Anne Tailleux

Institut Pasteur de Lille, Lille, Nord-Pas-de-Calais, France

Are you Anne Tailleux?

Claim your profile

Publications (73)331.07 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Non-alcoholic fatty liver disease (NAFLD) is increasingly prevalent and strongly associated with central obesity, dyslipidemia and insulin resistance. According to the multiple-hit model of NAFLD pathogenesis, lipid accumulation drives non-alcoholic steatohepatitis (NASH) initiation by triggering oxidative stress, lipotoxicity and subsequent activation of hepatic inflammatory responses that may progress, in predisposed individuals, to fibrosis and cirrhosis. While there is an unmet therapeutical need for NASH and fibrosis, recent pre-clinical studies showed that PPARα agonism can efficiently oppose these symptoms. To dissect the relative contribution of anti-steatotic vs. anti-inflammatory PPARα activities in counteracting dietary-induced liver fibrosis, we used a PPARα mutant lacking its DNA binding-dependent activity on fatty acid metabolism. Liver-specific expression of wild type or a DNA binding-deficient PPARα in acute and chronic models of inflammation were used to study PPARα’s anti-inflammatory vs. metabolic activities in NASH and fibrosis. Pharmacologically-activated PPARα inhibited hepatic inflammatory responses and the transition from steatosis towards NASH and fibrosis through a direct, anti-inflammatory mechanism independent of its lipid handling properties. Altogether our results show that the transrepression activity of PPARα on chronic liver inflammation is sufficient to prevent progression of NASH to liver fibrosis. Dissociated PPARα agonists, selectively modulating PPARα transrepression activity, could thus be an option to prevent NASH and fibrosis progression. (Hepatology 2014)
    Hepatology 07/2014; · 12.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Type 2 diabetes (T2D) is hallmarked by insulin resistance, impaired insulin secretion and increased hepatic glucose production. The worldwide increasing prevalence of T2D calls for efforts to understand its pathogenesis in order to improve disease prevention and management. Recent genome wide association studies (GWAS) have revealed strong associations between the CDKN2A/B locus and T2D risk. The CDKN2A/B locus contains genes encoding cell cycle inhibitors, including p16(Ink4a), which have not yet been implicated in the control of hepatic glucose homeostasis. Here we show that p16(Ink4a)-deficiency enhances fasting-induced hepatic glucose production in vivo by increasing the expression of key gluconeogenic genes. p16(Ink4a) down-regulation leads to an activation of PKA-CREB-PGC1α signalling through increased phosphorylation of PKA regulatory subunits (PKAR2). Taken together, these results provide evidence that p16(Ink4a) controls fasting glucose homeostasis and could as such modulate in T2D development.
    Diabetes 05/2014; · 7.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The deacetylase sirtuin 1 (Sirt1) exerts beneficial effects on lipid metabolism, but its roles in plasma LDL-cholesterol regulation and atherosclerosis are controversial. Thus, we applied the pharmacological Sirt1 activator SRT3025 in a mouse model of atherosclerosis and in hepatocyte culture. Apolipoprotein E-deficient (Apoe(-/-)) mice were fed a high-cholesterol diet (1.25% w/w) supplemented with SRT3025 (3.18 g kg(-1) diet) for 12 weeks. In vitro, the drug activated wild-type Sirt1 protein, but not the activation-resistant Sirt1 mutant; in vivo, it increased deacetylation of hepatic p65 and skeletal muscle Foxo1. SRT3025 treatment decreased plasma levels of LDL-cholesterol and total cholesterol and reduced atherosclerosis. Drug treatment did not change mRNA expression of hepatic LDL receptor (Ldlr) and proprotein convertase subtilisin/kexin type 9 (Pcsk9), but increased their protein expression indicating post-translational effects. Consistent with hepatocyte Ldlr and Pcsk9 accumulation, we found reduced plasma levels of Pcsk9 after pharmacological Sirt1 activation. In vitro administration of SRT3025 to cultured AML12 hepatocytes attenuated Pcsk9 secretion and its binding to Ldlr, thereby reducing Pcsk9-mediated Ldlr degradation and increasing Ldlr expression and LDL uptake. Co-administration of exogenous Pcsk9 with SRT3025 blunted these effects. Sirt1 activation with SRT3025 in Ldlr(-/-) mice reduced neither plasma Pcsk9, nor LDL-cholesterol levels, nor atherosclerosis. We identify reduction in Pcsk9 secretion as a novel effect of Sirt1 activity and uncover Ldlr as a prerequisite for Sirt1-mediated atheroprotection in mice. Pharmacological activation of Sirt1 appears promising to be tested in patients for its effects on plasma Pcsk9, LDL-cholesterol, and atherosclerosis.
