Antti P Aalto

University of Helsinki, Helsinki, Southern Finland Province, Finland

Are you Antti P Aalto?

Claim your profile

Publications (13)115.59 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The multitude of archaea and bacteria inhabiting extreme environments has only become evident during the last decades. As viruses apply a significant evolutionary force to their hosts, there is an inherent value in learning about viruses infecting these extremophiles. In this study, we have focused on one such unique virus-host pair isolated from a hypersaline environment: an icosahedral, membrane-containing double-stranded DNA virus--Salisaeta icosahedral phage 1 (SSIP-1) and its halophilic host bacterium Salisaeta sp. SP9-1 closely related to Salisaeta longa. The architectural principles, virion composition, and the proposed functions associated with some of the ORFs of the virus are surprisingly similar to those found in viruses belonging to the PRD1-adenovirus lineage. The virion structure, determined by electron cryomicroscopy, reveals that the bulk of the outer protein capsid is composed of upright standing pseudohexameric capsomers organized on a T = 49 icosahedral lattice. Our results give a comprehensive description of a halophilic virus-host system and shed light on the relatedness of viruses based on their virion architecture.
    Proceedings of the National Academy of Sciences 04/2012; 109(18):7079-84. · 9.74 Impact Factor
  • Source
    Antti P Aalto, Amy E Pasquinelli
    [show abstract] [hide abstract]
    ABSTRACT: During the past decade, it has become evident that small non-coding RNAs (ncRNAs) participate in widespread and essential regulatory mechanisms in most eukaryotic cells. Novel classes of small RNAs, their biogenesis pathways and cellular effects are continuously being described, and new properties of already established ncRNAs are still being discovered. As the list of small RNA molecules and their roles becomes more and more extensive, one can get lost in the midst of new information. In this review, we attempt to bring order to the small ncRNA transcriptome by covering some of the major milestones of recent years. We go through many of the new properties that have been attributed to already familiar RNA molecules, and introduce some of the more recent novel classes of tiny ncRNAs.
    Current opinion in cell biology 03/2012; 24(3):333-40. · 14.15 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: QDE-1 is an RNA- and DNA-dependent RNA polymerase that has functions in the RNA silencing and DNA repair pathways of the filamentous fungus Neurospora crassa. The crystal structure of the dimeric enzyme has been solved, and the fold of its catalytic core is related closely to that of eukaryotic DNA-dependent RNA polymerases. However, the specific activities of this multifunctional enzyme are still largely unknown. In this study, we characterized the in vitro activities of the N-terminally truncated QDE-1ΔN utilizing structure-based mutagenesis. Our results indicate that QDE-1 displays five distinct catalytic activities, which can be dissected by mutating critical amino acids or by altering reaction conditions. Our data also suggest that the RNA- and DNA-dependent activities have different modes for the initiation of RNA synthesis, which may reflect the mechanism that enables the polymerase to discriminate between template nucleic acids. Moreover, we show that QDE-1 is a highly potent terminal nucleotidyltransferase. Our results suggest that QDE-1 is able to regulate its activity mode depending on the template nucleic acid. This work extends our understanding of the biochemical properties of the QDE-1 enzyme and related RNA polymerases.
    Journal of Biological Chemistry 09/2010; 285(38):29367-74. · 4.65 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The production of aberrant RNA (aRNA) is the initial step in several RNAi pathways. How aRNA is produced and specifically recognized by RNA-dependent RNA polymerases (RdRPs) to generate double-stranded RNA (dsRNA) is not clear. We previously showed that in the filamentous fungus Neurospora, the RdRP QDE-1 is required for rDNA-specific aRNA production, suggesting that QDE-1 may be important in aRNA synthesis. Here we show that a recombinant QDE-1 is both an RdRP and a DNA-dependent RNA polymerase (DdRP). Its DdRP activity is much more robust than the RdRP activity and occurs on ssDNA but not dsDNA templates. We further show that Replication Protein A (RPA), a single-stranded DNA-binding complex that interacts with QDE-1, is essential for aRNA production and gene silencing. In vitro reconstitution assays demonstrate that QDE-1 can produce dsRNA from ssDNA, a process that is strongly promoted by RPA. Furthermore, the interaction between QDE-1 and RPA requires the RecQ DNA helicase QDE-3, a homolog of the human Werner/Bloom Syndrome proteins. Together, these results suggest a novel small RNA biogenesis pathway in Neurospora and a new mechanism for the production of aRNA and dsRNA in RNAi pathways.
