Yelena Bykhovskaya

Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States

Are you Yelena Bykhovskaya?

Claim your profile

Publications (25)108.61 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The homoplasmic mitochondrial A1555G mutation in the 12S rRNA gene leads to a mitochondrial translation disorder associated with deafness. The absence of disease in non-cochlear tissues in all patients, and in the cochlea in some patients, is not well understood. We used a system-based approach, including whole genome expression and biological function analysis, to elucidate the pathways underlying tissue specificity and clinical severity of this condition. Levels of over 48K RNA transcripts from EBV-transformed lymphoblasts of deaf and hearing individuals with the A1555G mutation and controls were obtained. Differentially expressed transcripts were functionally grouped using gene set enrichment analysis. Over 50 RNA binding proteins were differentially expressed between deaf and hearing individuals with the A1555G mutation (P-value of 2.56E-7), confirming previous genetic data implicating this pathway in the determination of the severity of hearing loss. Unexpectedly, the majority of cytoplasmic ribosomal genes were up-regulated in a coordinated fashion in individuals with the A1555G mutation versus controls (P-value of 3.91E-135). This finding was verified through real time RT-PCR, and through measuring of protein levels by flow cytometry. Analysis of expression levels of other differentially expressed genes suggests that this coordinated over-expression of cytoplasmic ribosomal proteins might occur through the Myc/Max pathway. We propose that expression levels of RNA binding proteins help determine the severity of the cochlear phenotype, and that coordinated up-regulation of the cytoplasmic translation apparatus operates as a compensation mechanism in unaffected tissues of patients with maternal deafness associated with the A1555G mutation.
    Molecular Genetics and Metabolism 06/2009; 97(4):297-304. · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The tissue specificity of mitochondrial diseases is poorly understood. Recently, tissue-specific quantitative differences of the components of the mitochondrial translation system have been found to correlate with disease presentation in fatal hepatopathy caused by mutations in mitochondrial translation factor EFG1. MLASA is an autosomal recessive inherited progressive oxidative phosphorylation disorder that affects muscle and erythroid cells. The disease is caused by the homozygous point mutation C656T (R116W) in the catalytic domain of the pseudouridylate synthase 1 (PUS1) gene, which leads to a complete lack of pseudouridylation at the expected sites in mitochondrial and cytoplasmic tRNAs. Despite the presence of these altered tRNAs, most tissues are unaffected, and even in muscle and erythroid cells the disease phenotype only slowly emerges over the course of years. In order to elucidate intracellular pathways through which the homozygous mutation leads to tissue-restricted phenotype, we performed microarray expression analysis of EBV-transformed lymphoblasts from MLASA patients, heterozygous parents, and controls using human Beadchip microarray with 47,296 transcripts. Genes coding for proteins involved in DNA transcription and its regulation, and metal binding proteins, demonstrated major differences in expression between patients and all other individuals with normal phenotype. Genes coding for ribosomal proteins differed significantly between individual with at least one copy of the mutated PUS1 gene and controls. These findings indicate that the lack of tRNA pseudouridylation can be overcome by compensatory changes in levels of ribosomal proteins, and that the disease phenotype in affected tissues is likely due to pleiotropic effects of PUS1p on non-tRNA molecules involved in DNA transcription and iron metabolism. Similar combinations of mechanisms may play a role in the tissue specificity of other mitochondrial disorders.
