S Lory

Harvard Medical School, Boston, Massachusetts, United States

Are you S Lory?

Claim your profile

Publications (141)906.19 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Pseudomonas aeruginosa is a dreaded pathogen in many clinical settings. Its inherent and acquired antibiotic resistance thwarts therapy. In particular, derepression of the AmpC β-lactamase is a common mechanism of β-lactam resistance among clinical isolates. The inducible expression of ampC is controlled by the global LysR-type transcriptional regulator (LTTR) AmpR. In the present study we investigated the genetic and structural elements that are important for ampC induction. Specifically, the ampC (PampC) and ampR (PampR) promoters and the AmpR protein were characterized. The transcription start sites (TSS) of the divergent transcripts were mapped using 5' RACE PCR and strong σ(54) and σ(70) consensus sequences were identified at PampR and PampC, respectively. Sigma factor RpoN was found to negatively regulate ampR expression possibly through promoter blocking. Deletion mapping revealed the minimal PampC extends 98-bp upstream of the TSS. Gel shifts using membrane fractions showed AmpR binds to PampC in vitro whereas in vivo binding was demonstrated using ChIP-qPCR. Additionally, site-directed mutagenesis of the AmpR helix-turn-helix (HTH) motif identified residues critical for binding and function (Ser38, and Lys42), and critical for function but not binding (His39). Amino acids Gly102 and Asp135, previously implicated in the repression state of AmpR in the enterobacteria, were also shown to play a structural role in P. aeruginosa AmpR. Alkaline phosphatase-fusion and shaving experiments suggest AmpR is likely to be membrane associated. Lastly, in vivo cross-linking study shows AmpR dimerizes. In conclusion, a potential membrane-associated AmpR dimer regulates ampC expression by direct binding.
    Journal of bacteriology. 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pseudomonas aeruginosa is well known for its antibiotic resistance and intricate regulatory network, contributing to its success as an opportunistic pathogen. This study is an extension of our transcriptomic analyses (microarray and RNA-Seq) to understand the global changes in PAO1 upon deleting a gene encoding a transcriptional regulator AmpR, in the presence and absence of β-lactam antibiotic. This study was performed under identical conditions to explore the proteome profile of the ampR deletion mutant (PAOΔampR) using GeLC-MS analysis. The proteomic data identified ~53% of total PAO1 proteins and expanded the master regulatory role of AmpR in determining antibiotic resistance and multiple virulence phenotypes in P. aeruginosa. AmpR proteome analysis identified 853 AmpR-dependent proteins, which include 102 transcriptional regulators and 21 two-component system proteins. AmpR also regulates cyclic di-GMP phosphodiesterases (PA4367, PA4969, PA4781) possibly affecting major virulence systems. Phosphoproteome analysis also suggests a significant role for AmpR in Ser, Thr and Tyr phosphorylation. These novel mechanisms of gene regulation were previously not associated with AmpR. The proteome analysis also identified many unannotated and misannotated ORFs in the P. aeruginosa genome. Thus, our data sheds light on important virulence regulatory pathways that can potentially be exploited to deal with P. aeruginosa infections. The AmpR proteome data not only confirmed the role of AmpR in virulence and resistance to multiple antibiotics, but expanded the perimeter of AmpR regulon. The data presented here points to the role of AmpR in regulating cyclic di-GMP levels and phosphorylation of Ser, Thr and Tyr, adding another dimension to the regulatory functions of AmpR. We also identify some previously unannotated/misannotated ORFs in the P. aeruginosa genome, indicating the limitations of existing ORF analyses software. This study will contribute towards understanding complex genetic organization of P. aeruginosa. Whole genome proteomic picture of regulators at higher nodal positions in the regulatory network will not only help us link various virulence phenotypes but also design novel therapeutic strategies.
