Chen-Lung Ho

Taiwan Forestry Research Institute, T’ai-pei, Taipei, Taiwan

Are you Chen-Lung Ho?

Claim your profile

Publications (41)55.59 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, flue gas from a power plant smokestack was applied to culture Spirulina platensis microalgae. Our results will not only achieve the fixation of carbon from the emissions; products can also be produced from the algal biomass that possess physiological activities which could be beneficial to human health. An improved one-step process of chromatography was used to produce high-purity C-phycocyanin with a PC ratios >3.5. Adding different concentrations of ammonium sulfate produced different amounts of C-phycocyanin, with 40% generating the highest yield, followed by 35% and 30% concentrations. Immunomodulating activities were evaluated in the murine macrophage cell line J774A.1. We found that C-phycocyanin had the capability to induce secretion of inflammatory cytokines, including TNF-α, IL-1β, and IL-6, and that these results were not due to contamination with LPS. Treatment with C-phycocyanin also increased proIL-1β and COX-2 protein expression dose-dependently. Furthermore, C-phycocyanin rapidly stimulated phosphorylation of inflammatory-related signaling molecules, including ERK, JNK, p38 and IκB. In addition, although C-phycocyanin decreased production of LPS-induced ROS, it did not inhibit LPS-induced inflammatory cytokines in J774A.1 cells. This is the first report to show that C-phycocyanin exhibited a detailed molecular mechanism of bioactivity by boosting immunomodulation performance.
    PROCESS BIOCHEMISTRY 08/2014; · 2.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The essential oil from Liquidambar formosana leaves (EOLF) was demonstrated to exhibit anti-inflammatory activity in mouse macrophages. EOLF reduced nitrite oxide generation, secretion levels of tumor necrosis factor-alpha and interleukin-6, and expression levels of prointerleukin-beta, inducible nitric oxide synthase, and cyclooxygenase-2 in lipopolysaccharide (LPS)-activated mouse macrophages. EOLF also reduced NLRP3 inflammasome-derived interleukin-1beta secretion. The underlying mechanisms for the EOLF-mediated anti-inflammatory activity were (1) reduction of LPS-induced reactive oxygen species generation; (2) reduction of LPS-induced activation of c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38 MAP kinase; (3) reduction of LPS-induced nuclear factor-kappaBeta activation. Furthermore, 25 compounds were identified in the EOLF using GC-FID and GC-MS and the major compounds were terpinen-4-ol (32.0%), beta-pinene (18.0%), gamma-terpinene (13.8%), and alpha-terpinene (9.7%). We found that LPS-induced nitrite oxide generation was inhibited significantly by terpinen-4-ol. Our results indicated that EOLF has anti-inflammatory activity and may provide a molecular rationale for future therapeutic interventions in immune modulation.
    Natural product communications 06/2014; 9(6):869-72. · 0.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite good initial responses, drug resistance and disease recurrence remain major issues for lung adenocarcinoma patients with epidermal growth factor receptor (EGFR) mutations taking EGFR-tyrosine kinase inhibitors (TKI). To discover new strategies to overcome this issue, we investigated 40 essential oils from plants indigenous to Taiwan as alternative treatments for a wide range of illnesses. Here, we found that hinokitiol, a natural monoterpenoid from the heartwood of Calocedrus formosana, exhibited potent anticancer effects. In this study, we demonstrated that hinokitiol inhibited the proliferation and colony formation ability of lung adenocarcinoma cells as well as the EGFR-TKI-resistant lines PC9-IR and H1975. Transcriptomic analysis and pathway prediction algorithms indicated that the main implicated pathways included DNA damage, autophagy, and cell cycle. Further investigations confirmed that in lung cancer cells, hinokitiol inhibited cell proliferation by inducing the p53-independent DNA damage response, autophagy (not apoptosis), S-phase cell cycle arrest, and senescence. Furthermore, hinokitiol inhibited the growth of xenograft tumors in association with DNA damage and autophagy but exhibited fewer effects on lung stromal fibroblasts. In summary, we demonstrated novel mechanisms by which hinokitiol, an essential oil extract, acted as a promising anticancer agent to overcome EGFR-TKI resistance in lung cancer cells via inducing DNA damage, autophagy, cell cycle arrest, and senescence in vitro and in vivo.