    European Heart Journal 03/2014; · 14.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Studies exploring the influence of obesity on septic shock remain limited and controversial. Pigs were chosen as a clinically relevant species, resembling to humans in various functions. We hypothese obesity may impair porcine acute endotoxic shock. Four groups of five "Yucatan" minipigs were studied: lean and obese control groups, lean LPS group receiving Escherichia Coli endotoxin (LPS) and obese LPS group receiving the same endotoxin dose. We measured hemodynamic and oxygenation parameters, skin microvascular blood flow at rest and during reactive hyperemia, von Willebrand factor, TNFα and Interleukin 6. All measurements were performed at baseline and at 30, 60, 90, 150 and 300 minutes. Results were given as median with 25-75 interquartile range. Control groups remained stable during the study-period. In LPS groups, administration of endotoxin resulted in a typical hypokinetic shock. In obese LPS group at 300 min, we observed a significant impairment of cardiac index (1.2 [1.06-1.45] vs. 1.7 [1.57-1.97] L/min/m, p=0.008) compared to lean LPS group; moreover pulmonary hypertension (mean arterial pressure: 42 [39-47] vs. 32 [28-34] mmHg, p=0.008), hypoxemia (partial pressure of oxygen: 216 [178-262] vs. 325 [285-414] mmHg, p=0.02) and lactate levels (5.8 [4.2-6.8] vs. 3.9 [2.2-5.5] mmol/L, p=0.04) were significantly higher compared to lean LPS group. Throughout the study, rest flow and peak flow during reactive hyperemia were more decreased in obese LPS group. Compared to lean LPS group, TNFα levels at 60 min (269 [178-428] vs. 126 [105-166] ng/mL, p=0.03) and interleukin 6 levels at 300 min (101 [61-142] vs. 52 [36-64] ng/mL, p=0.03) were significantly higher in obese LPS group. In our model of endotoxic shock, obese pigs developed a more severe hemodynamic failure with pronounced microcirculatory dysfunction and proinflammatory response.
    Shock (Augusta, Ga.) 02/2014; · 2.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction Le diabète de type 2 (T2D) est un trouble métabolique de l’homéostasie du glucose. Il est caractérisé par une hyperglycémie chronique qui résulte en partie d’une production excessive de glucose par le foie conséquence au développement d’une résistance à l’insuline. Le T2D est une pathologie multifactorielle à la fois génétique et environnementale. Récemment des études d’associations de gènes (GWAS) dans différentes cohortes ont mis en évidence une forte corrélation entre le locus CDKN2A et le risque de développement du T2D en se basant sur certains paramètres métaboliques tel que la glycémie à jeun. Le locus CDKN2A code pour des protéines régulatrices du cycle cellulaire dont la protéine p16INK4a. p16INK4a est largement décrite dans la littérature pour son rôle suppresseur de tumeurs et comme marqueur de sénescence, cependant son rôle dans le contrôle de l’homéostasie hépatique du glucose n’a jamais été rapporté Matériels et méthodes Afin de déterminer le rôle de p16INK4a dans le métabolisme hépatique du glucose, nous avons utilisé in vivo des souris sauvages (p16+/+) et déficientes pour p16INK4a (p16-/-) et in vitro des hépatocytes primaires ainsi que la lignée AML12. Résultats Nous avons montré qu’après un jeune, les souris p16-/- présentent une hypoglycémie moins prononcée qui se traduit par une expression hépatique plus élevée de gènes de la néoglucogenèse tels que PEPCK, G6Pase et PGC1a. De plus, les hépatocytes primaires de souris p16-/- présentent une meilleur réponse au glucagon que ceux des p16+/+. Enfin, nous avons montré que la diminution d’expression de p16INK4a par siRNA dans les AML12 suffit à induire l’expression des gènes de la néoglucogenèse et potentialise la réponse de ces cellules à différents stimuli gluconéogenique. L’effet observé dépend de l’activation de la voie PKA-CREB-PGC1A. Conclusion L’ensemble de ces données montrent pour la première fois que p16INK4a pourrait jouer un rôle un cours du développement du T2D.
