G Zupi

Istituto Regina Elena - Istituti Fisioterapici Ospitalieri, Roma, Latium, Italy

Are you G Zupi?

Claim your profile

Publications (184)731.83 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously reported that the G-quadruplex (G4) ligand RHPS4 potentiates the antitumor activity of camptothecins both in vitro and in tumor xenografts. The present study aims at investigating the mechanisms involved in this specific drug interaction. Combination index test was used to evaluate the interaction between G4 ligands and standard or novel Topo I inhibitors. Chromatin immunoprecipitation was performed to study the presence at telomeres of various types of topisomerase, while immunolabeling experiments were performed to measure the activation of DNA damage both in vitro and in tumor xenografts. We report that integration of the Topo I inhibitor SN-38, but not the Topo II poison doxorubicin with telomere-based therapy is strongly effective and the sequence of drug administration is critical in determining the synergistic interaction, impairing the cell ability to recover from drug-induced cytotoxicity. The synergistic effect of this combination was also observed by using novel camptothecins and, more interestingly, mice treated with ST1481/RHPS4 combination showed an inhibition and delay of tumor growth as well as an increased survival. The study of the mechanism(s) revealed that treatment with G4 ligands increased Topo I at the telomeres and the functional relevance of this observation was directly assessed by showing that standard and novel camptothecins stabilized DNA damage both in vitro and in xenografts. Our results demonstrate an outstanding efficacy of Topo I inhibitors/G4 ligands combination, which likely reflects an enhanced and persistent activation of DNA damage response as a critical determinant of the therapeutic improvement.
    Clinical Cancer Research 02/2011; 17(8):2227-36. · 7.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: New anti-telomere strategies represent important goals for the development of selective cancer therapies. In this study, we reported that uncapped telomeres, resulting from pharmacological stabilization of quadruplex DNA by RHPS4 (3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium methosulfate), trigger specific recruitment and activation of poly-adenosine diphosphate (ADP) ribose polymerase I (PARP1) at the telomeres, forming several ADP-ribose polymers that co-localize with the telomeric repeat binding factor 1 protein and are inhibited by selective PARP(s) inhibitors or PARP1-specific small interfering RNAs. The knockdown of PARP1 prevents repairing of RHPS4-induced telomere DNA breaks, leading to increases in chromosome abnormalities and eventually to the inhibition of tumor cell growth both in vitro and in xenografts. More interestingly, the integration of a TOPO1 inhibitor on the combination treatment proved to have a high therapeutic efficacy ensuing a complete regression of the tumor as well as a significant increase in overall survival and cure of mice even when treatments started at a very late stage of tumor growth. Overall, this work reveals the unexplored link between the PARP1 and G-quadruplex ligands and demonstrates the excellent efficacy of a multi-component strategy based on the use of PARP inhibitors in telomere-based therapy.
    Oncogene 11/2010; 29(47):6280-93. · 8.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The response of pancreatic cancer to treatments remains unsatisfactory, highlighting the need for more effective therapeutic regimens. Sorafenib, an orally available multikinase inhibitor, is active against different tumors, including pancreatic cancer. We studied the antitumor efficacy of sorafenib in combination with different antitumor drugs currently used in clinical practice in in vitro and in vivo experimental models of human pancreatic cancer. The cytotoxic effect of sorafenib and conventional antitumor drug combinations was evaluated in vitro in human pancreatic cancer cell lines and the efficacy of the most active combination was tested on tumor-bearing mice. Flow cytometric, Western blot and immunohistochemistry analyses were performed to investigate the mechanisms involved in the activity of single drugs and in their interaction when used in combination. Sorafenib showed a strong sequence-dependent synergistic interaction in vitro with docetaxel, which was highly dependent on the drug sequence employed. In vivo, human pancreatic cancer-xenografted mice treated with docetaxel followed by sorafenib reduced and delayed tumor growth, with complete tumor regression observed in half of the mice. This marked antitumor effect resulted in an overall increase in mouse survival of about 70% and in a complete cure in 3 of the 8 treated mice. The strong activity was also accompanied by marked apoptosis induction, inhibition of tumor angiogenesis and downregulation of ERK signalling. Our results show that the docetaxel and sorafenib combination exerts high therapeutic efficacy in experimental models of human pancreatic cancer, indicating a promising antitumor strategy for clinical use.