    PLoS ONE 01/2014; 9(8):e104203. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, anti-mildew and anti-wood-decay fungal activities of the leaf and fruits essential oil and its constituents from Juniperus formosana were evaluated in vitro against seven mildew fungi and four wood decay fungi, respectively. The main compounds responsible for the anti-mildew and anti-wood-decay fungal activities were also identified. The essential oil from the fresh leaves and fruits of J. formosana were isolated using hydrodistillation in a Clevenger-type apparatus, and characterized by GC-FID and GC-MS, respectively. The leaf oil mainly consisted of alpha-pinene (41.0%), limonene (11.5%), alpha-cadinol (11.0%), elemol (6.3%), and beta-myrcene (5.8%); the fruit oil was mostly alpha-pinene (40.9%), beta-myrcene (32.4%), alpha-thujene (5.9%) and limonene (5.9%). Comparing the anti-mildew and anti-wood-decay fungal activities of the oils suggested that the leaf oil was the most effective. For the anti-mildew and anti-wood-decay fungal activities of the leaf oil, the active source compounds were determined to be alpha-cadinol and elemol.
    Natural product communications 09/2013; 8(9):1329-32. · 0.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the chemical composition and in vitro anticancer activities of the essential oil isolated from the leaf of Neolitsea variabillima. The essential oil was isolated using hydrodistillation in a Clevenger-type apparatus, and characterized by GC-FID and GC-MS. Sixty-seven compounds were identified, representing 100% of the oil. The main components identified were trans-beta-ocimene (13.4%), alpha-cadinol (10.5%), terpinen-4-ol (9.3%), tau-cadinol (9.2%), beta-caryophyllene (8.8%), and sabinene (6.7%). The anticancer activities of oil were evaluated. The results showed that the oil exhibited cytotoxic activity against human oral, liver, lung, colon, melanoma, and leukemic cancer cells. The presence of beta-caryophyllene, tau-cadinol, and alpha-cadinol significantly contributed to the anticancer activities of N. variabillima leaf oil.
    Natural product communications 04/2013; 8(4):531-2. · 0.96 Impact Factor
  • Yu-Chang Su, Chen-Lung Ho
    [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the chemical composition, in-vitro anticancer, and antimicrobial activities of the essential oil isolated from the leaf of Machilus mushaensis from Taiwan. The essential oil was isolated using hydrodistillation in a Clevenger-type apparatus, and characterized by GC-FID and GC-MS. Forty compounds were identified, representing 100% of the oil. The main components identified were n-decanal (61.0%), and alpha-cadinol (20.8%). The oil exhibited cytotoxic activity against human oral, liver, lung, colon, melanoma, and leukemic cancer cells. The antimicrobial activity of the oil was tested by the disc diffusion and micro-broth dilution methods against ten microbial species. The oil exhibited moderate growth suppression against Gram-positive bacteria and yeast with inhibition zones of 25-29 mm to MIC values of 375-500 microg/mL, respectively. alpha-Cadinol was found to show promising anticancer and antimicrobial activities.
    Natural product communications 02/2013; 8(2):273-5. · 0.96 Impact Factor
  • Yu-Chang Su, Chen-Lung Ho
    [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the chemical composition and in-vitro cytotoxic activities of the essential oil isolated from the leaf of Beilschmiedia erythrophloia. The essential oil was isolated using hydrodistillation in a Clevenger-type apparatus, and characterized by GC-FID and GC-MS. Fifty-five compounds were identified, representing 100% of the oil. The main components identified were beta-caryophyllene (22.6%), alpha-humulene (21.9%), terpinen-4-ol (5.3%), cis-beta-ocimene (5.1%), sabinene (5.0%) and limonene (4.5%). The anticancer activities of oil were evaluated. The results showed that the oil exhibited cytotoxic activity against human oral, liver, lung, colon, melanoma, and leukemic cancer cells.