    Molecular Genetics and Metabolism 07/2007; 91(2):148-56. · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The human mitochondrial 12S ribosomal RNA (rRNA) A1555G mutation has been associated with aminoglycoside-induced and nonsyndromic deafness in many families worldwide. Our previous investigation revealed that the A1555G mutation is a primary factor underlying the development of deafness but is not sufficient to produce a deafness phenotype. However, it has been proposed that nuclear-modifier genes modulate the phenotypic manifestation of the A1555G mutation. Here, we identified the nuclear-modifier gene TRMU, which encodes a highly conserved mitochondrial protein related to transfer RNA (tRNA) modification. Genotyping analysis of TRMU in 613 subjects from 1 Arab-Israeli kindred, 210 European (Italian pedigrees and Spanish pedigrees) families, and 31 Chinese pedigrees carrying the A1555G or the C1494T mutation revealed a missense mutation (G28T) altering an invariant amino acid residue (A10S) in the evolutionarily conserved N-terminal region of the TRMU protein. Interestingly, all 18 Arab-Israeli/Italian-Spanish matrilineal relatives carrying both the TRMU A10S and 12S rRNA A1555G mutations exhibited prelingual profound deafness. Functional analysis showed that this mutation did not affect importation of TRMU precursors into mitochondria. However, the homozygous A10S mutation leads to a marked failure in mitochondrial tRNA metabolisms, specifically reducing the steady-state levels of mitochondrial tRNA. As a consequence, these defects contribute to the impairment of mitochondrial-protein synthesis. Resultant biochemical defects aggravate the mitochondrial dysfunction associated with the A1555G mutation, exceeding the threshold for expressing the deafness phenotype. These findings indicate that the mutated TRMU, acting as a modifier factor, modulates the phenotypic manifestation of the deafness-associated 12S rRNA mutations.
    The American Journal of Human Genetics 09/2006; 79(2):291-302. · 11.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear modifier genes have been proposed to modulate the phenotypic manifestation of human mitochondrial 12S rRNA A1491G mutation associated with deafness in many families world-wide. Here we identified and characterized the putative nuclear modifier gene TRMU encoding a highly conserved mitochondrial protein related to tRNA modification. A 1937bp TRMU cDNA has been isolated and the genomic organization of TRMU has been elucidated. The human TRMU gene containing 11 exons encodes a 421 residue protein with a strong homology to the TRMU-like proteins of bacteria and other homologs. TRMU is ubiquitously expressed in various tissues, but abundantly in tissues with high metabolic rates including heart, liver, kidney, and brain. Immunofluorescence analysis of human 143B cells expressing TRMU-GFP fusion protein demonstrated that the human Trmu localizes and functions in mitochondrion. Furthermore, we show that in families with the deafness-associated 12S rRNA A1491G mutation there is highly suggestive linkage and linkage disequilibrium between microsatellite markers adjacent to TRMU and the presence of deafness. These observations suggest that human TRMU may modulate the phenotypic manifestation of the deafness-associated mitochondrial 12S rRNA mutations.
    Biochemical and Biophysical Research Communications 05/2006; 342(4):1130-6. · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A missense mutation in the PUS1 gene affecting a highly conserved amino acid has been associated with mitochondrial myopathy and sideroblastic anemia (MLASA), a rare autosomal recessive oxidative phosphorylation disorder. The PUS1 gene encodes the enzyme pseudouridine synthase 1 (Pus1p) that is known to pseudouridylate tRNAs in other species. Total RNA was isolated from lymphoblastoid cell lines established from patients, parents, unaffected siblings, and unrelated controls, and the tRNAs were assayed for the presence of pseudouridine (Psi) at the expected positions. Mitochondrial and cytoplasmic tRNAs from MLASA patients are lacking modification at sites normally modified by Pus1p, whereas tRNAs from controls, unaffected siblings, or parents all have Psi at these positions. In addition, there was no Pus1p activity in an extract made from a cell line derived from a patient with MLASA. Immunohistochemical staining of Pus1p in cell lines showed nuclear, cytoplasmic, and mitochondrial distribution of the protein, and there is no difference in staining between patients and unaffected family members. MLASA is thus associated with absent or greatly reduced tRNA pseudouridylation at specific sites, implicating this pathway in its molecular pathogenesis.
