Thomas Rattei

University of Vienna, Wien, Vienna, Austria

Are you Thomas Rattei?

Claim your profile

Publications (87)608.75 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Nitrospira are chemolithoautotrophic nitrite-oxidizing bacteria that catalyze the second step of nitrification in most oxic habitats and are important for excess nitrogen removal from sewage in wastewater treatment plants (WWTPs). To date, little is known about their diversity and ecological niche partitioning within complex communities. In this study, the fine-scale community structure and function of Nitrospira was analyzed in two full-scale WWTPs as model ecosystems. In Nitrospira-specific 16S rRNA clone libraries retrieved from each plant, closely related phylogenetic clusters (16S rRNA identities between clusters ranged from 95.8% to 99.6%) within Nitrospira lineages I and II were found. Newly designed probes for fluorescence in situ hybridization (FISH) allowed the specific detection of several of these clusters, whose coexistence in the WWTPs was shown for prolonged periods of several years. In situ ecophysiological analyses based on FISH, relative abundance and spatial arrangement quantification, as well as microautoradiography revealed functional differences of these Nitrospira clusters regarding the preferred nitrite concentration, the utilization of formate as substrate and the spatial coaggregation with ammonia-oxidizing bacteria as symbiotic partners. Amplicon pyrosequencing of the nxrB gene, which encodes subunit beta of nitrite oxidoreductase of Nitrospira, revealed in one of the WWTPs as many as 121 species-level nxrB operational taxonomic units with highly uneven relative abundances in the amplicon library. These results show a previously unrecognized high diversity of Nitrospira in engineered systems, which is at least partially linked to niche differentiation and may have important implications for process stability.
    The ISME Journal 08/2014; · 8.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Garra barreimiae is a cyprinid fish from the southeastern Arabian Peninsula, which inhabits regularly desiccating wadis and survives in isolated ponds or underground. In 1984 a cave-dwelling population was found in the Al Hoota cave system and previous genetic analyses revealed some differentiation with limited gene flow between the surface populations and the cave population. Since no suitable markers are available for evaluation of gene flow between the cave population and the adjacent surface populations, we focused on designing and establishing novel microsatellite markers from next generation sequencing data.
    BMC Research Notes 08/2014; 7(1):522.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gene loss, gain, and transfer play an important role in shaping the genomes of all organisms, however the interplay of these processes in isolated populations, such as in obligate intracellular bacteria, is less understood. Despite a general trend towards genome reduction in these microbes, our phylogenomic analysis of the phylum Chlamydiae revealed that within the family Parachlamydiaceae gene family expansions have had pronounced effects on gene content. We discovered that the largest gene families within the phylum are the result of rapid gene birth-and-death evolution. These large gene families are comprised of members harboring eukaryotic-like ubiquitination related domains, such as F-box and BTB-box domains, marking the largest reservoir of these proteins found among bacteria. A heterologous type III secretion system assay suggests that these proteins function as effectors manipulating the host cell. The large disparity in copy number of members in these families between closely related organisms suggests that non-adaptive processes might contribute to the evolution of these gene families. Gene birth-and-death evolution in concert with genomic drift might represent a previously undescribed mechanism by which isolated bacterial populations diversify.
    Molecular Biology and Evolution 07/2014; · 10.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A combinatory approach using metabolomics and gut microbiome analysis techniques was performed to unravel the nature and specificity of metabolic profiles related to gut ecology in obesity. This study focused on gut and liver metabolomics of two different mouse strains, the C57BL/6J (C57J) and the C57BL/6N (C57N) fed with high-fat diet (HFD) for 3 weeks, causing diet-induced obesity in C57N, but not in C57J mice. Furthermore, a 16S-ribosomal RNA comparative sequence analysis using 454 pyrosequencing detected significant differences between the microbiome of the two strains on phylum level for Firmicutes, Deferribacteres and Proteobacteria that propose an essential role of the microbiome in obesity susceptibility. Gut microbial and liver metabolomics were followed by a combinatory approach using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and ultra performance liquid chromatography time of tlight MS/MS with subsequent multivariate statistical analysis, revealing distinctive host and microbial metabolome patterns between the C57J and the C57N strain. Many taurine-conjugated bile acids (TBAs) were significantly elevated in the cecum and decreased in liver samples from the C57J phenotype likely displaying different energy utilization behavior by the bacterial community and the host. Furthermore, several metabolite groups could specifically be associated with the C57N phenotype involving fatty acids, eicosanoids and urobilinoids. The mass differences based metabolite network approach enabled to extend the range of known metabolites to important bile acids (BAs) and novel taurine conjugates specific for both strains. In summary, our study showed clear alterations of the metabolome in the gastrointestinal tract and liver within a HFD-induced obesity mouse model in relation to the host-microbial nutritional adaptation.The ISME Journal advance online publication, 6 June 2014; doi:10.1038/ismej.2014.79.