    Natural product communications 01/2013; 8(1):143-4. · 0.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bamboo vinegar (BV), a natural liquid derived from the condensation produced during bamboo charcoal production, has been used in agriculture and as a food additive, but its application to immune modulation has not been reported. Here, we demonstrated that BV has anti-inflammatory activities both in vitro and in vivo. BV reduced inducible nitric oxide synthase expression and nitric oxide levels in, and interleukin-6 secretion by, lipopolysaccharide-activated macrophages without affecting tumor necrosis factor-α secretion and cyclooxygenase-2 expression. The mechanism for the anti-inflammatory effect of BV involved decreased reactive oxygen species production and protein kinase C-α/δ activation. Furthermore, creosol (2-methoxy-4-methylphenol) was indentified as the major anti-inflammatory compound in BV. Impaired cytokine expression and NLR family, pyrin domain-containing 3 (NLRP3) inflammasome activation was seen in mice treated with creosol. These findings provide insights into how BV regulates inflammation and suggest that it may be a new source for the development of anti-inflammatory agents or a healthy supplement for preventing and ameliorating inflammation- and NLRP3 inflammasome-related diseases, including metabolic syndrome.
    PLoS ONE 01/2013; 8(10):e75738. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pathogenesis of focal segmental glomerulosclerosis (FSGS) is considered to be associated with oxidative stress, mononuclear leukocyte recruitment and infiltration, and matrix production and/or matrix degradation, although the exact etiology and pathogenic pathways remain to be determined. Establishment of a pathogenesis-based therapeutic strategy for the disease is clinically warranted. Citral (3,7-dimethyl-2,6-octadienal), a major active compound in Litseacubeba, a traditional Chinese herbal medicine, can inhibit oxidant activity, macrophage and NF-κB activation. In the present study, first, we used a mouse model of FSGS with the features of glomerular epithelial hyperplasia lesions (EPHLs), a key histopathology index of progression of FSGS, peri-glomerular inflammation, and progressive glomerular hyalinosis/sclerosis. When treated with citral for 28 consecutive days at a daily dose of 200 mg/kg of body weight by gavage, the FSGS mice showed greatly reduced EPHLs, glomerular hyalinosis/sclerosis and peri-glomerular mononuclear leukocyte infiltration, suggesting that citral may be renoprotective for FSGS and act by inhibiting oxidative stress and apoptosis and early activating the Nrf2 pathway. Meanwhile, a macrophage model involved in anti-oxidative and anti-inflammatory activities was employed and confirmed the beneficial effects of citral on the FSGS model.
    PLoS ONE 01/2013; 8(9):e74871. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies demonstrated that freshwater clam (Corbicula fluminea) has lipid-lowering and hepatoprotective activities, but its effect on immune responses has not yet been addressed. Here we showed that ethanol extracts of C. fluminea (ECF) reduced nitrite oxide, interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in lipopolysaccharide-activated macrophages. Further, ECF was fractionated into n-hexane, ethyl acetate, ethanol, and water soluble fractions. Of these, the ethyl acetate soluble fraction (EACF) had the highest capacity to inhibit pro-inflammatory mediators expression. The underlying mechanisms for the anti-inflammatory activity of EACF were demonstrated as down-regulation of ERK1/2, JNK1/2, and p38 phosphorylation and NF-kappaB activity. Using gas chromatography-mass spectrometric analysis EACF was found to be composed mainly of fatty acids and steroids. Our results provide evidence that freshwater clam has anti-inflammatory activity, and support the possibility for the development of freshwater clam as a health supplement or adjuvant therapeutic agent for either preventing or treating inflammation related diseases.
    Natural product communications 11/2012; 7(11):1435-40. · 0.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE: Reactive oxygen species (ROS) plays a critical role in the regulation of NLRP3 inflammasome activation. However, the ROS-mediated signaling pathways controlling NLRP3 inflammasome activation are not well defined. METHODS: Using lipopolysaccharide (LPS) and adenosine triphosphate (ATP) activated murine macrophages as the testing model, cytokine release and protein expression were quantified by enzyme-linked immunosorbent assay and Western blot, respectively. ROS was scavenged by N-acetyl cysteine; NADPH oxidase, the major source of ROS, was inhibited by diphenyliodonium, apocynin or gp91-phox siRNA transfection; and protein kinase was inhibited by its specific inhibitor. RESULTS: LPS-induced NLRP3 protein expression was regulated through the NADPH oxidase/ROS/NF-κB-dependent, JAK2/PI3-kinase/AKT/NF-κB-dependent, and MAPK-dependent pathways, while ATP-induced caspase-1 activation was regulated through the NADPH oxidase/ROS-dependent pathway. CONCLUSIONS: These results demonstrate that ROS regulates not only the priming stage, but also the activation stage, of NLRP3 inflammasome activation in LPS + ATP-activated macrophages.