    Journal of Biological Chemistry 06/2005; 280(20):19823-8. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ALR/Lt, a mouse strain with strong resistance to type 1 diabetes, is closely related to autoimmune type 1 diabetes-prone NOD/Lt mice. ALR pancreatic beta cells are resistant to the beta cell toxin alloxan, combinations of cytotoxic cytokines, and diabetogenic NOD T-cell lines. Reciprocal F1 hybrids between either ALR and NOD or ALR and NON/Lt, showed that alloxan resistance was transmitted to F1 progeny only when ALR was the maternal parent. Here we show that the mitochondrial genome (mtDNA) of ALR mice contributes resistance to diabetes. When F1 progeny from reciprocal outcrosses between ALR and NOD were backcrossed to NOD, a four-fold lower frequency of spontaneous type 1 diabetes development occurred when ALR contributed the mtDNA. Because of the apparent interaction between nuclear and mtDNA, the mitochondrial genomes were sequenced. An ALR-specific sequence variation in the mt-Nd2 gene producing a leucine to methionine substitution at amino acid residue 276 in the NADH dehydrogenase 2 was discovered. An isoleucine to valine mutation in the mt-Co3 gene encoding COX3 distinguished ALR and NOD from NON and ALS. All four strains were distinguished by variation in a mt-encoded arginyl tRNA polyadenine tract. Shared alleles of mt-Co3 and mt-Tr comparing NOD and ALR allowed for exclusion of these two genes as candidates, implicating the mt-Nd2 variation as a potential ALR-derived type 1 diabetes protective gene. The unusual resistance of ALR mice to both ROS-mediated and autoimmune type 1 diabete stresses reflects an interaction between the nuclear and mt genomes. The latter contribution is most likely via a single nucleotide polymorphism in mt-Nd2.
    Diabetologia 03/2005; 48(2):261-7. · 6.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phenotypic expression of the deafness-associated mitochondrial A1555G mutation in the 12S rRNA gene is influenced by aminoglycosides and complex inheritance of nuclear-encoded modifier genes. The position of a major nuclear modifier gene has been localized to chromosome 8p23.1, but the identification of this gene has remained elusive. Recently, we identified a second modifier gene, mitochondrial transcription factor B1 (TFB1M), involved in mitochondrial rRNA modification. In the present study, we tested three genes involved in mitochondrial tRNA or rRNA modification, and two genes associated with non-syndromic deafness, for linkage and linkage disequilibrium (LD) in 214 DNA samples from Spanish, Italian, and Arab-Israeli families with maternally inherited non-syndromic hearing loss. The multipoint non-parametric linkage analysis and transmission disequilibrium test testing were done using all families combined as well as divided based on linkage to the chromosome 8 locus and ethnicity. Two genes, MTO1 and GTPBP3, showed strongly suggestive linkage and significant LD results. Since both genes, as well as TFB1M, are involved in the process of mitochondrial RNA modification, it appears that the modification of mitochondrial RNA is an important regulatory pathway in the phenotypic expression of the deafness-associated mitochondrial A1555G mutation. This conclusion was supported by comparing linkage results of simulated genotypes with actual results for the four genes involved in mitochondrial RNA modification.
    Molecular Genetics and Metabolism 12/2004; 83(3):199-206. · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondrial myopathy and sideroblastic anemia (MLASA) is a rare, autosomal recessive oxidative phosphorylation disorder specific to skeletal muscle and bone marrow. Linkage analysis and homozygosity testing of two families with MLASA localized the candidate region to 1.2 Mb on 12q24.33. Sequence analysis of each of the six known genes in this region, as well as four putative genes with expression in bone marrow or muscle, identified a homozygous missense mutation in the pseudouridine synthase 1 gene (PUS1) in all patients with MLASA from these families. The mutation is the only amino acid coding change in these 10 genes that is not a known polymorphism, and it is not found in 934 controls. The amino acid change affects a highly conserved amino acid, and appears to be in the catalytic center of the protein, PUS1p. PUS1 is widely expressed, and quantitative expression analysis of RNAs from liver, brain, heart, bone marrow, and skeletal muscle showed elevated levels of expression in skeletal muscle and brain. We propose deficient pseudouridylation of mitochondrial tRNAs as an etiology of MLASA. Identification of the pathophysiologic pathways of the mutation in these families may shed light on the tissue specificity of oxidative phosphorylation disorders.