    Diabetes & Metabolism. 01/2014; 40:A6.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Liver is a major regulator of lipid metabolism and adaptation to fasting, a process involving PPARalpha activation. We recently showed that the Vnn1 gene is a PPARalpha target gene in liver and that release of the Vanin-1 pantetheinase in serum is a biomarker of PPARalpha activation. Here we set up a screen to identify new regulators of adaptation to fasting using the serum Vanin-1 as a marker of PPARalpha activation. Mutagenized mice were screened for low serum Vanin-1 expression. Functional interactions with PPARalpha were investigated by combining transcriptomic, biochemical and metabolic approaches. We characterized a new mutant mouse in which hepatic and serum expression of Vanin-1 is depressed. This mouse carries a mutation in the HMG domain of the Sox17 transcription factor. Mutant mice display a metabolic phenotype featuring lipid abnormalities and inefficient adaptation to fasting. Upon fasting, a fraction of the PPARα-driven transcriptional program is no longer induced and associated with impaired fatty acid oxidation. The transcriptional phenotype is partially observed in heterozygous Sox17+/- mice. In mutant mice, the fasting phenotype but not all transcriptomic signature is rescued by the administration of the PPARalpha agonist fenofibrate. These results identify a novel role for Sox17 in adult liver as a modulator of the metabolic adaptation to fasting.
    PLoS ONE 01/2014; 9(8):e104925. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nonalcoholic fatty liver disease (NAFLD) covers a spectrum of liver damage ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. To date, no pharmacological treatment is approved for NAFLD/NASH. Here, we report on preclinical and clinical data with GFT505, a novel dual peroxisome proliferator-activated receptor alpha/delta (PPAR-α/δ) agonist. In the rat, GFT505 concentrated in the liver with limited extrahepatic exposure and underwent extensive enterohepatic cycling. The efficacy of GFT505 was assessed in animal models of NAFLD/NASH and liver fibrosis (Western diet [WD]-fed human apolipoprotein E2 [hApoE2] transgenic mice, methionine- and choline-deficient diet-fed db/db mice, and CCl4-induced fibrosis in rats). GFT505 demonstrated liver-protective effects on steatosis, inflammation, and fibrosis. In addition, GFT505 improved liver dysfunction markers, decreased hepatic lipid accumulation, and inhibited proinflammatory (interleukin-1 beta, tumor necrosis factor alpha, and F4/80) and profibrotic (transforming growth factor beta, tissue inhibitor of metalloproteinase 2, collagen type I, alpha 1, and collagen type I, alpha 2) gene expression. To determine the role of PPAR-α-independent mechanisms, the effect of GFT505 was assessed in hApoE2 knock-in/PPAR-α knockout mice. In these mice, GFT505 also prevented WD-induced liver steatosis and inflammation, indicating a contribution of PPAR-α-independent mechanisms. Finally, the effect of GFT505 on liver dysfunction markers was assessed in a combined analysis of four phase II clinical studies in metabolic syndrome patients. GFT505 treatment decreased plasma concentrations of alanine aminotransferase, gamma-glutamyl transpeptidase, and alkaline phosphatase. Conclusion: The dual PPAR-α/δ agonist, GFT505, is a promising liver-targeted drug for treatment of NAFLD/NASH. In animals, its protective effects are mediated by both PPAR-α-dependent and -independent mechanisms. (Hepatology 2013; 58:1941–1952)
    Hepatology 12/2013; 58(6). · 12.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The liver is a major organ in whole body lipid metabolism and malfunctioning can lead to various diseases including dyslipidemia, fatty liver disease and type 2 diabetes. Triglycerides and cholesteryl esters are packed in the liver as very low-density lipoproteins (VLDL). Generation of these lipoproteins is initiated in the endoplasmic reticulum and further maturation likely occurs in the Golgi. ADP-ribosylation factor-related protein 1 (ARFRP1) is a small trans-Golgi associated GTPase that regulates protein sorting and is required for chylomicron lipidation and assembly in the intestine. Here we show that the hepatocyte-specific deletion of Arfrp1 (Arfrp1liv-/-) results in impaired VLDL lipidation leading to reduced plasma triglyceride levels in the fasted state as well as after inhibition of lipoprotein lipase activity by Triton WR-1339. In addition, the concentration of ApoC3 that comprises 40 % of protein mass of secreted VLDL was markedly reduced in the plasma of Arfrp1liv-/- mice but accumulated in livers accompanied by elevated triglycerides. Fractionation of Arfrp1liv-/- liver homogenates revealed more ApoB48 and lower concentration of triglycerides in the Golgi compartments than in the corresponding fractions from control livers. In conclusion, ARFRP1 and the Golgi apparatus play an important role in lipoprotein maturation in the liver by influencing lipidation and assembly of proteins to the lipid particles.