    Journal of proteomics 11/2013; · 5.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An important question regarding the biologic implications of antibiotic-resistant microbes is how resistance impacts the organism's overall fitness and virulence. Currently it is generally thought that antibiotic resistance carries a fitness cost and reduces virulence. For the human pathogen Pseudomonas aeruginosa, treatment with carbapenem antibiotics is a mainstay of therapy that can lead to the emergence of resistance, often through the loss of the carbapenem entry channel OprD. Transposon insertion-site sequencing was used to analyze the fitness of 300,000 mutants of P. aeruginosa strain PA14 in a mouse model for gut colonization and systemic dissemination after induction of neutropenia. Transposon insertions in the oprD gene led not only to carbapenem resistance but also to a dramatic increase in mucosal colonization and dissemination to the spleen. These findings were confirmed in vivo with different oprD mutants of PA14 as well as with related pairs of carbapenem-susceptible and -resistant clinical isolates. Compared with OprD(+) strains, those lacking OprD were more resistant to killing by acidic pH or normal human serum and had increased cytotoxicity against murine macrophages. RNA-sequencing analysis revealed that an oprD mutant showed dramatic changes in the transcription of genes that may contribute to the various phenotypic changes observed. The association between carbapenem resistance and enhanced survival of P. aeruginosa in infected murine hosts suggests that either drug resistance or host colonization can cause the emergence of more pathogenic, drug-resistant P. aeruginosa clones in a single genetic event.
    Proceedings of the National Academy of Sciences 11/2013; · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pathogenicity of Pseudomonas aeruginosa, a major cause of many acute and chronic human infections, is determined by tightly regulated expression of multiple virulence factors. Quorum sensing (QS) controls expression of many of these pathogenic determinants. Previous microarray studies have shown that the AmpC β-lactamase regulator AmpR, a member of the LysR family of transcription factors, also controls non-β-lactam resistance and multiple virulence mechanisms. Using RNA-Seq and complementary assays, this study further expands the AmpR regulon to include diverse processes such as oxidative stress, heat shock and iron uptake. Importantly, AmpR affects many of these phenotypes, in part, by regulating expression of non-coding RNAs such as rgP32, asRgsA, asPrrF1 and rgRsmZ. AmpR positively regulates expression of the major QS regulators LasR, RhlR and MvfR, and genes of the Pseudomonas quinolone system. Chromatin immunoprecipitation (ChIP)-Seq and ChIP-quantitative real-time polymerase chain reaction studies show that AmpR binds to the ampC promoter both in the absence and presence of β-lactams. In addition, AmpR directly binds the lasR promoter, encoding the QS master regulator. Comparison of the AmpR-binding sequences from the transcriptome and ChIP-Seq analyses identified an AT-rich consensus-binding motif. This study further attests to the role of AmpR in regulating virulence and physiological processes in P. aeruginosa.
    Nucleic Acids Research 10/2013; · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High-throughput sequencing of transposon (Tn) libraries created within entire genomes identifies and quantifies the contribution of individual genes and operons to the fitness of organisms in different environments. We used insertion-sequencing (INSeq) to analyze the contribution to fitness of all non-essential genes in the chromosome of Pseudomonas aeruginosa strain PA14 based on a library of ∼300,000 individual Tn insertions. In vitro growth in LB provided a baseline for comparison with the survival of the Tn insertion strains following 6 days of colonization of the murine gastrointestinal tract as well as a comparison with Tn-inserts subsequently able to systemically disseminate to the spleen following induction of neutropenia. Sequencing was performed following DNA extraction from the recovered bacteria, digestion with the MmeI restriction enzyme that hydrolyzes DNA 16 bp away from the end of the Tn insert, and fractionation into oligonucleotides of 1,200-1,500 bp that were prepared for high-throughput sequencing. Changes in frequency of Tn inserts into the P. aeruginosa genome were used to quantify in vivo fitness resulting from loss of a gene. 636 genes had <10 sequencing reads in LB, thus defined as unable to grow in this medium. During in vivo infection there were major losses of strains with Tn inserts in almost all known virulence factors, as well as respiration, energy utilization, ion pumps, nutritional genes and prophages. Many new candidates for virulence factors were also identified. There were consistent changes in the recovery of Tn inserts in genes within most operons and Tn insertions into some genes enhanced in vivo fitness. Strikingly, 90% of the non-essential genes were required for in vivo survival following systemic dissemination during neutropenia. These experiments resulted in the identification of the P. aeruginosa strain PA14 genes necessary for optimal survival in the mucosal and systemic environments of a mammalian host.