    The ISME Journal 06/2014; · 8.95 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Computer-assisted studies of structure, function, and evolution of viruses remains a neglected area of research. The attention of bioinformaticians to this interesting and challenging field is far from commensurate with its medical and biotechnological importance. It is very telling that out of over 200 talks held at ISMB 2013, the largest international bioinformatics conference, only one presentation explicitly dealt with viruses. In contrast to many broad, established and well organized bioinformatics communities (e.g. structural genomics, ontologies, next-generation sequencing, expression analysis), research groups focusing on viruses can probably be counted on the fingers of two hands. The purpose of this review is to increase awareness among bioinformatics researchers about the pressing needs and unsolved problems of computational virology. We focus primarily on RNA viruses that pose problems to many standard bioinformatics analyses due to their compact genome organization, fast mutation rate, and low evolutionary conservation. We provide an overview of tools and algorithms for handling viral sequencing data, detecting functionally important RNA structures, classifying viral proteins into families, and investigating the origin and evolution of viruses.
    Bioinformatics 03/2014; · 5.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A phylogenetic and metagenomic study of elephant feces samples (derived from a three-weeks-old and a six-years-old Asian elephant) was conducted in order to describe the microbiota inhabiting this large land-living animal. The microbial diversity was examined via 16S rRNA gene analysis. We generated more than 44,000 GS-FLX+454 reads for each animal. For the baby elephant, 380 operational taxonomic units (OTUs) were identified at 97% sequence identity level; in the six-years-old animal, close to 3,000 OTUs were identified, suggesting high microbial diversity in the older animal. In both animals most OTUs belonged to Bacteroidetes and Firmicutes. Additionally, for the baby elephant a high number of Proteobacteria was detected. A metagenomic sequencing approach using Illumina technology resulted in the generation of 1.1 Gbp assembled DNA in contigs with a maximum size of 0.6 Mbp. A KEGG pathway analysis suggested high metabolic diversity regarding the use of polymers and aromatic and non-aromatic compounds. In line with the high phylogenetic diversity, a surprising and not previously described biodiversity of glycoside hydrolase (GH) genes was found. Enzymes of 84 GH families were detected. Polysaccharide utilization loci (PULs), which are found in Bacteroidetes, were highly abundant in the dataset; some of these comprised cellulase genes. Furthermore the highest coverage for GH5 and GH9 family enzymes was detected for Bacteroidetes, suggesting that bacteria of this phylum are mainly responsible for the degradation of cellulose in the Asian elephant. Altogether, this study delivers insight into the biomass conversion by one of the largest plant-fed and land-living animals.
    PLoS ONE 01/2014; 9(9):e106707. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: PCR-ribotyping, a typing method based on size variation in 16S-23S rRNA intergenic spacer region (ISR), has been used widely for molecular epidemiological investigations of C. difficile infections. In the present study, we describe the sequence diversity of ISRs from 43 C. difficile strains, representing different PCR-ribotypes and suggest homologous recombination as a possible mechanism driving the evolution of 16S-23S rRNA ISRs. ISRs of 45 different lengths (ranging from 185 bp to 564 bp) were found among 458 ISRs. All ISRs could be described with one of the 22 different structural groups defined by the presence or absence of different sequence modules; tRNAAla genes and different combinations of spacers of different lengths (33 bp, 53 bp or 20 bp) and 9 bp direct repeats separating the spacers. The ISR structural group, in most cases, coincided with the sequence length. ISRs that were of the same lengths had also very similar nucleotide sequence, suggesting that ISRs were not suitable for discriminating between different strains based only on the ISR sequence. Despite large variations in the length, the alignment of ISR sequences, based on the primary sequence and secondary structure information, revealed many conserved regions which were mainly involved in maturation of pre-rRNA. Phylogenetic analysis of the ISR alignment yielded strong evidence for intra- and inter-homologous recombination which could be one of the mechanisms driving the evolution of C. difficile 16S-23S ISRs. The modular structure of the ISR, the high sequence similarities of ISRs of the same sizes and the presence of homologous recombination also suggest that different copies of C. difficile 16S-23S rRNA ISR are evolving in concert.
    PLoS ONE 01/2014; 9(9):e106545. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Paenibacillus sp. P22 is a Gram-negative facultative anaerobic endospore-forming bacterium isolated from poplar hybrid 741 (♀[Populus alba × (P. davidiana + P. simonii) × P. tomentosa]). This bacterium shows strong similarities to Paenibacillus humicus, and important growth-promoting effects on in vitro grown explants of poplar hybrid 741 have been described.