    Current cancer drug targets 09/2010; 10(6):600-10. · 5.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The response of pancreatic cancer to treatments remains unsatisfactory, highlighting the need for more effective therapeutic regimens. Sorafenib, an orally available multikinase inhibitor, is active against different tumors, including pancreatic cancer. We studied the antitumor efficacy of sorafenib in combination with different antitumor drugs currently used in clinical practice in in vitro and in vivo experimental models of human pancreatic cancer. The cytotoxic effect of sorafenib and conventional antitumor drug combinations was evaluated in vitro in human pancreatic cancer cell lines and the efficacy of the most active combination was tested on tumor-bearing mice. Flow cytometric, Western blot and immunohistochemistry analyses were performed to investigate the mechanisms involved in the activity of single drugs and in their interaction when used in combination. Sorafenib showed a strong sequence-dependent synergistic interaction in vitro with docetaxel, which was highly dependent on the drug sequence employed. In vivo, human pancreatic cancer-xenografted mice treated with docetaxel followed by sorafenib reduced and delayed tumor growth, with complete tumor regression observed in half of the mice. This marked antitumor effect resulted in an overall increase in mouse survival of about 70% and in a complete cure in 3 of the 8 treated mice. The strong activity was also accompanied by marked apoptosis induction, inhibition of tumor angiogenesis and downregulation of ERK signalling. Our results show that the docetaxel and sorafenib combination exerts high therapeutic efficacy in experimental models of human pancreatic cancer, indicating a promising antitumor strategy for clinical use.
    Current Cancer Drug Targets 08/2010; 10(6):600-610. · 4.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypoxia-Inducible Factor 1 (HIF-1) is a transcription factor that is a critical mediator of the cellular response to hypoxia. Enhanced levels of HIF-1alpha, the oxygen-regulated subunit of HIF-1, is often associated with increased tumour angiogenesis, metastasis, therapeutic resistance and poor prognosis. It is in this context that we previously demonstrated that under hypoxia, bcl-2 protein promotes HIF-1/Vascular Endothelial Growth Factor (VEGF)-mediated tumour angiogenesis. By using human melanoma cell lines and their stable or transient derivative bcl-2 overexpressing cells, the current study identified HIF-1alpha protein stabilization as a key regulator for the induction of HIF-1 by bcl-2 under hypoxia. We also demonstrated that bcl-2-induced accumulation of HIF-1alpha protein during hypoxia was not due to an increased gene transcription or protein synthesis. In fact, it was related to a modulation of HIF-1alpha protein expression at a post-translational level, indeed its degradation rate was faster in the control lines than in bcl-2 transfectants. The bcl-2-induced HIF-1alpha stabilization in response to low oxygen tension conditions was achieved through the impairment of ubiquitin-dependent HIF-1alpha degradation involving the molecular chaperone HSP90, but it was not dependent on the prolyl hydroxylation of HIF-1alpha protein. We also showed that bcl-2, HIF-1alpha and HSP90 proteins form a tri-complex that may contribute to enhancing the stability of the HIF-1alpha protein in bcl-2 overexpressing clones under hypoxic conditions. Finally, by using genetic and pharmacological approaches we proved that HSP90 is involved in bcl-2-dependent stabilization of HIF-1alpha protein during hypoxia, and in particular the isoform HSP90beta is the main player in this phenomenon. We identified the stabilization of HIF-1alpha protein as a mechanism through which bcl-2 induces the activation of HIF-1 in hypoxic tumour cells involving the beta isoform of molecular chaperone HSP90.