    The American Journal of Human Genetics 07/2004; 74(6):1303-8. · 11.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondrial myopathy and sideroblastic anemia (MSA) is a rare autosomal recessive disorder of oxidative phosphorylation and iron metabolism. Individuals with MSA present with weakness and anemia in late childhood and may become dependent on blood transfusions. Recently, we reported affected sibling pairs from a Jewish-Iranian kindred living in the US [Casas and Fischel-Ghodsian, 2003]. A genome scan and fine mapping of DNA from this family revealed homozygous alleles in the affected individuals, and a multipoint logarithm of the odds (lod) score of 3.3, within 2.3 mb of chromosome 12q24.33. Previously, Inbal et al. [1995: Am J Med Genet 55:372-378] described siblings with a similar clinical phenotype who lived in Israel but originated from the same Iranian town as the US family. Focused analysis of DNA from the Israeli family confirmed the presence of identical, homozygous alleles in the affected of the US and Israeli families within 1.2 mb of chromosome 12q24.33. Combined multipoint linkage analysis revealed a maximum lod score of 5.41 at the 132 cM position of chromosome 12. Therefore, in these two families of Jewish-Iranian descent, a disease gene for MSA maps to a 1.2 mb region of chromosome 12q24.33. This region contains 6 well described genes (SFRS8, MMP17, ULK1, PUS1, EP400, and GALNT9) and at least 15 additional putative transcripts. The known genes are expressed in multiple tissues and lack a function specific to mitochondria, making none an obvious candidate. The eventual identification of the disease gene in MSA is expected to provide insight into the tissue specificity and phenotypic variability of mitochondrial disease.
    American Journal of Medical Genetics Part A 06/2004; 127A(1):44-9. · 2.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phenotypic expression of the deafness-associated homoplasmic A1555G mutation in the mitochondrial 12S rRNA gene varies from profound congenital hearing loss to normal hearing. It has been shown that this variability in clinical expression in most patients is due to the complex inheritance of multiple nuclear-encoded modifier genes. Human mitochondrial transcription factor B1 (TFB1M) has been proposed as a candidate for being such a modifier, since it methylates adenine residues in the adjacent loop of the A1555G mutation in the 12S rRNA gene. Polymorphic markers within and adjacent to the TFB1M gene were genotyped in 214 individuals from 41 multiplex families with the A1555G mutation of Spanish, Italian, and Arab-Israeli origin. Multipoint non-parametric linkage analysis of all families combined revealed an NPL score of 1.7 (P = 0.05), and a Lod score of 1.4 (P = 0.04). Linkage disequilibrium by the Transmission Disequilibrium Test at D6S1577, a microsatellite adjacent to TFB1M, showed preferential non-transmission of an allele to affected individuals with chi2 = 8.76; P = 0.003. Sequence analysis of the coding region of the gene and testing of all intragenic SNPs did not reveal a putative causative mutation. These data provide suggestive evidence that TFB1M is a nuclear-encoded modifier gene for phenotypic expression of the A1555G mutation, and that the effect may occur through a regulatory or splicing mutation.
    Molecular Genetics and Metabolism 06/2004; 82(1):27-32. · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pathophysiologic pathways and clinical expression of mitochondrial DNA (mtDNA) mutations are not well understood. This is mainly the result of the heteroplasmic nature of most pathogenic mtDNA mutations and of the absence of clinically relevant animal models with mtDNA mutations. mtDNA mutations predisposing to hearing impairment in humans are generally homoplasmic, yet some individuals with these mutations have severe hearing loss, whereas their maternal relatives with the identical mtDNA mutation have normal hearing. Epidemiologic, biochemical and genetic data indicate that nuclear genes are often the main determinants of these differences in phenotype. To identify a mouse model for maternally inherited hearing loss, we screened reciprocal backcrosses of three inbred mouse strains, A/J, NOD/LtJ and SKH2/J, with age-related hearing loss (AHL). In the (A/J x CAST/Ei) x A/J backcross, mtDNA derived from the A/J strain exerted a significant detrimental effect on hearing when compared with mtDNA from the CAST/Ei strain. This effect was not seen in the (NOD/LtJ x CAST/Ei) x NOD/LtJ and (SKH2/J x CAST/Ei) x SKH2/J backcrosses. Genotyping revealed that this effect was seen only in mice homozygous for the A/J allele at the Ahl locus on mouse chromosome 10. Sequencing of the mitochondrial genome in the three inbred strains revealed a single nucleotide insertion in the tRNA-Arg gene (mt-Tr) as the probable mediator of the mitochondrial effect. This is the first mouse model with a naturally occurring mtDNA mutation affecting a clinical phenotype, and it provides an experimental model to dissect the pathophysiologic processes connecting mtDNA mutations to hearing loss.