    PLoS Pathogens 09/2013; 9(9):e1003582. · 8.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT Adaptation of bacterial pathogens to a host can lead to the selection and accumulation of specific mutations in their genomes with profound effects on the overall physiology and virulence of the organisms. The opportunistic pathogen Pseudomonas aeruginosa is capable of colonizing the respiratory tract of individuals with cystic fibrosis (CF), where it undergoes evolution to optimize survival as a persistent chronic human colonizer. The transcriptome of a host-adapted, alginate-overproducing isolate from a CF patient was determined following growth of the bacteria in the presence of human respiratory mucus. This stable mucoid strain responded to a number of regulatory inputs from the mucus, resulting in an unexpected repression of alginate production. Mucus in the medium also induced the production of catalases and additional peroxide-detoxifying enzymes and caused reorganization of pathways of energy generation. A specific antibacterial type VI secretion system was also induced in mucus-grown cells. Finally, a group of small regulatory RNAs was identified and a fraction of these were mucus regulated. This report provides a snapshot of responses in a pathogen adapted to a human host through assimilation of regulatory signals from tissues, optimizing its long-term survival potential. IMPORTANCE The basis for chronic colonization of patients with cystic fibrosis (CF) by the opportunistic pathogen Pseudomonas aeruginosa continues to represent a challenging problem for basic scientists and clinicians. In this study, the host-adapted, alginate-overproducing Pseudomonas aeruginosa 2192 strain was used to assess the changes in its transcript levels following growth in respiratory CF mucus. Several significant and unexpected discoveries were made: (i) although the alginate overproduction in strain 2192 was caused by a stable mutation, a mucus-derived signal caused reduction in the transcript levels of alginate biosynthetic genes; (ii) mucus activated the expression of the type VI secretion system, a mechanism for killing of other bacteria in a mixed population; (iii) expression of a number of genes involved in respiration was altered; and (iv) several small regulatory RNAs were identified, some being mucus regulated. This work highlights the strong influence of the host environment in shaping bacterial survival strategies.
    mBio 01/2013; 3(6). · 6.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: One of the hallmarks of opportunistic pathogens is their ability to adjust and respond to a wide range of environmental and host-associated conditions. The human pathogen Pseudomonas aeruginosa has an ability to thrive in a variety of hosts and cause a range of acute and chronic infections in individuals with impaired host defenses or cystic fibrosis. Here we report an in-depth transcriptional profiling of this organism when grown at host-related temperatures. Using RNA-seq of samples from P. aeruginosa grown at 28°C and 37°C we detected genes preferentially expressed at the body temperature of mammalian hosts, suggesting that they play a role during infection. These temperature-induced genes included the type III secretion system (T3SS) genes and effectors, as well as the genes responsible for phenazines biosynthesis. Using genome-wide transcription start site (TSS) mapping by RNA-seq we were able to accurately define the promoters and cis-acting RNA elements of many genes, and uncovered new genes and previously unrecognized non-coding RNAs directly controlled by the LasR quorum sensing regulator. Overall we identified 165 small RNAs and over 380 cis-antisense RNAs, some of which predicted to perform regulatory functions, and found that non-coding RNAs are preferentially localized in pathogenicity islands and horizontally transferred regions. Our work identifies regulatory features of P. aeruginosa genes whose products play a role in environmental adaption during infection and provides a reference transcriptional landscape for this pathogen.