    PLoS Biology 01/2010; 8(10). · 12.69 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Coxsackievirus B3 (CBV3) is a member of the human enterovirus B species and a common human pathogen. Even though much is known about the enteroviral life cycle, no specific drugs are available to treat enterovirus infections. RNA interference (RNAi) has evolved to be an important tool for antiviral experimental therapies and gene function studies. We describe here a novel approach for RNAi against CBVs by using a short interfering (siRNA) pool covering 3.5 kb of CBV3 genomic sequence. The RNA-dependent RNA polymerase (RdRP) of bacteriophage phi6 was used to synthesize long double-stranded RNA (dsRNA) from a cloned region (nt 3837-7399) of the CBV3 genome. The dsRNA was cleaved using Dicer, purified and introduced to cells by transfection. The siRNA pool synthesized using the phi6 RdRP (phi6-siRNAs) was considerably more effective than single-site siRNAs. The phi6-siRNA pool also inhibited replication of other enterovirus B species, such as coxsackievirus B4 and coxsackievirus A9.
    Journal of General Virology 07/2009; 90(Pt 10):2468-73. · 3.13 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: RNA interference pathways use small RNAs to mediate gene silencing in eukaryotes. In addition to small interfering RNAs (siRNAs) and microRNAs, several types of endogenously produced small RNAs have important roles in gene regulation, germ cell maintenance and transposon silencing. The production of some of these RNAs requires the synthesis of aberrant RNAs (aRNAs) or pre-siRNAs, which are specifically recognized by RNA-dependent RNA polymerases to make double-stranded RNA. The mechanism for aRNA synthesis and recognition is largely unknown. Here we show that DNA damage induces the expression of the Argonaute protein QDE-2 and a new class of small RNAs in the filamentous fungus Neurospora crassa. This class of small RNAs, known as qiRNAs because of their interaction with QDE-2, are about 20-21 nucleotides long (several nucleotides shorter than Neurospora siRNAs), with a strong preference for uridine at the 5' end, and originate mostly from the ribosomal DNA locus. The production of qiRNAs requires the RNA-dependent RNA polymerase QDE-1, the Werner and Bloom RecQ DNA helicase homologue QDE-3 and dicers. qiRNA biogenesis also requires DNA-damage-induced aRNAs as precursors, a process that is dependent on both QDE-1 and QDE-3. Notably, our results suggest that QDE-1 is the DNA-dependent RNA polymerase that produces aRNAs. Furthermore, the Neurospora RNA interference mutants show increased sensitivity to DNA damage, suggesting a role for qiRNAs in the DNA-damage response by inhibiting protein translation.
    Nature 06/2009; 459(7244):274-7. · 38.60 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The RNA-dependent RNA polymerase (RdRP) of double-stranded RNA (dsRNA) viruses performs both RNA replication and transcription. In order to initiate RNA polymerization, viral RdRPs must be able to interact with the incoming 3' terminus of the template and position it, so that a productive binary complex is formed. Structural studies have revealed that RdRPs of dsRNA viruses that lack helicases have electrostatically charged areas on the polymerase surface, which might facilitate such interactions. In this study, structure-based mutagenesis, enzymatic assays and molecular mapping of bacteriophage phi 6 RdRP and its RNA were used to elucidate the roles of the negatively charged plough area on the polymerase surface, of the rim of the template tunnel and of the template specificity pocket that is key in the formation of the productive RNA-polymerase binary complex. The positively charged rim of the template tunnel has a significant role in the engagement of highly structured ssRNA molecules, whereas specific interactions further down in the template tunnel promote ssRNA entry to the catalytic site. Hence, we show that by aiding the formation of a stable binary complex with optimized RNA templates, the overall polymerization activity of the phi 6 RdRP can be greatly enhanced.
    Nucleic Acids Research 02/2009; 37(4):1182-92. · 8.28 Impact Factor
  • Biophysical Journal 01/2009; 96(3). · 3.67 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: RNA-dependent RNA polymerases (RdRP) form an important class of enzymes that is responsible for genome replication and transcription in RNA viruses and involved in the regulation of RNA interference in plants and fungi. The RdRP kinetics have been extensively studied, but pausing, an important regulatory mechanism for RNA polymerases that has also been implicated in RNA recombination, has not been considered. Here, we report that RdRP experience a dramatic, long-lived decrease in its elongation rate when it is reinitiated following stalling. The rate decrease has an intriguingly weak temperature dependence, is independent of both the nucleotide concentration during stalling and the length of the RNA transcribed prior to stalling; however it is sensitive to RNA structure. This allows us to delineate the potential factors underlying this irreversible conversion of the elongation complex to a less active mode.