    Agents and Actions 09/2012; · 1.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the chemical composition, anticancer, and antimicrobial activities in vitro of the essential oil isolated from the heartwood of Cunninghamia lanceolata var. konishii from Taiwan. The essential oil was isolated using hydrodistillation in a Clevenger-type apparatus, and characterized by GC-FID and GC-MS. Thirty-seven compounds were identified, representing 100% of the oil. The main components identified were cedrol (58.3%), alpha-cedrene (11.8%), alpha-terpineol (4.2%) and beta-cedrene (3.5%). The oil exhibited cytotoxic activity against human lung, liver and oral cancer cells. The active source compound was cedrol. The antimicrobial activity of the oil was tested by the disc diffusion and micro-broth dilution methods against ten microbial species. The oil exhibited strong growth suppression against Gram-positive bacteria and yeast with inhibition zones of 42-50 mm to MIC values of 31.25-62.5 microg/mL, respectively. For the antimicrobial activities of the oil, the active compound was determined to be cedrol.
    Natural product communications 09/2012; 7(9):1245-7. · 0.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, antipathogenic activities of the twig essential oil and its constituents from Chamaecyparis formosensis Matsum were evaluated in vitro against six plant pathogenic fungi. The essential oil from the fresh twigs was isolated using hydrodistillation in a Clevenger-type apparatus, and characterized by GC-FID and GC-MS. Twenty-five compounds were identified, representing 98.9% of the oil. The main components were beta-eudesmol (25.1%), tau-muurolol (21.6%), elemol (15.0%), totarol (14.9%), and alpha-cadinol (12.4%). The twig oil (500 mcirog/mL) showed growth inhibitory activity against the phytopathogenic fungi, Fusarium oxysporum, Pestalotiopsis funereal, and Ganoderma austral, with antifungal indices of 92.7%, 71.1%, and 87.7%, respectively. In addition, the oil suppressed totally the growth of Rhizoctonia solani, Colletotrichum gloeosporioides, and Fusarium solani. In order to ascertain the source compounds of these antipathogenic activities, the main components were individually evaluated. Tau-Muurolol and alpha-cadinol exhibited excellent activity against F. oxysporum, R. solani, C. gloeosporioides, and F. solani, with IC50 < 50 microg/mL. These compounds also efficiently inhibited the mycelial growths of P. funereal and G. austral. Thus, alpha-cadinol and tau-muurolol could be considered as potential natural fungicides for controlling fungal pathogens and worth.
    Natural product communications 07/2012; 7(7):933-6. · 0.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel photobioreactor was developed with a total volume of 30 m(3) which required merely 100 m(3) of land footprint. The bioreactor was capable of utilizing CO(2) in the flue gas of a power plant as the carbon source for the growth of a freshwater alga, Spirulina platensis, mitigating the greenhouse effect caused by the same amount of CO(2) discharge. Results of the study indicated that the photobioreactor was capable of fixing 2,234 kg of CO(2) per annum. Upon deducting the energy consumption of operating the bioreactor unit, the estimated amount of CO(2) to be fixed by a scaled-up reactor would be 74 tons ha(-1)year(-1). In addition, the study prove that protein-free polysaccharides of S. platensis could induce the production of pro-IL-1 and IL-1 proteins through the mediation of ERK, JNK, and p38 MAPKs pathways. As a consequence, immunogenic activities of the macrophage cells were enhanced.