    PLoS Pathogens 09/2012; 8(9):e1002945. · 8.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: New vaccine approaches are needed for Pseudomonas aeruginosa, which continues to be a major cause of serious pulmonary infections. Although Th17 cells can protect against gram-negative pathogens at mucosal surfaces, including the lung, the bacterial proteins recognized by Th17 cells are largely unknown and could be potential new vaccine candidates. We describe a strategy to identify Th17-stimulating protein antigens of Pseudomonas aeruginosa to assess their efficacy as vaccines against pneumonia. Using a library of in vitro transcribed and translated P. aeruginosa proteins, we screened for Th17-stimulating antigens by coculturing the library proteins with splenocytes from mice immunized with a live-attenuated P. aeruginosa vaccine that is protective via Th17-based immunity. We measured antibody and Th17 responses after intranasal immunization of mice with the purified proteins mixed with the Th17 adjuvant curdlan, and we tested the protective efficacy of vaccination in a murine model of acute pneumonia. The proteins PopB, FpvA, FptA, OprL, and PilQ elicited strong IL-17 secretion in the screen, and purified versions of PopB, FpvA, and OprL stimulated high IL-17 production from immune splenocytes. Immunization with PopB, which is a highly conserved component of the type III secretion system and a known virulence factor, elicited Th17 responses and also enhanced clearance of P. aeruginosa from the lung and spleen after challenge. PopB-immunized mice were protected from lethal pneumonia in an antibody-independent, IL-17-dependent manner. Screening for Th17-stimulating protein antigens identified PopB as a novel and promising vaccine candidate for P. aeruginosa.
    American Journal of Respiratory and Critical Care Medicine 06/2012; 186(5):420-7. · 11.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In Enterobacteriaceae, the transcriptional regulator AmpR, a member of the LysR family, regulates the expression of a chromosomal β-lactamase AmpC. The regulatory repertoire of AmpR is broader in Pseudomonas aeruginosa, an opportunistic pathogen responsible for numerous acute and chronic infections including cystic fibrosis. In addition to regulating ampC, P. aeruginosa AmpR regulates the sigma factor AlgT/U and production of some quorum sensing (QS)-regulated virulence factors. In order to better understand the ampR regulon, we compared the transcriptional profile generated using DNA microarrays of the prototypic P. aeruginosa PAO1 strain with its isogenic ampR deletion mutant, PAOΔampR. Transcriptome analysis demonstrates that the AmpR regulon is much more extensive than previously thought, with the deletion of ampR influencing the differential expression of over 500 genes. In addition to regulating resistance to β-lactam antibiotics via AmpC, AmpR also regulates non-β-lactam antibiotic resistance by modulating the MexEF-OprN efflux pump. Other virulence mechanisms including biofilm formation and QS-regulated acute virulence factors are AmpR-regulated. Real-time PCR and phenotypic assays confirmed the microarray data. Further, using a Caenorhabditis elegans model, we demonstrate that a functional AmpR is required for P. aeruginosa pathogenicity. AmpR, a member of the core genome, also regulates genes in the regions of genome plasticity that are acquired by horizontal gene transfer. Further, we show differential regulation of other transcriptional regulators and sigma factors by AmpR, accounting for the extensive AmpR regulon. The data demonstrates that AmpR functions as a global regulator in P. aeruginosa and is a positive regulator of acute virulence while negatively regulating biofilm formation, a chronic infection phenotype. Unraveling this complex regulatory circuit will provide a better understanding of the bacterial response to antibiotics and how the organism coordinately regulates a myriad of virulence factors in response to antibiotic exposure.
    PLoS ONE 01/2012; 7(3):e34067. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: P. aeruginosa causes significant morbidity and mortality in immunocompromised hosts and ventilated patients. High throughput sequencing can identify genes necessary for colonization and dissemination in animal models and is a formidable tool to analyze full genomes to obtain a complete view of genes involved in pathogenesis. Methods: A bank of 3x105 random transposon (Tn) mutants of P. aeruginosa PA14 was used to compare DNA needed for growth in LB, survival in water, colonization of the murine GI tract and dissemination to the spleen following induction of neutropenia. Genomic DNA was purified from P. aeruginosa recovered from each source, digested with MmeI, an enzyme cleaving 16 bp outside the inserted Tn, fragments sequenced on an Illumina Genome Analyzer and over 14 million sequences used to quantify changes in levels of genomic fragments carrying the Tn. Sequence comparisons revealed the genes necessary for colonization and dissemination. Results: Of 5977 genes in PA14, 121, 391, 2583 and 5484 genes were found essential for survival in LB, water, gut colonization and spleen dissemination, respectively. No mutant with a Tn inserted into previously described virulence factor genes was able to disseminate to the spleen. Interestingly, there was a strong positive selection for colonization of the cecum by interrupting the oprD gene and the genes involved in type IVa pilus production. Notably, more than 90% of the mutants disseminating to the spleen were oprD deficient. These results were confirmed in an in vivo colonization competition assay between the PA14 wild-type strain and mutants in the oprD and pilE genes. Induced or natural deletion of the oprD gene in P. aeruginosa strains from laboratory and clinical sources resulted in more resistance to carbapenems, better survival at pH4.5 and greater resistance to the action of the complement and phagocytes. Conclusion: Mutations in the oprD gene are the main mechanism of resistance of P. aeruginosa to the carbapenems. These mutants appear to have a dramatic advantage in GI colonization and dissemination to the spleen, in part through a high resistance to the gastric acidic pH and to the action of the immune system antibacterial effectors. Potentially, carbapenem resistance may promote virulence.