    The Journal of Lipid Research 11/2013; · 4.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bile acid metabolism is intimately linked to the control of energy homeostasis and glucose and lipid metabolism. The nuclear receptor FXR plays a major role in the enterohepatic cycling of bile acids, but the impact of nutrients on bile acid homeostasis is poorly characterized. Metabolically active hepatocytes cope with increases in intracellular glucose concentrations by directing glucose into storage (glycogen) or oxidation (glycolysis) pathways, as well as to the pentose phosphate shunt and the hexosamine biosynthetic pathway. Here we studied whether the glucose non-oxidative hexosamine biosynthetic pathway modulates FXR activity. Our results show that FXR interacts with and is O-GlcNAcylated by O-GlcNAc transferase in its N-terminal AF1 domain. Increased FXR O-GlcNAcylation enhances FXR gene expression and protein stability in a cell type-specific manner. High glucose concentrations increased FXR O-GlcNAcylation hence its protein stability and transcriptional activity by inactivating corepressor complexes, which associate in a ligand-dependent manner with FXR, and increased FXR binding to chromatin. Finally, in vivo fasting-refeeding experiments show that FXR undergoes O-GlcNAcylation in fed conditions associated with increased direct FXR target gene expression and decreased liver bile acid content. Conclusion: FXR activity is regulated by glucose fluxes in hepatocytes through a direct post-translational modification catalyzed by the glucose-sensing hexosamine biosynthetic pathway. (Hepatology 2013;).
    Hepatology 08/2013; · 12.00 Impact Factor
  • International journal of cardiology 08/2013; · 6.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Percutaneous transluminal angioplasty is frequently used in patients with severe arterial narrowing due to atherosclerosis. However, it induces severe arterial injury and an inflammatory response leading to restenosis. Here, we studied a potential activation of the endocannabinoid system and the effect of fatty acid amide hydrolase (FAAH) deficiency, the major enzyme responsible for endocannabinoid anandamide degradation, in arterial injury. We performed carotid balloon injury in atherosclerosis-prone apolipoprotein E knockout (ApoE-/-) and ApoE-/-FAAH-/- mice. Anandamide levels were systemically elevated in ApoE-/- mice after balloon injury. ApoE-/-FAAH-/- mice had significantly higher baseline anandamide levels and enhanced neointima formation compared to ApoE-/- controls. The latter effect was inhibited by treatment with CB1 antagonist AM281. Similarly, ApoE-/- mice treated with AM281 had reduced neointimal areas, reduced lesional vascular smooth muscle cell (SMC) content and proliferating cell counts. The lesional macrophage content was unchanged. In vitro proliferation rates were significantly reduced in CB1-/- SMCs or when treating ApoE-/- or ApoE-/-FAAH-/- SMCs with AM281. Macrophage in vitro adhesion and migration was marginally affected by CB1 deficiency. Reendothelialization was not inhibited by treatment with AM281. In conclusion, endogenous CB1 activation contributes to vascular SMC proliferation and neointima formation in response to arterial injury.
    The Journal of Lipid Research 03/2013; · 4.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The τ pathology found in Alzheimer disease (AD) is crucial in cognitive decline. Midlife development of obesity, a major risk factor of insulin resistance and type 2 diabetes, increases the risk of dementia and AD later in life. The impact of obesity on AD risk has been suggested to be related to central insulin resistance, secondary to peripheral insulin resistance. The effects of diet-induced obesity (DIO) on τ pathology remain unknown. In this study, we evaluated effects of a high-fat diet, given at an early pathological stage, in the THY-Tau22 transgenic mouse model of progressive AD-like τ pathology. We found that early and progressive obesity potentiated spatial learning deficits as well as hippocampal τ pathology at a later stage. Surprisingly, THY-Tau22 mice did not exhibit peripheral insulin resistance. Further, pathological worsening occurred while hippocampal insulin signaling was upregulated. Together, our data demonstrate that DIO worsens τ phosphorylation and learning abilities in τ transgenic mice independently from peripheral/central insulin resistance.