    Nucleic Acids Research 12/2008; 36(22):7059-67. · 8.28 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The discovery of RNA interference (RNAi) has revolutionized biological research and has a huge potential for therapy. Since small double-stranded RNAs (dsRNAs) are required for various RNAi applications, there is a need for cost-effective methods for producing large quantities of high-quality dsRNA. We present two novel, flexible virus-based systems for the efficient production of dsRNA: (1) an in vitro system utilizing the combination of T7 RNA polymerase and RNA-dependent RNA polymerase (RdRP) of bacteriophage 6 to generate dsRNA molecules of practically unlimited length, and (2) an in vivo RNA replication system based on carrier state bacterial cells containing the 6 polymerase complex to produce virtually unlimited amounts of dsRNA of up to 4.0 kb. We show that pools of small interfering RNAs (siRNAs) derived from dsRNA produced by these systems significantly decreased the expression of a transgene (eGFP) in HeLa cells and blocked endogenous pro-apoptotic BAX expression and subsequent cell death in cultured sympathetic neurons.
    RNA 04/2007; 13(3):422-9. · 5.09 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is an autosomal recessive neurodegenerative disorder caused by mutations in the cystatin B gene (CSTB) that encodes an inhibitor of several lysosomal cathepsins. An unstable expansion of a dodecamer repeat in the CSTB promoter accounts for the majority of EPM1 disease alleles worldwide. We here describe a novel PCR protocol for detection of the dodecamer repeat expansion. We describe two novel EPM1-associated mutations, c.149G > A leading to the p.G50E missense change and an intronic 18-bp deletion (c.168+1_18del), which affects splicing of CSTB. The p.G50E mutation that affects the conserved QVVAG amino acid sequence critical for cathepsin binding fails to associate with lysosomes. This further supports the previously implicated physiological importance of the CSTB-lysosome association. Expression of CSTB mRNA and protein was markedly reduced in lymphoblastoid cells of the patients irrespective of the mutation type. Patients homozygous for the dodecamer expansion mutation showed 5-10% expression compared to controls. By combining database searches with RT-PCR we identified several alternatively spliced CSTB isoforms. One of these, CSTB2, was also present in mouse and was analyzed in more detail. In real-time PCR quantification, CSTB2 expression was less than 5% of total CSTB expression in all human adult and fetal tissues analyzed. In patients homozygous for the minisatellite mutation, the level of CSTB2 was reduced similarly to that of CSTB implicating regulation from the same promoter. The physiological significance of CSTB2 remains to be determined.
    European Journal of HumanGenetics 02/2007; 15(2):185-93. · 4.32 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative disorders characterized by accumulation of autofluorescent material in many tissues, especially in neurons. Mutations in the CLN8 gene, encoding an endoplasmic reticulum (ER) transmembrane protein of unknown function, underlie NCL phenotypes in humans and mice. The human phenotype is characterized by epilepsy, progressive psychomotor deterioration and visual loss, while motor neuron degeneration (mnd) mice with a Cln8 mutation show progressive motor neuron dysfunction and retinal degeneration. We investigated spatial and temporal expression of Cln8 messenger ribonucleic acid (mRNA) using in situ hybridization, reverse transcriptase polymerase chain reaction (RT-PCR) and northern blotting. Cln8 is ubiquitously expressed at low levels in embryonic and adult tissues. In prenatal embryos Cln8 is most prominently expressed in the developing gastrointestinal tract, dorsal root ganglia (DRG) and brain. In postnatal brain the highest expression is in the cortex and hippocampus. Expression of Cln8 mRNA in the central nervous system (CNS) was also analyzed in the hippocampal electrical kindling model of epilepsy, in which Cln8 expression was rapidly up-regulated in hippocampal pyramidal and granular neurons. Expression of Cln8 in the developing and mature brain suggests roles for Cln8 in maturation, differentiation and supporting the survival of different neuronal populations. The relevance of Cln8 up-regulation in hippocampal neurons of kindled mice should be further explored.