    Infectious Diseases Society of America 2011 Annual Meeting; 10/2011
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chlamydia species are obligate intracellular pathogens that utilize a type three secretion system to manipulate host cell processes. Genetic manipulations are currently not possible in Chlamydia, necessitating study of effector proteins in heterologous expression systems and severely complicating efforts to relate molecular strategies used by Chlamydia to the biochemical activities of effector proteins. CopN is a chlamydial type three secretion effector that is essential for virulence. Heterologous expression of CopN in cells results in loss of microtubule spindles and metaphase plate formation and causes mitotic arrest. CopN is a multidomain protein with similarity to type three secretion system “plug” proteins from other organisms but has functionally diverged such that it also functions as an effector protein. We show that CopN binds directly to αβ-tubulin but not to microtubules (MTs). Furthermore, CopN inhibits tubulin polymerization by sequestering free αβ-tubulin, similar to one of the mechanisms utilized by stathmin. Although CopN and stathmin share no detectable sequence identity, both influence MT formation by sequestration of αβ-tubulin. CopN displaces stathmin from preformed stathmin-tubulin complexes, indicating that the proteins bind overlapping sites on tubulin. CopN is the first bacterial effector shown to disrupt MT formation directly. This recognition affords a mechanistic understanding of a strategy Chlamydia species use to manipulate the host cell cycle.
    Journal of Biological Chemistry 09/2011; 286(39):33992-33998. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chlamydia species are obligate intracellular pathogens that utilize a type three secretion system to manipulate host cell processes. Genetic manipulations are currently not possible in Chlamydia, necessitating study of effector proteins in heterologous expression systems and severely complicating efforts to relate molecular strategies used by Chlamydia to the biochemical activities of effector proteins. CopN is a chlamydial type three secretion effector that is essential for virulence. Heterologous expression of CopN in cells results in loss of microtubule spindles and metaphase plate formation and causes mitotic arrest. CopN is a multidomain protein with similarity to type three secretion system "plug" proteins from other organisms but has functionally diverged such that it also functions as an effector protein. We show that CopN binds directly to αβ-tubulin but not to microtubules (MTs). Furthermore, CopN inhibits tubulin polymerization by sequestering free αβ-tubulin, similar to one of the mechanisms utilized by stathmin. Although CopN and stathmin share no detectable sequence identity, both influence MT formation by sequestration of αβ-tubulin. CopN displaces stathmin from preformed stathmin-tubulin complexes, indicating that the proteins bind overlapping sites on tubulin. CopN is the first bacterial effector shown to disrupt MT formation directly. This recognition affords a mechanistic understanding of a strategy Chlamydia species use to manipulate the host cell cycle.
    Journal of Biological Chemistry 08/2011; 286(39):33992-8. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In patients afflicted with cystic fibrosis (CF), morbidity and mortality are primarily associated with the adverse consequences of chronic microbial bronchial infections, which are thought to be caused by a few opportunistic pathogens. However, recent evidence suggests the presence of other microorganisms, which may significantly affect the course and outcome of the infection. Using a combination of 16S rRNA gene clone libraries, bacterial culturing and pyrosequencing of barcoded 16S rRNA amplicons, the microbial communities present in CF patient sputum samples were examined. In addition to previously recognized CF pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus, >60 phylogenetically diverse bacterial genera that are not typically associated with CF pathogenesis were also detected. A surprisingly large number of fermenting facultative and obligate anaerobes from multiple bacterial phyla was present in each sample. Many of the bacteria and sequences found were normal residents of the oropharyngeal microflora and with many containing opportunistic pathogens. Our data suggest that these undersampled organisms within the CF lung are part of a much more complex microbial ecosystem than is normally presumed. Characterization of these communities is the first step in elucidating potential roles of diverse bacteria in disease progression and to ultimately facilitate advances in CF therapy.