    Diabetes 12/2012; · 7.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE: The kidney has been proposed to play a central role in apo AI catabolism, suggesting that HDL structure is determined, at least in part, by this organ. Here, we aimed at determining the effects of a renal mass reduction on HDL size distribution, lipid content, and apo AI turnover. METHODS: We characterized HDL subclasses in rabbits with a 75% reduction of functional renal mass (Nptx group), using enzymatic staining of samples separated on polyacrylamide electrophoresis gels, and also performed kinetic studies using radiolabeled HDL-apo AI in this animal model. RESULTS: Creatinine clearance was reduced to 35% after nephrectomy as compared to the basal values, but without increased proteinuria. A slight, but significant modification of the relative HDL size distribution was observed after nephrectomy, whereas cholesterol plasma concentrations gradually augmented from large HDL2b (+54%) to small HDL3b particles (+150%, P<0.05). Cholesteryl esters were the increased fraction; in contrast, free cholesterol phospholipids and triglycerides of HDL subclasses were not affected by nephrectomy. HDL-apo AI fractional catabolic rates were similar to controls. CONCLUSION: Reduction of functional renal mass is associated to enrichment of HDL subclasses with cholesteryl esters. Structural abnormalities were not related to a low apo AI turnover, suggesting renal contribution to HDL remodeling beyond being just a catabolic site for these lipoproteins.
    Metabolism: clinical and experimental 10/2012; · 3.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: AimsPeroxisome proliferator-activated receptor (PPAR)-α is a transcription factor controlling lipid metabolism in liver, heart, muscle, and macrophages. Peroxisome proliferator-activated receptor-α activation increases plasma HDL cholesterol and exerts hypotriglyceridaemic actions via the liver. However, the intestine expresses PPAR-α, produces HDL and chylomicrons, and is exposed to diet-derived PPAR-α ligands. Therefore, we examined the effects of PPAR-α activation on intestinal lipid and lipoprotein metabolism.Methods and resultsThe impact of PPAR-α activation was evaluated in term of HDL-related gene expression in mice, ex vivo in human jejunal biopsies and in Caco-2/TC7 cells. Apolipoprotein-AI/HDL secretion, cholesterol esterification, and trafficking were also studied in vitro. In parallel to improving plasma lipid profiles and increasing liver and intestinal expression of fatty acid oxidation genes, treatment with the dual PPAR-α/δ ligand GFT505 resulted in a more pronounced increase in plasma HDL compared with fenofibrate in mice. GFT505, but not fenofibrate, increased the expression of HDL production genes such as apolipoprotein-AI and ATP-binding cassette A1 transporter in murine intestines. A similar increase was observed upon PPAR-α activation of human biopsies and Caco-2/TC7 cells. Additionally, HDL secretion by Caco-2/TC7 cells increased. Moreover, PPAR-α activation decreased the cholesterol esterification capacity of Caco-2/TC7 cells, modified cholesterol trafficking, and reduced apolipoprotein-B secretion.Conclusion Peroxisome proliferator-activated receptor-α activation reduces cholesterol esterification, suppresses chylomicron, and increases HDL secretion by enterocytes. These results identify the intestine as a target organ of PPAR-α ligands with entero-hepatic tropism to reduce atherogenic dyslipidaemia.
    European Heart Journal 07/2012; · 14.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Scavenger receptor-class B type I (SR-BI), the receptor for HDL-cholesterol, plays a key role in HDL metabolism, whole body cholesterol homeostasis, and reverse cholesterol transport. We investigated the in vivo impact of hepatic SR-BI inhibition on lipoprotein metabolism and the development of atherosclerosis employing RNA interference. Small hairpin RNA plasmid specific for rabbit SR-BI was complexed with galactosylated poly-l-lysine, allowing an organ-selective, receptor-mediated gene transfer. Rabbits were fed a cholesterol-rich diet, and were injected with plasmid-complexes once a week. After 2 weeks of treatment hepatic SR-BI mRNA levels were reduced by 80% accompanied by reduced SR-BI protein levels and a modulation of the lipoprotein profile. Rabbits treated with SR-BI-specific plasmid-complexes displayed higher cholesteryl ester transfer from HDL to apoB-containing lipoproteins, lower HDL-cholesterol, and higher VLDL-cholesterol levels, when compared to controls. In a long-term study, this gene therapeutic intervention led to a similar modulation of the lipoprotein profile, to lower total cholesterol levels, and most importantly to a 50% reduction of the relative atherosclerotic lesion area. Our results are another indication that the role of SR-BI in lipoprotein metabolism and atherogenesis in rabbits--a CETP-expressing animal model displaying a manlike lipoprotein profile may be different from the one found in rodents.
