 1852(5). DOI:10.1016/j.bbadis.2015.02.004 · 4.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Maple syrup urine disease (MSUD) is a disorder of branched-chain amino acids (BCAA). The defect in the branched-chain α-keto acid dehydrogenase complex activity leads to an accumulation of these compounds and their corresponding α-keto-acids and α-hydroxy-acids. Studies have shown that oxidative stress may be involved in neuropathology of MSUD. l-carnitine (l-car), which has demonstrated an important role as antioxidant by reducing and scavenging free radicals formation and by enhancing the activity of antioxidant enzymes, have been used in the treatment of some metabolic rare disorders. This study evaluated the oxidative stress parameters, di-tyrosine, isoprostanes and antioxidant capacity, in urine of MSUD patients under protein-restricted diet supplemented or not with l-car capsules at a dose of 50mgkg(-1) day(-1). It was also determined urinary α-keto isocaproic acid levels as well as blood free l-car concentrations in blood. It was found a deficiency of carnitine in patients before the l-car supplementation. Significant increases of di-tyrosine and isoprostanes, as well as reduced antioxidant capacity, were observed before the treatment with l-car. The l-car supplementation induced beneficial effects on these parameters reducing the di-tyrosine and isoprostanes levels and increasing the antioxidant capacity. It was also showed a significant increase in urinary of α-ketoisocaproic acid after 2 months of l-car treatment, compared to control group. In conclusion, our results suggest that l-car may have beneficial effects in the treatment of MSUD by preventing oxidative damage to the cells and that urine can be used to monitorize oxidative damage in patients affected by this disease. Copyright © 2015. Published by Elsevier Ltd.
    International Journal of Developmental Neuroscience 02/2015; 42. DOI:10.1016/j.ijdevneu.2015.02.003 · 2.58 Impact Factor
  • Source

    Molecular Genetics and Metabolism 02/2015; 114(2):S47-S48. DOI:10.1016/j.ymgme.2014.12.093 · 2.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The pathogenesis and the progression of phenylketonuria (PKU), an inborn error of phenylalanine (Phe) metabolism, have been associated with oxidative damage. Moreover, it has been increasingly postulated the antioxidant properties of L-Carnitine (LC). The aim of this study was to verify the effect of LC on Phe-induced DNA damage. The in vitro effect of different concentrations of LC (15, 30, 120 and 150 μM) on DNA damage-induced by high phenylalanine levels (1000 and 2500 μM) was examined in white blood cells from normal individuals using the comet assay. Urinary 8-hydroxydeoguanosine (8-OHdG) levels, a biomarker of oxidative DNA damage, and plasmatic sulfhydryl content were measured in eight patients with classical PKU, under therapy with protein restriction and supplemented with a special formula containing LC, and in controls individuals. Both in vitro tested Phe concentrations (1000 and 2500 μM) have resulted in DNA damage index significantly higher than control group. The in vitro co-treatment with Phe and LC reduced significantly DNA damage index when compared to Phe group. The urinary excretion of 8-OHdG and plasmatic sulfhydryl content presented similar levels in both groups analyzed (controls and treated PKU patients). In treated PKU patients, urinary 8-OHdG levels were positively correlated with blood Phe levels and negatively correlated with blood LC concentration and plasmatic sulfhydryl content. The present work yields experimental evidence that LC can reduce the in vitro DNA injury induced by high concentrations of phenylalanine, as well as, allow to hypothesize that LC protect against DNA damage in patients with PKU.
    Metabolic Brain Disease 01/2015; 30(4). DOI:10.1007/s11011-015-9649-1 · 2.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 3-hydroxy-3-methylglutaric aciduria (HMGA; OMIM 246450) is a rare autosomal recessive disorder, caused by the deficiency of 3-hydroxy-3-methylglutaryl-CoA lyase (, which results in the accumulation of 3-hydroxy-3-methylglutaric (HMG) and 3-methylglutaric (MGA) acids in tissues and biological fluids of affected individuals. Recent in vivo and in vitro animal studies have demonstrated that the accumulation of these metabolites can disturb the cellular redox homeostasis, which can contribute to the neurological manifestations presented by the patients. So, in the present work, we investigated oxidative stress parameters in plasma and urine samples from HMGA patients, obtained at the moment of diagnosis of this disorder and during therapy with low-protein diet and L-carnitine supplementation. It was verified that untreated HMGA patients presented higher levels of urinary di-tyrosine and plasma thiobarbituric acid-reactive substances (TBA-RS), which are markers of protein and lipid oxidative damage, respectively, as well as a reduction of the urinary antioxidant capacity. Treated HMGA patients also presented an increased protein oxidative damage, as demonstrated by their higher concentrations of plasma protein carbonyl groups and urinary di-tyrosine, as well as by the reduction of total sulfhydryl groups in plasma, in relation to controls. On the other hand, HMGA patients under therapy presented normal levels of TBA-RS and urinary antioxidant capacity, which can be related, at least in part, to the antioxidant and antiperoxidative effects exerted by L-carnitine. The results of this work are the first report showing that a redox imbalance occurs in patients with HMGA what reinforces the importance of the antioxidant therapy in this disorder.
    Molecular and Cellular Biochemistry 01/2015; 402(1-2). DOI:10.1007/s11010-014-2322-x · 2.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is increasing evidence suggesting that oxidative stress plays an important role in the development of many chronic and degenerative conditions such as diabetic encephalopathy and depression. Considering that diabetic rats and mice present higher depressive-like behaviour when submitted to the forced swimming test and that treatment with insulin and/or clonazepam is able to reverse the behavioural changes of the diabetic rats, the present work investigated the antioxidant status, specifically total antioxidant reactivity and antioxidant potential of insulin and clonazepam, as well as the effect of this drugs upon protein oxidative damage and reactive species formation in cortex, hippocampus and striatum from diabetic rats submitted to forced swimming test. It was verified that longer immobility time in diabetic rats and insulin plus clonazepam treatment reversed this depressive-like behaviour. Moreover, data obtained in this study allowed to demonstrate through different parameters such as protein carbonyl content, 2'7'-dichlorofluorescein oxidation, catalase, superoxide dismutase, glutathione peroxidase assay, total radical-trapping antioxidant potential and total antioxidant reactivity that there is oxidative stress in cortex, hippocampus and striatum from diabetic rats under depressive-like behaviour and highlight the insulin and/or clonazepam effect in these different brain areas, restoring antioxidant status and protein damage. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.
    Cell Biochemistry and Function 12/2014; 32(8). DOI:10.1002/cbf.3076 · 2.01 Impact Factor

Publication Stats

2k Citations
311.95 Total Impact Points


  • 1994-2015
    • Hospital De Clínicas De Porto Alegre
      Pôrto de São Francisco dos Casaes, Rio Grande do Sul, Brazil
  • 2014
    • Universidade Federal do Pampa (Unipampa)
      Caçapava, Rio Grande do Sul, Brazil
  • 2005-2014
    • Universidade Federal do Rio Grande do Sul
      • • Departamento de Bioquímica
      • • Faculty of Pharmacy
      Pôrto de São Francisco dos Casaes, Rio Grande do Sul, Brazil
  • 2009
    • Universidade Luterana do Brasil
      Canoas, Rio Grande do Sul, Brazil
    • Universidade Federal de Ciências da Saúde de Porto Alegre
      Pôrto de São Francisco dos Casaes, Rio Grande do Sul, Brazil
  • 2008
    • CEP America
      Емеривил, California, United States
  • 1998
    • Federal University of Rio de Janeiro
      • Departamento de Bioquímica
      Rio de Janeiro, Rio de Janeiro, Brazil