    The ISME Journal 01/2011; 5(1):20-9. · 8.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In Gram-negative bacteria, the Lol and Bam machineries direct the targeting of lipidated and nonlipidated proteins, respectively, to the outer membrane (OM). Using Pseudomonas aeruginosa strains with depleted levels of specific Bam and Lol proteins, we demonstrated a variable dependence of different OM proteins on these targeting pathways. Reduction in the level of BamA significantly affected the ability of the β-barrel membrane protein OprF to localize to the OM, while the targeting of three secretins that are functionally related OM proteins was less affected (PilQ and PscC) or not at all affected (XcpQ). Depletion of LolB affected all lipoproteins examined and had a variable effect on the nonlipidated proteins. While the levels of OprF, PilQ, and PscC were significantly reduced by LolB depletion, XcpQ was unaffected and was correctly localized to the OM. These results suggest that certain β-barrel proteins such as OprF primarily utilize the complete Bam machinery. The Lol machinery participates in the OM targeting of secretins to variable degrees, likely through its involvement in the assembly of lipidated Bam components. XcpQ, but not PilQ or PscC, was shown to assemble spontaneously into liposomes as multimers. This work raises the possibility that there is a gradient of utilization of Bam and Lol insertion and targeting machineries. Structural features of individual proteins, including their β-barrel content, may determine the propensity of these proteins for folding (or misfolding) during periplasmic transit and OM insertion, thereby influencing the extent of utilization of the Bam targeting machinery, respectively. IMPORTANCE: Targeting of lipidated and nonlipidated proteins to the outer membrane (OM) compartment in Gram-negative bacteria involves the transfer across the periplasm utilizing the Lol and Bam machineries, respectively. We show that depletion of Bam and Lol components in Pseudomonas aeruginosa does not lead to a general OM protein translocation defect, but the severity (and therefore, Lol and Bam dependence), varies with individual proteins. XcpQ, the secretin component of the type II secretion apparatus, is translocated into the OM without the assistance of Bam or Lol machineries. The hypothesis that XcpQ, after secretion across the cytoplasmic membrane, does not utilize the OM targeting machineries was supported by demonstrating that in vitro-synthesized XcpQ (but not the other P. aeruginosa secretins) can spontaneously incorporate into lipid vesicles. Therefore, the requirement for ancillary factors appears to be, in certain instances, dictated by the intrinsic properties of individual OM proteins, conceivably reflecting their propensities to misfold during periplasmic transit.