    PLoS ONE 01/2010; 5(7):e11772. · 3.53 Impact Factor
  • Ejc Supplements - EJC SUPPL. 01/2010; 8(5):104-104.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite the low efficacy of conventional antitumour drugs, chemotherapy remains an essential tool in controlling advanced gastric and oesophageal cancers. We aimed to provide a biological rationale based on the sorafenib-taxotere interaction for the clinical treatment of gastric cancer. In vitro experiments were performed on four human gastric cancer cell lines (GK2, AKG, KKP and NCI-N87). Cytotoxicity was evaluated by sulforhodamine B (SRB) assay, cell cycle perturbations, apoptosis and mitotic catastrophe were assessed by flow cytometric and microscopic analyses, and protein expression was studied by Western blot. In the in vivo experiments, nude mice xenografted with the most resistant line were treated with sorafenib and docetaxel singly or in association. Sorafenib inhibited cell growth (IG(50) values ranged from 3.4 to 8.1 μM) and caused down-regulation of MAP-K/ERK phosphorylation and of mcl-1 and p-bad expression after a 48-hr exposure. Apoptosis induction was associated with caspase-3 and -9 activation and mitochondrial membrane depolarization. The drug combination enhanced apoptosis (up to 80%) and produced a synergistic interaction when low doses of the taxane preceded administration of the antityrosine kinase. This synergism was probably due to the induction of an anomalous multidiploid G0-G1 peak and to consequent mitotic catastrophe, which increased sensitivity to sorafenib. Consistent with in vitro results, the docetaxel-sorafenib sequence exhibited high therapeutic efficacy in NCI-N87 mouse xenografts producing tumour weight inhibition (> 65%), tumour growth delay (up to 25 days) and increased mouse survival (30%). Our findings suggest the potential clinical usefulness of treatment with sorafenib and docetaxel for advanced gastric cancer.
    Journal of Cellular and Molecular Medicine 12/2009; 15(2):316-26. · 4.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The capability of PARP activity inhibitors to prevent DNA damage recovery suggested the use of these drugs as chemo- and radio-sensitisers for cancer therapy. Our research, carried out on cultured human M14 melanoma cells, was aimed to examine if PJ-34, a potent PARP activity inhibitor of second generation, was per se able to affect the viability of these cancer cells without any DNA damaging agents. Using time-lapse videomicroscopy, we evidenced that 10 microM PJ-34 treatment induced severe mitotic defects leading to dramatic reduction of cell proliferation and to cell death. PJ-34 cytotoxic effect was further confirmed by analysis of cell viability and clonogenic assay. Absence of canonic apoptosis markers allowed us to exclude this kind of cell death. No single and/or double stranded DNA damage was evidenced. Immunofluorescence analysis showed an aberrant mitotic scenario in several cells and subsequent multinucleation suggesting an atypical way for cells to die: the mitotic catastrophe. The detection of aberrant accumulation of polymerised actin inside the nucleolus was noteworthy. Taken together, our results demonstrate that, targeting PARP activity by PJ-34, cancer cell survival is affected independently of DNA damage repair. Two findings are remarkable: (a) cisplatin concentration can be reduced by three quarters if it is followed by treatment with 10 microM PJ-34 for 24 h to obtain the same cytotoxic effect; (b) effects dependent on PJ-34 treatment are reversible. Our data suggest that, to reduce the harm done to non-tumour cells during chemotherapy with cisplatin, the latter could be coupled with PJ-34 treatment.
    Journal of Cellular Physiology 11/2009; 222(2):401-10. · 4.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We examined the autocrine/paracrine role of interleukin-8 (CXCL8) and the functional significance of CXCL8 receptors, CXCR1 and CXCR2, in human malignant melanoma proliferation, migration, invasion and angiogenesis. We found that a panel of seven cell lines, even though at different extent, secreted CXCL8 protein, and expressed CXCR1 and CXCR2 independently from the CXCL8 expression, but depending on the oxygen level. In fact, hypoxic exposure increases the expression of CXCR1 and CXCR2. The cell proliferation of both M20 and A375SM lines, expressing similar levels of both CXCR1 and CXCR2 but secreting low and high amounts of CXCL8, respectively, was significantly enhanced by CXCL8 exposure and reduced by CXCL8, CXCR1 and CXCR2 neutralising antibodies, indicating the autocrine/paracrine role of CXCL8 in melanoma cell proliferation. Moreover, an increased invasion and migration in response to CXCL8 was observed in several cell lines, and a further enhancement evidenced under hypoxic conditions. A CXCL8-dependent in vivo vessel formation, evaluated through a matrigel assay, was also demonstrated. Furthermore, when neutralising antibodies against CXCR1 or CXCR2 were used, only the involvement of CXCR2, but not CXCR1 was observed on cell migration and invasion, while both receptors played a role in angiogenesis. In summary, our data demonstrate that CXCL8 induces cell proliferation and angiogenesis through both receptors and that CXCR2 plays an important role in regulating the CXCL8-mediated invasive and migratory behaviour of human melanoma cells. Thus, blocking the CXCL8 signalling axis promises an improvement for the therapy of cancer and, in particular, of metastatic melanoma.