    Bioresource Technology 06/2012; 120:256-63. · 5.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although several mechanisms by which hyperglycemia modulate inflammation have been proposed, it remains unclear how hyperglycemia regulates inflammation induced by lipopolysaccharide (LPS). We hypothesized that hyperglycemia might interplay with LPS to modulate the generation of an inflammatory mediator. RAW 264.7 macrophages cultured in medium containing either normal glucose (5.5-mM) or high glucose (HG) (15- and 25-mM) were treated with LPS. The nitric oxide (NO) generation, inducible NO synthase (iNOS) expression and cytokine release were then quantified by Griess reaction, western blot, and enzyme-linked immunosorbent assay (ELISA) respectively. The effect of HG on the activation of kinase and Nuclear Factor-Kappa B (NF-κB) were measured by western blot and NF-κB reporter assay respectively. Without LPS stimulation, HG alone did not induce NO generation and cytokine secretion; but LPS-induced NO generation, iNOS expression, and interleukin-1beta (IL-1β) secretion were higher in HG-cultured cells than in normal glucose-cultured cells. In contrast, LPS-induced interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) secretion were lower in HG-cultured cells than in normal glucose-cultured cells. Furthermore, HG increased iNOS expression and NO generation by enhancing phosphorylation levels of protein kinase C-alpha (PKC-α), protein kinase C-delta (PKC-δ), and p38 phosphorylation and NF-κB transcriptional activity. This study revealed a possible role of PKC-α and PKC-δ potentially involved in diabetes-promoted inflammation.
    Agents and Actions 06/2012; 61(10):1107-16. · 1.59 Impact Factor
  • Source
    Chen-Lung Ho, Pei-Chun Liao, Yu-Chang Su
    [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the chemical composition, and antimicrobial and anti-wood-decay fungal activities of the essential oil isolated from the leaf of endemic Machilus zuihoensis Hayata, Lauraceae, of Taiwan. The essential oil from the fresh leaves of M. zuihoensis was isolated using hydrodistillation in a Clevenger-type apparatus, and characterized by GC-FID and GC-MS. A total of 104 compounds were identified, representing 100% of the oil. The main components identified were n-dodecanal (23.8%) and (E)-nerolidol (10.5%). The antimicrobial activity of the oil was tested by the disc diffusion method and micro-broth dilution method against ten microbial species (Bacillus cereus, Staphylococcus aureus, S. epidermidis, Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Pseudomonas aeruginosa, Vibrio parahaemolyticus, Aspergillus niger, and Candida albicans), respectively. The oil exhibited strong growth suppression against Gram-positive bacteria and yeast with inhibition zones of 35~43 mm to MIC values of 125 µg mL-1, respectively. The anti-wood-decay fungal activity of the oil was also evaluated. Results showed that the oil demonstrated excellent activity against four wood-decay-fungi species (Trametes versicolor, Phaneochaete chrysosporium, Phaeolus schweintizii, and Lenzites sulphureu). For the antimicrobial and anti-wooddecay fungal activities of the oil, the active source compounds were determined to be τ-cadinol, β-eudesmol, and n-dodecanal.
    Revista Brasileira de Farmacognosia 04/2012; 22(2):277-283. · 0.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the chemical composition, antioxidant, antimicrobial and anti-wood-decay fungal activities of the essential oil isolated from the twigs of Taiwania cryptomerioides from Taiwan. The essential oil was isolated using hydrodistillation in a Clevenger-type apparatus, and characterized by GC-FID and GC-MS. A total of 35 compounds were identified, representing 100% of the oil. The main components identified were alpha-cadinol (45.9%), ferruginol (18.9%) and beta-eudesmol (10.8%). The antioxidant activity of the oil was tested by the DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging capability test. The results showed an IC50 of 90.8 +/- 0.2 microg/mL. The active source compound was ferruginol. The antimicrobial activity of the oil was tested by the disc diffusion and micro-broth dilution methods against ten microbial species. The oil exhibited strong growth suppression against Gram-positive bacteria and yeast with inhibition zones of 45-52 mm and MIC values of 31.25-62.5 microg/mL, respectively. The anti-wood-decay fungal activity of the oil was also evaluated. The oil demonstrated excellent activity against four wood-decay-fungal species. For the antimicrobial and anti-wood-decay fungal activities of the oil, the active source compounds were determined to be alpha-cadinol, beta-eudesmol and ferruginol.