    Atherosclerosis 03/2012; 222(2):360-6. · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A genomic region near the CDKN2A locus, encoding p16(INK4a), has been associated to type 2 diabetes and atherosclerotic vascular disease, conditions in which inflammation plays an important role. Recently, we found that deficiency of p16(INK4a) results in decreased inflammatory signaling in murine macrophages and that p16(INK4a) influences the phenotype of human adipose tissue macrophages. Therefore, we investigated the influence of immune cell p16(INK4a) on glucose tolerance and atherosclerosis in mice. Bone marrow p16(INK4a)-deficiency in C57Bl6 mice did not influence high fat diet-induced obesity nor plasma glucose and lipid levels. Glucose tolerance tests showed no alterations in high fat diet-induced glucose intolerance. While bone marrow p16(INK4a)-deficiency did not affect the gene expression profile of adipose tissue, hepatic expression of the alternative markers Chi3l3, Mgl2 and IL10 was increased and the induction of pro-inflammatory Nos2 was restrained on the high fat diet. Bone marrow p16(INK4a)-deficiency in low density lipoprotein receptor-deficient mice did not affect western diet-induced atherosclerotic plaque size or morphology. In line, plasma lipid levels remained unaffected and p16(INK4a)-deficient macrophages displayed equal cholesterol uptake and efflux compared to wild type macrophages. Bone marrow p16(INK4a)-deficiency does not affect plasma lipids, obesity, glucose tolerance or atherosclerosis in mice.
    PLoS ONE 01/2012; 7(3):e32440. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiovascular diseases remain an important cause of morbi-mortality. Atherosclerosis, which predisposes to cardiovascular disorders such as myocardial infarction and stroke, develops silently over several decades. Identification of circulating biomarkers to evaluate cardiovascular event risk and pathology prognosis is of particular importance. Microparticles (MPs) are small vesicles released from cells upon apoptosis or activation. Microparticles are present in blood of healthy individuals. Studies showing a modification of their concentrations in patients with cardiovascular risk factors and after cardiovascular events identify MPs as potential biomarkers of disease. Moreover, the pathophysiological properties of MPs may contribute to atherosclerosis development. In addition, pharmacological compounds, used in the treatment of cardiovascular disease, can reduce plasma MP concentrations. Nevertheless, numerous issues remain to be solved before MP measurement can be applied as routine biological tests to improve cardiovascular risk prediction. In particular, prospective studies to identify the predictive values of MPs in pathologies such as cardiovascular diseases are needed to demonstrate whether MPs are useful biomarkers for the early detection of the disease and its progression.
    Journal of Cellular and Molecular Medicine 11/2011; 16(7):1365-76. · 4.75 Impact Factor
  • Anne Tailleux, Kristiaan Wouters, Bart Staels
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-alcoholic fatty liver disease (NAFLD) is a liver pathology with increasing prevalence due to the obesity epidemic. Hence, NAFLD represents a rising threat to public health. Currently, no effective treatments are available to treat NAFLD and its complications such as cirrhosis and liver cancer. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated nuclear receptors which regulate lipid and glucose metabolism as well as inflammation. Here we review recent findings on the pathophysiological role of PPARs in the different stages of NAFLD, from steatosis development to steatohepatitis and fibrosis, as well as the preclinical and clinical evidence for potential therapeutical use of PPAR agonists in the treatment of NAFLD. PPARs play a role in modulating hepatic triglyceride accumulation, a hallmark of the development of NAFLD. Moreover, PPARs may also influence the evolution of reversible steatosis toward irreversible, more advanced lesions. Presently, large controlled trials of long duration are needed to assess the long-term clinical benefits of PPAR agonists in humans. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease.