    European journal of cancer (Oxford, England: 1990) 09/2009; 45(14):2618-27. · 4.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Raf/MEK/ERK pathway is an important mediator of tumor cell proliferation and angiogenesis. Here, we investigated the growth-inhibitory and antiangiogenic properties of PD0325901, a novel MEK inhibitor, in human melanoma cells. PD0325901 effects were determined in a panel of melanoma cell lines with different genetic aberrations. PD0325901 markedly inhibited ERK phosphorylation and growth of both BRAF mutant and wild-type melanoma cell lines, with IC(50) in the nanomolar range even in the least responsive models. Growth inhibition was observed both in vitro and in vivo in xenograft models, regardless of BRAF mutation status, and was due to G(1)-phase cell cycle arrest and subsequent induction of apoptosis. Cell cycle (cyclin D1, c-Myc, and p27(KIP1)) and apoptosis (Bcl-2 and survivin) regulators were modulated by PD0325901 at the protein level. Gene expression profiling revealed profound modulation of several genes involved in the negative control of MAPK signaling and melanoma cell differentiation, suggesting alternative, potentially relevant mechanisms of action. Finally, PD0325901 inhibited the production of the proangiogenic factors vascular endothelial growth factor and interleukin 8 at a transcriptional level. In conclusion, PD0325901 exerts potent growth-inhibitory, proapoptotic, and antiangiogenic activity in melanoma lines, regardless of their BRAF mutation status. Deeper understanding of the molecular mechanisms of action of MEK inhibitors will likely translate into more effective treatment strategies for patients experiencing malignant melanoma.
    Neoplasia (New York, N.Y.) 09/2009; 11(8):720-31. · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Functional telomeres are required to maintain the replicative ability of cancer cells and represent putative targets for G-quadruplex (G4) ligands. Here, we show that the pentacyclic acridinium salt RHPS4, one of the most effective and selective G4 ligands, triggers damages in cells traversing S phase by interfering with telomere replication. Indeed, we found that RHPS4 markedly reduced BrdU incorporation at telomeres and altered the dynamic association of the telomeric proteins TRF1, TRF2 and POT1, leading to chromosome aberrations such as telomere fusions and telomere doublets. Analysis of the molecular damage pathway revealed that RHPS4 induced an ATR-dependent ATM signaling that plays a functional role in the cellular response to RHPS4 treatment. We propose that RHPS4, by stabilizing G4 DNA at telomeres, impairs fork progression and/or telomere processing resulting in telomere dysfunction and activation of a replication stress response pathway. The detailed understanding of the molecular mode of action of this class of compounds makes them attractive tools to understand telomere biology and provides the basis for a rational use of G4 ligands for the therapy of cancer.