    BMC Neuroscience 02/2005; 6:27. · 3.00 Impact Factor
  • Source
    Antti Aalto
    [show abstract] [hide abstract]
    ABSTRACT: Double-stranded RNA and associated proteins are known to regulate the gene expression of most eukaryotic organisms. These regulation pathways have different components, outcomes and distinct nomenclature depending on the model system, and often they are referred to collectively as RNA silencing. In many cases, RNA-dependent RNA polymerases (RdRPs) are found to be involved in the RNA silencing, but their targets, activities, interaction partners and reaction products remain enigmatic. In the filamentous fungus Neurospora crassa, the RdRP QDE-1 is critical for silencing of transgenes a phenomenon known as quelling. In this thesis the structure, biochemical activities and biological functions of QDE-1 were extensively studied. This dimeric RdRP was shown to possess five distinct catalytic in vitro activities that could be dissected by mutagenesis and by altering reaction conditions. The biochemical characterization implied that QDE-1 is actually an active DNA-dependent RNA polymerase that has additional RdRP activity. It also provided a structural explanation for the dimerization and suggested a biological framework for the functions of QDE-1 in vivo. (I) QDE-1 was also studied in a broader context along with the other components of the quelling pathway. It was shown that DNA damage in Neurospora causes a dramatic increase in the expression level of the Argonaute protein QDE-2 as well as the synthesis of a novel class of small RNAs known as qiRNAs. The accumulation of qiRNAs was shown to be dependent on several quelling components, and particularly to be derived from an aberrant ssRNA (aRNA) molecule that is synthesized by QDE-1 in the nucleus. The genomic distribution of qiRNA targets was analyzed and the possible biological significance of qiRNAs was studied. Importantly, qiRNAs are the first class of small RNAs that are induced by DNA damage. (II) After establishing that QDE-1 is a multifunctional RNA polymerase with several activities, template specificities and subcellular locations, the focus was turned onto its interaction partners. It had been previously known that QDE-1 associates with Replication Protein A (RPA), but the RecQ helicase QDE-3 was now shown to regulate this interaction. RPA was also observed to promote QDE-1 dependent dsRNA synthesis in vitro. By characterizing the interplay between QDE-1, QDE-3 and RPA, a working model of quelling and qiRNA pathways in Neurospora was presented. (III) This work sheds light on the complexity of the various RNA silencing pathways of a fungal model system. It shows how an RdRP can regulate gene expression on many levels, and suggests novel lines of research in other eukaryotic organisms. Solun normaali toiminta perustuu erilaisten proteiinimolekyylien oikeaan määrään, rakenteeseen sekä aktiivisuuteen. Geenit sisältävät ohjeet proteiinien synteesiin, mutta geenien ilmentymistä säätelee valtavan monimutkainen ja yhä laajalti tuntematon biokemiallinen verkosto. Vasta hiljattain on ymmärretty, että erilaiset RNA-molekyylit ohjaavat geenien ilmentymistä useimmissa eliöissä. Etenkin kaksijuosteisen RNA:n on havaittu säätelevän toisten RNA-molekyylien määrää ja aktiivisuutta hyvinkin täsmällisesti. Ilmiötä kutsutaan RNA-tason geneettiseksi hiljentämiseksi, ja se on erittäin hyvin säilynyt aitotumallisten eliöiden evoluutiossa. -- Tässä työssä tutkitaan Neurospora crassa sienestä eristettyä QDE-1 proteiinia, joka on RNA:ta templaattinaan käyttävä RNA-polymeraasi (RdRP). QDE-1 on tärkeässä asemassa siirtogeenisten sekä hyppivien elementtien vaimentamisessa. On ajateltu, että QDE-1 tunnistaa siirtogeenisistä alueista peräisin olevat RNA-molekyylit ja muuttaa ne kaksijuosteiseksi RNA:ksi. Tämä kaksijuosteinen RNA prosessoidaan pienemmiksi siRNA-molekyyleiksi, jotka puolestaan ohjaavat siirtogeenisten RNA-molekyylien hajotusta. Väitöskirjassa osoitetaan, että QDE-1:lla on aikaisemmin tunnettujen ominaisuuksien lisäksi monia muita katalyyttisia aktiivisuuksia. Näistä tärkein on DNA:sta riippuvainen RNA-polymeraasiaktiivisuus (DdRP), joka osoittautui aiemmin tunnettua RdRP-aktiivisuutta paljon merkittävämmäksi. Lisäksi havaittiin, että QDE-1 aktivoituu solun DNA:n vaurioituessa ja että tämä aktivoituminen johtaa uudentyyppisten pienten RNA-molekyylien (qiRNA) synteesiin. Edelleen osoitettiin, että QDE-1 muodostaa kompleksin kahden muun proteiinin (QDE-3, RPA) kanssa, mikä muokkaa QDE-1:n toimintaa. Väitöskirjassa esitetyt tulokset uudistavat käsitystämme Neurospora crassa sienen geenien ilmentymisen säätelystä. Uuden, väitöskirjassa esitetyn mallin mukaan QDE-1 on aktiivinen soluliman lisäksi myös tumassa. Se voi käyttää templaattinaan sekä DNA:ta että RNA:ta, ja DNA:n vaurioituminen johtaa uudentyyppiseen biokemialliseen vasteeseen. Näillä tuloksilla on merkitystä myös laajemmin, sillä samankaltaisia RNA-polymeraaseja on löydetty miltei kaikista tutkituista aitotumallisista eliöistä. Vastaavat säätelymekanismit saattavat siis vallita myös kasveissa ja eläimissä.