    Natural product communications 02/2012; 7(2):261-4. · 0.96 Impact Factor
  • Chen-Lung Ho, Yu-Chang Su
    [Show abstract] [Hide abstract]
    ABSTRACT: The chemical composition, and antioxidant and antimicrobial activities of the essential oil isolated from the leaf of Machilus japonica from Taiwan have been investigated. The essential oil from the fresh leaves was isolated using hydrodistillation in a Clevenger-type apparatus, and characterized by GC-FID and GC-MS. A total of 97 compounds were identified, representing 100% of the oil. The main components identified were alpha-phellandrene (14.5%), alpha-pinene (12.8%), thymol (12.6%), beta-pinene (8.3%), alpha-terpineol (6.5%) and carvacrol (6.0%). The antioxidant activity of the oil was tested by the DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging capability test. The results showed that the IC50 was 51.8 microg/mL. The antimicrobial activity of the oil was tested by the disc diffusion and micro-broth dilution methods against ten microbial species. The oil exhibited strong growth suppression against Gram-positive bacteria and yeast, with inhibition zones of 48-54 mm and MIC values of 16.12-32.25 microg/mL, respectively. For the antioxidant and antimicrobial activities of the oil, the active source compounds were determined to be thymol and carvacrol.
    Natural product communications 01/2012; 7(1):109-12. · 0.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The chemical composition, and antimicrobial and anti-wood-decay fungal activities of the essential oils isolated from the leaves and twigs of Litsea acutivena of Taiwan were investigated. The essential oils from the fresh leaves and twigs were isolated using hydrodistillation in a Clevenger-type apparatus, and characterized by GC-FID and GC-MS. Ninety-five and fifty-two compounds were identified in the leaf and twig oils, respectively. The main components of the leaf oil were gamma-patchoulene (11.0%), delta-cadinene (6.3%), trans-muurola-3,5-diene (5.9%), and beta-selinene (5.3%), whereas the main components of the twig oil were tau-cadinol (13.1%), beta-selinene (9.6%), trans-beta-ocimene (6.2%) and alpha-cadinol (7.7%). Bioactivity studies demonstrated that twig oil had excellent antimicrobial and anti-wood-decay fungal activities, superior to those of the leaf oil. For the antimicrobial and anti-wood-decay fungal activities of the twig oil, the active compounds were determined to be tau-cadinol and alpha-cadinol.
    Natural product communications 11/2011; 6(11):1755-8. · 0.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ophiostoma species have been demonstrated to metabolize wood extractives and be useful to the pulp and paper industry. In order to have new isolates for the Asian market, Eucalyptus camaldulensis logs were harvested from forest sites in central Taiwan and 28 strains of the Ophiostoma genus were isolated from them. These strains were subsequently inoculated onto Eucalyptus wood chips to evaluate their effects on weight losses of wood and the amounts of acetone extractives degraded. At the same time, Gas Chromatography-Mass Spectroscopy (GC-MS) analysis was conducted and by using calibration curves and a database of GC-MS mass spectra, changes in lipophilic compounds were analyzed. Fatty acids, hydrocarbons, sterol compounds, sterol esters, and triglycerides were significantly reduced after two weeks’ inoculation by the fungal strains. The results show that six of the strains were capable of reducing the lipophilic fractions by more than 60% in a two-week treatment. DNA of the most effective strains were analyzed and found to be a variant of Ophiostoma querci.
    Journal of Wood Chemistry and Technology 10/2011; 31(4):282-297. · 1.67 Impact Factor

Publication Stats

102 Citations
55.59 Total Impact Points

Institutions

  • 2009–2014
    • Taiwan Forestry Research Institute
      T’ai-pei, Taipei, Taiwan
  • 2008–2013
    • National Chung Hsing University
      • Department of Forestry
      Taichung, Taiwan, Taiwan
  • 2010
    • National Ilan University
      I-lan-hsien, Taiwan, Taiwan
    • China Medical University Hospital
      臺中市, Taiwan, Taiwan