    Nucleic Acids Research 08/2009; 37(16):5353-64. · 8.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The formation of G-quadruplex structures at telomeric DNA sequences blocks telomerase activity, offering an original strategy to design and develop new antitumor agents. The pentacyclic acridinium salt RHPS4 is one of the most effective and selective G4 ligands able to rapidly disrupt telomere architecture, resulting in apoptosis of cancer cells. Here, we studied the therapeutic index of RHPS4 and its integration with chemotherapeutics in preclinical model of solid tumors. The antitumoral activity of RHPS4 was evaluated on human xenografts of different histotypes and compared with that of standard antineoplastic agents. Moreover, the effect of RHPS4/chemotherapeutics combinations on cell survival was studied and the most favorable combination was evaluated on tumor-bearing mice. RHPS4 was active in vivo as single agent and showed a high therapeutic efficacy when compared with conventional drugs. Moreover, RHPS4 had antitumoral activity in human melanoma xenografts inherently resistant to chemotherapy and exhibited antimetastatic activity. RHPS4 also showed a strong synergistic interaction with camptothecins and this effect was strictly dependent on the drug sequence employed. Treatment of mice with irinotecan followed by RHPS4 was able to inhibit and delay tumor growth and to increase mice survival. Our data show that RHPS4 has a good pharmacodynamic profile and in combination therapy produces a strong antitumoral activity, identifying this drug as promising agent for clinical development.
    Clinical Cancer Research 12/2008; 14(22):7284-91. · 7.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We recently reported that bcl-xL regulates interleukin 8 (CXCL8) protein expression and promoter activity in glioblastoma cells. In this paper we demonstrate that CXCL8 induction by bcl-xL is mediated through a nuclear factor-kappa B (NF-kB)-dependent mechanism. Mutational studies on the CXCL8 promoter showed that NF-kB binding site was required for bcl-xL-induced promoter activity and an enhanced nuclear expression of NF-kB subunits p65 and p50 was observed after bcl-xL over-expression. Electrophoretic mobility shift assay showed an increased DNA-binding activity of NF-kB in bcl-xL over-expressing cells and the use of specific antibodies confirmed the involvement of p65 and p50 in NF-kB activity on CXCL8 promoter sequence. NF-kB activity regulation by bcl-xL involved IkBalpha and IKK complex signaling pathway. In fact, bcl-xL over-expression induced a decrease of cytoplasmic expression of the IkBalpha protein, paralleled by an increase in the phosphorylation of the same IkBalpha and IKKalpha/beta. Moreover, the down-regulation of the ectopic or endogenous bcl-xL expression through RNA interference confirmed the ability of bcl-xL to modulate NF-kB pathway, and the transient expression of a degradation-resistant form of the cytoplasmic NF-kB inhibitor IkBalpha in bcl-xL transfectants confirmed the involvement of that inhibitor in bcl-xL-induced CXCL8 expression and promoter activity. In conclusion, our results demonstrate the role of NF-kB as the mediator of bcl-xL-induced CXCL8 up-regulation in glioblastoma cells.
    Journal of Neurochemistry 10/2008; 107(3):871-82. · 3.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our previous data have shown that in L929 mouse fibroblasts the control of methylation pattern depends in part on poly(ADP-ribosyl)ation and that ADP-ribose polymers (PARs), both present on poly(ADP-ribosyl)ated PARP-1 and/or protein-free, have an inhibitory effect on Dnmt1 activity. Here we show that transient ectopic overexpression of CCCTC-binding factor (CTCF) induces PAR accumulation, PARP-1, and CTCF poly(ADP-ribosyl)ation in the same mouse fibroblasts. The persistence in time of a high PAR level affects the DNA methylation machinery; the DNA methyltransferase activity is inhibited with consequences for the methylation state of genome, which becomes diffusely hypomethylated affecting centromeric minor satellite and B1 DNA repeats. In vitro data show that CTCF is able to activate PARP-1 automodification even in the absence of nicked DNA. Our new finding that CTCF is able per se to activate PARP-1 automodification in vitro is of great interest as so far a burst of poly(ADP-ribosyl)ated PARP-1 has generally been found following introduction of DNA strand breaks. CTCF is unable to inhibit DNMT1 activity, whereas poly(ADP-ribosyl)ated PARP-1 plays this inhibitory role. These data suggest that CTCF is involved in the cross-talk between poly(ADP-ribosyl)ation and DNA methylation and underscore the importance of a rapid reversal of PARP activity, as DNA methylation pattern is responsible for an important epigenetic code.
    Journal of Biological Chemistry 07/2008; 283(32):21873-80. · 4.65 Impact Factor
  • Source
    European Urology Supplements - EUR UROL SUPPL. 01/2008; 7(3):278-278.