    Nature Genetics 03/2001; 27(2):191-4. · 35.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To examine the role of the nuclear genome in affecting the phenotypic expression of the simplest model of a mitochondrial DNA disease, maternally transmitted deafness. Linkage analysis in families with maternally inherited deafness associated with the homoplasmic A1555G mutation. Significant linkage and linkage disequilibrium on chromosome 8 was identified. This finding represents the first identification of a modifier locus for a human mitochondrial DNA disease and supports the concept of mitochondrial DNA diseases having complex genetic inheritance. The eventual identification of this modifier gene will provide insights into the pathophysiological pathways determining the clinical expression of mitochondrial DNA diseases, an important step toward diagnostic and therapeutic interventions.
    Genetics in Medicine 01/2001; 3(3):177-80. · 5.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been proposed that splice-variants of proteins involved in mitochondrial RNA processing and translation may be involved in the tissue specificity of mitochondrial DNA disease mutations (Fischel-Ghodsian, 1998. Mol. Genet. Metab. 65, 97-104). To identify and characterize the structural components of mitochondrial RNA processing and translation, the Mammalian Mitochondrial Ribosomal Consortium has been formed. The 338 amino acid (aa) residues long MRP-L5 was identified (O'Brien et al., 1999. J. Biol. Chem. 274, 36043-36051), and its transcript was screened for tissue specific splice-variants. Screening of the EST databases revealed a single putative splice-variant, due to the insertion of an exon consisting of 89 nucleotides prior to the last exon. Screening of multiple cDNA libraries revealed this inserted exon to be present only in heart tissue, in addition to the predominant MRP-L5 transcript. Sequencing of this region confirmed the EST sequence, and showed in the splice-variant a termination triplet at the beginning of the last exon. Thus the inserted exon replaces the coding sequence of the regular last exon, and creates a new 353 aa long protein (MRP-L5V1). Sequence analysis and 3D modeling reveal similarity between MRP-L5 and threonyl-t-RNA synthetases, and a likely RNA binding site within MRP-L5, with the C-terminus in proximity to the RNA binding site. Sequence analysis of MRP-L5V1 also suggests a likely transmembrane domain at the C-terminus. Thus it is possible that the MRP-L5V1 C-terminus could interfere with RNA binding and may have gained a transmembrane domain. Further studies will be required to elucidate the functional significance of MRP-L5V1.
    Gene 01/2001; 261(2):229-34. · 2.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Maternally inherited deafness associated with the A1555G mutation in the mitochondrial 12S ribosomal RNA (rRNA) gene appears to require additional environmental or genetic changes for phenotypic expression. Aminoglycosides have been identified as one such environmental factor. In one large Arab-Israeli pedigree with congenital hearing loss in some of the family members with the A1555G mutation and with no exposure to aminoglycosides, biochemical evidence has suggested the role of nuclear modifier gene(s), but a genomewide search has indicated the absence of a single major locus having such an effect. Thus it has been concluded that the penetrance of the mitochondrial mutation appears to depend on additive effects of several nuclear genes. We have now investigated 10 multiplex Spanish and Italian families with 35 members with the A1555G mutation and sensorineural deafness. Parametric analysis of a genomewide screen again failed to identify significant evidence for linkage to a single autosomal locus. However, nonparametric analysis supported the role of the chromosomal region around marker D8S277. The combined maximized allele-sharing LOD score of 3.1 in Arab-Israeli/Spanish/Italian families represents a highly suggestive linkage result. We suggest that this region should be considered a candidate for containing the first human nuclear modifier gene for a mitochondrial DNA disorder. The locus operates in Arab-Israeli, Spanish, and Italian families, resulting in the deafness phenotype on a background of the mitochondrial A1555G mutation. No obvious candidate genes are located in this region.