    mBio 01/2011; 2(6). · 6.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Closing of gaps in draft assemblies using Next Generation Sequencing (NGS) data is becoming increasingly important. In this paper we present CloG, a software pipeline that uses NGS data to close gaps in draft assemblies. Firstly, CloG uses the VELVET assembler to generate a hybrid assembly from a mixture of reads: short reads from the NGS data and the original draft assembly (treated as long reads). It then closes gaps between adjacent contigs by reconciling (i.e., "stitching") the two assemblies. By exploiting the strengths of both hybrid assembly and stitching reassembly, CloG is able to outperform its contemporaries in closing gaps in the draft assembly of the bacterium Burkholderia dolosa. Keywords-sequencing, assembly, gaps, contigs, repeat regions, finishing, seeds
    IEEE 1st International Conference on Computational Advances in Bio and Medical Sciences, ICCABS 2011, Orlando, FL, USA, February 3-5, 2011; 01/2011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The majority of cystic fibrosis (CF) patients succumb to a chronic infection of the airway with Pseudomonas aeruginosa. Paradoxically, pathogenic strains are often susceptible to antibiotics, but the infection cannot be eradicated with antimicrobial therapy. We find that in a majority of patients with airway infections, late isolates of P. aeruginosa produce increased levels of drug-tolerant persister cells. The genomes of a clonal pair of early/late isolates from a single patient have been previously sequenced, and the late isolate (obtained at age 96 months) showed a 100-fold increase in persister levels. The 96-month isolate carries a large number of mutations, including a mutation in mutS that confers a hypermutator phenotype. There is also a mutation in the mexZ repressor controlling the expression of the MexXY-OprM multidrug pump, which results in a moderate increase in the ofloxacin, carbenicillin, and tobramycin MICs. Knocking out the mexXY locus restored the resistance to that of the parent strain but did not affect the high levels of persisters formed by the 96-month isolate. This suggests that the late isolate is a high-persister (hip) mutant. Increased persister formation was observed in exponential phase, stationary phase, and biofilm populations of the 96-month isolate. Analysis of late isolates from 14 additional patients indicated that 10 of them are hip mutants. Most of these hip mutants did not have higher drug resistance. Increased persister formation appears to be their sole mechanism for surviving chemotherapy. Taken together, these findings suggest a link between persisters and recalcitrance of CF infection and identify an overlooked culprit-high-persister mutants producing elevated levels of drug-tolerant cells. Persisters may play a similarly critical role in the recalcitrance of other chronic infections.
    Journal of bacteriology 10/2010; 192(23):6191-9. · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pseudomonas aeruginosa is a major cause of nosocomial infections, particularly in immunocompromised patients or in individuals with cystic fibrosis. The notable ability of P. aeruginosa to inhabit a broad range of environments, including humans, is in part due to its large and diverse genomic repertoire. The genomes of most strains contain a significant number of large and small genomic islands, including those carrying virulence determinants (pathogenicity islands). The pathogenicity island PAPI-1 of strain PA14 is a cluster of 115 genes, and some have been shown to be responsible for virulence phenotypes in a number of infection models. We have previously demonstrated that PAPI-1 can be transferred to other P. aeruginosa strains following excision from the chromosome of the donor. Here we show that PAPI-1 is transferred into recipient P. aeruginosa by a conjugative mechanism, via a type IV pilus, encoded in PAPI-1 by a 10-gene cluster which is closely related to the genes in the enterobacterial plasmid R64. We also demonstrate that the precursor of the major pilus subunit, PilS2, is processed by the chromosomally encoded prepillin peptidase PilD but not its paralog FppA. Our results suggest that the pathogenicity island PAPI-1 may have evolved by acquisition of a conjugation system but that because of its dependence on an essential chromosomal determinant, its transfer is restricted to P. aeruginosa or other species capable of providing a functional prepilin peptidase.
    Journal of bacteriology 04/2010; 192(13):3249-58. · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The LasR/LasI quorum-sensing system in Pseudomonas aeruginosa influences global gene expression and mediates pathogenesis. In this study, we show that the quorum-sensing system activates, via the transcriptional regulator PA4778, a copper resistance system composed of 11 genes. The quorum-sensing global regulator LasR was recently shown to directly activate transcription of PA4778, a cueR homolog and a MerR-type transcriptional regulator. Using molecular genetic methods and bioinformatics, we verify the interaction of LasR with the PA4778 promoter and further demonstrate the LasR binding site. We also identify a putative PA4778 binding motif and show that the protein directly binds to and activates five promoters controlling the expression of 11 genes--PA3519 to -15, PA3520, mexPQ-opmE, PA3574.1, and cueA, a virulence factor in a murine model. Using gene disruptions, we show that PA4778, along with 7 of 11 gene targets of PA4778, increases the sensitivity of P. aeruginosa to elevated copper concentrations. This work identifies a cellular function for PA4778 and four other previously unannotated genes (PA3515, PA3516, PA3517, and PA3518) and suggests a potential role for copper in the quorum response. We propose to name PA4778 cueR.