  • Ejc Supplements - EJC SUPPL. 01/2008; 6(9):87-88.
  • Ejc Supplements - EJC SUPPL. 01/2008; 6(12):17-17.
  • Ejc Supplements - EJC SUPPL. 01/2008; 6(12):22-22.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Functional telomeres are required for the replicability of cancer cells. The G-rich strand of telomeric DNA can fold into a 4-stranded structure known as the G-quadruplex (G4), whose stabilization alters telomere function limiting cancer cell growth. Therefore, the G4 ligand RHPS4 may possess antitumor activity. Here, we show that RHPS4 triggers a rapid and potent DNA damage response at telomeres in human transformed fibroblasts and melanoma cells, characterized by the formation of several telomeric foci containing phosphorylated DNA damage response factors gamma-H2AX, RAD17, and 53BP1. This was dependent on DNA repair enzyme ATR, correlated with delocalization of the protective telomeric DNA-binding protein POT1, and was antagonized by overexpression of POT1 or TRF2. In mice, RHPS4 exerted its antitumor effect on xenografts of human tumor cells of different histotype by telomere injury and tumor cell apoptosis. Tumor inhibition was accompanied by a strong DNA damage response, and tumors overexpressing POT1 or TRF2 were resistant to RHPS4 treatment. These data provide evidence that RHPS4 is a telomere damage inducer and that telomere disruption selectively triggered in malignant cells results in a high therapeutic index in mice. They also define a functional link between telomere damage and antitumor activity and reveal the key role of telomere-protective factors TRF2 and POT1 in response to this anti-telomere strategy.
    Journal of Clinical Investigation 12/2007; 117(11):3236-47. · 12.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study aims to investigate the role of gamma-glutamylcysteine synthetase (gamma-GCS), the rate-limiting enzyme for glutathione (GSH) synthesis, in the c-Myc-dependent response to antineoplastic agents. We found that specific c-Myc inhibition depleted cells of GSH by directly reducing the gene expression of both heavy and light subunits of the gamma-GCS enzyme and increased their susceptibility to antineoplastic drugs with different mechanisms of action, such as cisplatin (CDDP), staurosporine (STR), and 5-fluorouracil (5-FU). The effect caused by c-Myc inhibition on CDDP and STR response, but not to 5-FU treatment, is directly linked to the impairment of the gamma-GCS expression, because up-regulation of gamma-GCS reverted drug sensitivity, whereas the interference of GSH synthesis increased drug susceptibility as much as after c-Myc down-regulation. The role of gamma-GCS in the c-Myc-directed drug response depends on the capacity of drugs to trigger reactive oxygen species (ROS) production. Indeed, although 5-FU exposure did not induce any ROS, CDDP- and STR-induced oxidative stress enhanced the recruitment of c-Myc on both gamma-GCS promoters, thus stimulating GSH neosynthesis and allowing cells to recover from ROS-induced drug damage. In conclusion, our data demonstrate that the gamma-GCS gene is the downstream target of c-Myc oncoprotein, driving the response to ROS-inducing drugs. Thus, gamma-GCS impairment might specifically sensitize high c-Myc tumor cells to chemotherapy.
    Molecular Pharmacology 11/2007; 72(4):1015-23. · 4.41 Impact Factor

Publication Stats

3k Citations
731.83 Total Impact Points

Institutions

  • 1980–2011
    • Istituto Regina Elena - Istituti Fisioterapici Ospitalieri
      Roma, Latium, Italy
  • 1981–2010
    • Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori
      Meldola, Emilia-Romagna, Italy
  • 2007
    • University of Western Australia
      • School of Surgery
      Perth City, Western Australia, Australia
  • 1996
    • Thomas Jefferson University
      • Department of Microbiology & Immunology
      Philadelphia, PA, United States
  • 1995
    • King's College London
      Londinium, England, United Kingdom
  • 1991–1994
    • Istituto Superiore di Sanità
      • Department of Technology and Health
      Roma, Latium, Italy
  • 1984
    • ENEA
      Roma, Latium, Italy