    The American Journal of Human Genetics 07/2000; 66(6):1905-10. · 11.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The biological function of pyrin, the protein mutated in Familial Mediterranean Fever (FMF), has not been elucidated. Based on sequence homology, a transcription factor activity was proposed for this neutrophil-specific protein. In a yeast two-hybrid assay, neither transcription activation activity nor any self interaction was detected for pyrin. Screening of an expression cDNA library of peripheral blood leukocytes using as bait the carboxyl portion of pyrin (amino acids 557-781), which contains most of the FMF mutations, led to the identification of P/M-IP1 (pyrin/marenostrin interacting protein 1). A splice variant of P/M-IP1, GTC-90, had previously been described as a component of the 13S hetero-oligomeric protein complex that stimulates in vitro Golgi transport. We have now shown that P/M-IP1 colocalizes with pyrin in the perinuclear cytoplasm of Cos-7 cells and that the interaction between these two proteins is impaired by FMF causing mutations in pyrin. These data suggest that, at some stage of its functional pathway, pyrin resides in the cytoplasm and might be involved in, or impacted by, cellular protein sorting by the Golgi apparatus. The data also imply that P/M-IP1 may be involved in the abnormal inflammatory response that occurs in patients with FMF.
    Proceedings of The Society for Experimental Biology and Medicine 06/2000; 224(1):32-40.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study we characterized clinically and evaluated molecularly a large family with maternally inherited hearing impairment. Relatives were evaluated audiologically and clinically, the most likely pattern of inheritance was deduced, and molecular DNA analysis for the known mitochondrial mutations associated with hearing impairment was performed. Clinical examination of several relatives showed a normal general state of health, but in 14 of the members tested variable degrees of sensorineural hearing loss were noted. The pedigree was established and demonstrated a clear pattern of maternal inheritance, with 34 of 38 offspring of deaf mothers being hearing impaired, but none of 22 offspring of deaf fathers having any hearing impairment. Since by far the most likely explanation of such a maternal inheritance pattern is a mitochondrial mutation, molecular testing for the three known mitochondrial mutations, A1555G, A7445G, and Cins7472, was performed on 27 of the relatives. All of the individuals tested had the normal sequence at the sites tested. This family with nonsyndromic sensorineural hearing loss has an inheritance pattern strongly suggestive of a mitochondrial mutation. However, molecular testing for the three known mitochondrial mutations associated with nonsyndromic hearing impairment was negative, implying that additional molecular defects can lead to the same phenotype. The search for this novel molecular defect is underway.
    American Journal of Medical Genetics 07/1999; 84(4):369-72.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study we characterized clinically and evaluated molecularly a large family with maternally inherited hearing impairment. Relatives were evaluated audiologically and clinically, the most likely pattern of inheritance was deduced, and molecular DNA analysis for the known mitochondrial mutations associated with hearing impairment was performed. Clinical examination of several relatives showed a normal general state of health, but in 14 of the members tested variable degrees of sensorineural hearing loss were noted. The pedigree was established and demonstrated a clear pattern of maternal inheritance, with 34 of 38 offspring of deaf mothers being hearing impaired, but none of 22 offspring of deaf fathers having any hearing impairment. Since by far the most likely explanation of such a maternal inheritance pattern is a mitochondrial mutation, molecular testing for the three known mitochondrial mutations, A1555G, A7445G, and Cins7472, was performed on 27 of the relatives. All of the individuals tested had the normal sequence at the sites tested. This family with nonsyndromic sensorineural hearing loss has an inheritance pattern strongly suggestive of a mitochondrial mutation. However, molecular testing for the three known mitochondrial mutations associated with nonsyndromic hearing impairment was negative, implying that additional molecular defects can lead to the same phenotype. The search for this novel molecular defect is underway. Am. J. Med. Genet. 84:369–372, 1999. © 1999 Wiley-Liss, Inc.
    American Journal of Medical Genetics 06/1999; 84(4):369 - 372.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aminoglycoside-induced ototoxicity appears to have a genetic susceptibility in some individuals, and the A1555G mutation in the mitochondrial 12S ribosomal RNA gene has been shown to be responsible for this susceptibility in all familial cases. An Italian family with 5 family members who became deaf after aminoglycoside exposure presented to us, and molecular analysis excluded the A1555G mutation. The purpose of this study is to identify the molecular basis for the aminoglycoside susceptibility in this family. Two sisters and three of their children developed severe to profound high-frequency hearing loss after aminoglycoside exposure. DNA was extracted from the blood of these individuals and their unaffected relatives, and analyzed for mitochondrial DNA mutations. The region around nucleotide 961 was also cloned and individual clones were sequenced. Sequencing of the 12S ribosomal RNA gene revealed a thymidine deletion at position 961, with a complex pattern of sequence around this mutation. Sequencing of individual clones around the 961 mutation demonstrated a varying number of inserted cytosines in different mitochondrial molecules. This family establishes the nucleotide 961 thymidine deletion associated with a varying number of inserted cytosines in the mitochondrial 12S ribosomal RNA gene as the second pathogenic mutation that can predispose to aminoglycoside ototoxicity. It demonstrates the clinical relevance of taking a family history before administering aminoglycosides to any patient. In addition, it would be desirable for sporadic patients with aminoglycoside-induced hearing loss to be screened with molecular tests for the presence of the 1555 and 961 mutations. Such screening could significantly decrease the prevalence of aminoglycoside-induced hearing loss.