    Journal of bacteriology 03/2010; 192(10):2557-68. · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polymicrobial bronchopulmonary infections in cystic fibrosis (CF) cause progressive lung damage and death. Although the arrival of Pseudomonas aeruginosa often heralds a more rapid rate of pulmonary decline, there is significant inter-individual variation in the rate of decline, the causes of which remain poorly understood. By coupling culture-independent methods with ecological analyses, we discovered correlations between bacterial community profiles and clinical disease markers in respiratory tracts of 45 children with CF. Bacterial community complexity was inversely correlated with patient age, presence of P. aeruginosa and antibiotic exposure, and was related to CF genotype. Strikingly, bacterial communities lacking P. aeruginosa were much more similar to each other than were those containing P. aeruginosa, regardless of antibiotic exposure. This suggests that community composition might be a better predictor of disease progression than the presence of P. aeruginosa alone and deserves further study.
    Environmental Microbiology 02/2010; 12(5):1293-303. · 6.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The type III secretion system (T3SS) is a clinically important virulence mechanism in Pseudomonas aeruginosa that secretes and translocates up to four protein toxin effectors into human cells, facilitating the establishment and dissemination of infections. To discover inhibitors of this important virulence mechanism, we developed two cellular reporter assays and applied them to a library of 80,000 compounds. The primary screen was based on the dependence of the transcription of T3SS operons on the T3SS-mediated secretion of a negative regulator and consisted of a transcriptional fusion of the Photorhabdus luminescens luxCDABE operon to the P. aeruginosa exoT effector gene. Secondary assays included direct measurements of the T3SS-mediated secretion of a P. aeruginosa ExoS effector-beta-lactamase fusion protein as well as the detection of the secretion of native ExoS by the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of culture supernatants. Five inhibitors in three chemical classes were demonstrated to inhibit type III secretion selectively with minimal cytotoxicity and with no effects on bacterial growth or on the type II-mediated secretion of elastase. These inhibitors also block the T3SS-mediated secretion of a YopE effector-beta-lactamase fusion protein from an attenuated Yersinia pestis strain. The most promising of the inhibitors is a phenoxyacetamide that also blocks the T3SS-mediated translocation of effectors into mammalian cells in culture. Preliminary studies of structure-activity relationships in this phenoxyacetamide series demonstrated a strict requirement for the R-enantiomer at its stereocenter and indicated tolerance for a variety of substituents on one of its two aromatic rings.
    Antimicrobial Agents and Chemotherapy 02/2010; 54(5):1988-99. · 4.57 Impact Factor

Publication Stats

10k Citations
906.19 Total Impact Points

Institutions

  • 2001–2014
    • Harvard Medical School
      • • Department of Microbiology and Immunobiology
      • • Department of Medicine
      Boston, Massachusetts, United States
  • 2013
    • Université de Caen Basse-Normandie
      Caen, Lower Normandy, France
  • 2008–2013
    • Florida International University
      • • Department of Molecular Microbiology and Infectious Diseases
      • • School of Computing and Information Sciences
      Miami, Florida, United States
  • 2012
    • Weizmann Institute of Science
      • Department of Molecular Genetics
      Israel
  • 2010
    • University of Texas Southwestern Medical Center
      Dallas, Texas, United States
  • 2007
    • University of Maryland, College Park
      • Department of Cell Biology & Molecular Genetics
      College Park, MD, United States
    • Dana-Farber Cancer Institute
      Boston, Massachusetts, United States
  • 2006
    • Medical College of Wisconsin
      • Department of Microbiology and Molecular Genetics
      Milwaukee, Wisconsin, United States
  • 2005
    • Hannover Medical School
      Hanover, Lower Saxony, Germany
  • 1991–2005
    • University of Florida
      • • Division of Infectious Diseases
      • • Department of Medicine
      Gainesville, FL, United States
  • 1986–2001
    • University of Washington Seattle
      • • Department of Microbiology
      • • Department of Medicine
      Seattle, WA, United States
  • 1994
    • Northwest Fisheries Science Center
      Seattle, Washington, United States
  • 1993
    • University of Illinois, Urbana-Champaign
      • Department of Microbiology
      Urbana, IL, United States
  • 1992
    • Stanford University
      • Department of Microbiology and Immunology
      Palo Alto, CA, United States