    Biochimica et Biophysica Acta 10/2011; 1821(5):809-18. · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peroxisome proliferator-activated receptor-α (PPARα) is a ligand-activated transcription factor that controls lipid metabolism and inflammation. PPARα is activated by fibrates, hypolipidemic drugs used in the treatment of dyslipidemia. Previous studies assessing the influence of PPARα agonists on atherosclerosis in mice yielded conflicting results, and the implication of PPARα therein has not been assessed. The human apolipoprotein E2 knock-in (apoE2-KI) mouse is a model of mixed dyslipidemia, atherosclerosis, and nonalcoholic steatohepatitis (NASH). The aim of this study was to analyze, using homo- and heterozygous PPARα-deficient mice, the consequences of quantitative variations of PPARα gene levels and their response to the synthetic PPARα agonist fenofibrate on NASH and atherosclerosis in apoE2-KI mice. Wild-type (+/+), heterozygous (+/-), and homozygous (-/-) PPARα-deficient mice in the apoE2-KI background were generated and subjected to a Western diet supplemented with fenofibrate or not supplemented. Western diet-fed PPARα-/- apoE2-KI mice displayed an aggravation of liver steatosis and inflammation compared with PPARα+/+ and PPARα+/- apoE2-KI mice, indicating a role of PPARα in liver protection. Moreover, PPARα expression was required for the fenofibrate-induced protection against NASH. Interestingly, fenofibrate treatment induced a similar response on hepatic lipid metabolism in PPARα+/+ and PPARα+/- apoE2-KI mice, whereas, for a maximal antiinflammatory response, both alleles of the PPARα gene were required. Surprisingly, atherosclerosis development was not significantly different among PPARα+/+, PPARα+/-, and PPARα-/- apoE2-KI mice. However, PPARα gene level determined both the antiatherosclerotic and vascular antiinflammatory responses to fenofibrate in a dose-dependent manner. These results demonstrate a necessary but quantitatively different role of PPARα in the modulation of liver metabolism, inflammation, and atherogenesis.
    Arteriosclerosis Thrombosis and Vascular Biology 07/2011; 31(7):1573-9. · 6.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The CDKN2A locus, which contains the tumor suppressor gene p16(INK4a), is associated with an increased risk of age-related inflammatory diseases, such as cardiovascular disease and type 2 diabetes, in which macrophages play a crucial role. Monocytes can polarize toward classically (CAMϕ) or alternatively (AAMϕ) activated macrophages. However, the molecular mechanisms underlying the acquisition of these phenotypes are not well defined. Here, we show that p16(INK4a) deficiency (p16(-/-)) modulates the macrophage phenotype. Transcriptome analysis revealed that p16(-/-) BM-derived macrophages (BMDMs) exhibit a phenotype resembling IL-4-induced macrophage polarization. In line with this observation, p16(-/-) BMDMs displayed a decreased response to classically polarizing IFNγ and LPS and an increased sensitivity to alternative polarization by IL-4. Furthermore, mice transplanted with p16(-/-) BM displayed higher hepatic AAMϕ marker expression levels on Schistosoma mansoni infection, an in vivo model of AAMϕ phenotype skewing. Surprisingly, p16(-/-) BMDMs did not display increased IL-4-induced STAT6 signaling, but decreased IFNγ-induced STAT1 and lipopolysaccharide (LPS)-induced IKKα,β phosphorylation. This decrease correlated with decreased JAK2 phosphorylation and with higher levels of inhibitory acetylation of STAT1 and IKKα,β. These findings identify p16(INK4a) as a modulator of macrophage activation and polarization via the JAK2-STAT1 pathway with possible roles in inflammatory diseases.
    Blood 06/2011; 118(9):2556-66. · 9.78 Impact Factor

Publication Stats

1k Citations
331.07 Total Impact Points

Institutions

  • 1993–2014
    • Institut Pasteur de Lille
      Lille, Nord-Pas-de-Calais, France
    • French Institute of Health and Medical Research
      Lutetia Parisorum, Île-de-France, France
  • 1997–2011
    • University of Lille Nord de France
      Lille, Nord-Pas-de-Calais, France
  • 2002
    • Université du Droit et de la Santé Lille 2
      • Faculty of Pharmaceutical Sciences and biology
      Lille, Nord-Pas-de-Calais, France
  • 1997–2001
    • Institut Pasteur
      Lutetia Parisorum, Île-de-France, France