    American Journal of Otolaryngology 01/1999; 20(3):151-6. · 1.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A New Zealand and a Scottish pedigree with maternally inherited sensorineural deafness were both previously shown to carry a heteroplasmic A7445G mutation in the mitochondrial genome. More detailed clinical examination of the New Zealand family showed that the hearing loss was progressive, with the severity of the overall loss and the frequencies most affected differing markedly between individuals of similar age, and showed that many relatives also had palmoplantar keratoderma. Review of the literature demonstrated three other large families with presumed autosomal dominant inheritance of palmoplantar keratoderma and hearing loss. In a United Kingdom pedigree the syndrome was transmitted by female and male parents, an inheritance pattern which made mitochondrial inheritance unlikely; however, in a Turkish and a Japanese pedigree the affected individuals were all maternally related. Subsequent analysis of the Japanese pedigree documented the same A7445G mitochondrial mutation as was previously found in the New Zealand and Scottish pedigrees. Other mitochondrial sequence variants previously reported in the New Zealand or Scottish pedigrees were absent from the Japanese pedigree which suggests that the A7445G mutation arose independently in all three pedigrees. To our knowledge palmoplantar keratoderma has not previously been associated with mitochondrial defects; however, the current findings suggest that the A7445G mutation is associated not only with progressive hearing loss but also with palmoplantar keratoderma. The penetrance and expressivity of both symptoms varied considerably between individuals in the Scottish and New Zealand Studies which suggests that additional environmental and/or genetic factors are involved. Am. J. Med. Genet. 75:179–185, 1998. © 1998 Wiley-Liss, Inc.
    American Journal of Medical Genetics 12/1998; 75(2):179 - 185.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Six Italian families with familial nonsyndromic hearing loss consistent with a maternal pattern of inheritance were analyzed for mitochondrial mutations. The three known mitochondrial mutations associated with nonsyndromic hearing loss were investigated by polymerase chain reaction amplification, followed by restriction fragment length analysis or DNA sequencing. The A7445G mutation and C7472 insertion were not present in either of the families, but the A1555G mutation in the 12S rRNA gene was identified in homoplasmic form in two of the families. In one of the families the onset of hearing loss is congenital, while in the other it starts later in life. The families are from different regions of Italy, and mitochondrial haplotype analysis showed that the mutation arose independently in these two families. This suggests that the A1555G mutation may not be an uncommon cause of hearing loss in Italians, and is clinically important because maternal hearing relatives of patients with the A1555G mutation are at risk for aminoglycoside induced deafness. We discuss potential reasons for the normal phenotype in some relatives with the mutation, and the different onset of hearing loss in the two families.
    American Journal of Medical Genetics 11/1998; 79(5):388-91.

Publication Stats

931 Citations
108.61 Total Impact Points

Institutions

  • 2006
    • Cincinnati Children's Hospital Medical Center
      Cincinnati, Ohio, United States
  • 2005
    • Childrens Hospital of Pittsburgh
      Pittsburgh, Pennsylvania, United States
  • 1998–2005
    • Cedars-Sinai Medical Center
      • Department of Pediatrics
      Los Angeles, California, United States
  • 2001
    • The Jackson Laboratory
      Bar Harbor, Maine, United States
    • Children's Hospital Los Angeles
      Los Angeles, California, United States
  • 2000
    • University of California, Los Angeles
      • Department of Medicine
      Los Angeles, CA, United States
  • 1999
    • House Research Institute
      Los Angeles, California, United States
  • 1998–1999
    • University of Southern California
      • Department of Medicine
      Los Angeles, CA, United States