    Genome announcements. 01/2014; 2(2).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Listeria monocytogenes, a gram-positive pathogen, and causative agent of listeriosis, has become a widely used model organism for intracellular infections. Recent studies have identified small non-coding RNAs (sRNAs) as important factors for regulating gene expression and pathogenicity of L. monocytogenes. Increased speed and reduced costs of high throughput sequencing (HTS) techniques have made RNA sequencing (RNA-Seq) the state-of-the-art method to study bacterial transcriptomes. We created a large transcriptome dataset of L. monocytogenes containing a total of 21 million reads, using the SOLiD sequencing technology. The dataset contained cDNA sequences generated from L. monocytogenes RNA collected under intracellular and extracellular condition and additionally was size fractioned into three different size ranges from <40 nt, 40-150 nt and >150 nt. We report here, the identification of nine new sRNAs candidates of L. monocytogenes and a reevaluation of known sRNAs of L. monocytogenes EGD-e. Automatic comparison to known sRNAs revealed a high recovery rate of 55%, which was increased to 90% by manual revision of the data. Moreover, thorough classification of known sRNAs shed further light on their possible biological functions. Interestingly among the newly identified sRNA candidates are antisense RNAs (asRNAs) associated to the housekeeping genes purA, fumC and pgi and potentially their regulation, emphasizing the significance of sRNAs for metabolic adaptation in L. monocytogenes.
    PLoS ONE 01/2014; 9(2):e83979. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ancient hominoid genome studies can be regarded by definition as metagenomic analyses since they represent a mixture of both hominoid and microbial sequences in an environment. Here, we report the molecular detection of the oral spirochete Treponema denticola in ancient human tissue biopsies of the Iceman, a 5,300-year-old Copper Age natural ice mummy. Initially, the metagenomic data of the Iceman's genomic survey was screened for bacterial ribosomal RNA (rRNA) specific reads. Through ranking the reads by abundance a relatively high number of rRNA reads most similar to T. denticola was detected. Mapping of the metagenome sequences against the T. denticola genome revealed additional reads most similar to this opportunistic pathogen. The DNA damage pattern of specifically mapped reads suggests an ancient origin of these sequences. The haematogenous spread of bacteria of the oral microbiome often reported in the recent literature could already explain the presence of metagenomic reads specific for T. denticola in the Iceman's bone biopsy. We extended, however, our survey to an Iceman gingival tissue sample and a mouth swab sample and could thereby detect T. denticola and Porphyrimonas gingivalis, another important member of the human commensal oral microflora. Taken together, this study clearly underlines the opportunity to detect disease-associated microorganisms when applying metagenomics- enabled approaches on datasets of ancient human remains.
    PLoS ONE 01/2014; 9(6):e99994. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With the increasing availability of various 'omics data, high-quality orthology assignment is crucial for evolutionary and functional genomics studies. We here present the fourth version of the eggNOG database (available at http://eggnog.embl.de) that derives nonsupervised orthologous groups (NOGs) from complete genomes, and then applies a comprehensive characterization and analysis pipeline to the resulting gene families. Compared with the previous version, we have more than tripled the underlying species set to cover 3686 organisms, keeping track with genome project completions while prioritizing the inclusion of high-quality genomes to minimize error propagation from incomplete proteome sets. Major technological advances include (i) a robust and scalable procedure for the identification and inclusion of high-quality genomes, (ii) provision of orthologous groups for 107 different taxonomic levels compared with 41 in eggNOGv3, (iii) identification and annotation of particularly closely related orthologous groups, facilitating analysis of related gene families, (iv) improvements of the clustering and functional annotation approach, (v) adoption of a revised tree building procedure based on the multiple alignments generated during the process and (vi) implementation of quality control procedures throughout the entire pipeline. As in previous versions, eggNOGv4 provides multiple sequence alignments and maximum-likelihood trees, as well as broad functional annotation. Users can access the complete database of orthologous groups via a web interface, as well as through bulk download.
    Nucleic Acids Research 12/2013; · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The phyla Planctomycetes, Verrucomicrobia, Chlamydiae, and Lentisphaerae, Poribacteria and OP3 comprise bacteria that share a common ancestor but show highly diverse biological and ecological features. Together they constitute the PVC superphylum. Using large scale comparative genome sequence analysis we identified a protein uniquely shared among all known members of the PVC superphylum. We provide evidence that this signature protein is expressed by representative members of the PVC superphylum. Its predicted structure, physicochemical characteristics, overexpression in E. coli and gel retardation assays with purified signature protein suggest a housekeeping function with unspecific DNA/RNA binding activity. Phylogenetic analysis demonstrated that the signature protein is a suitable phylogenetic marker for members of the PVC superphylum, and the screening of published metagenome data indicated the existence of additional PVC members. This study provides further evidence for a common evolutionary history of the PVC superphylum and presents a unique case in which a single protein serves as an evolutionary link between otherwise highly diverse members of major bacterial groups.
    Applied and Environmental Microbiology 11/2013; · 3.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Similarity Matrix of Proteins (SIMAP, http://mips.gsf.de/simap/) database has been designed to massively accelerate computationally expensive protein sequence analysis tasks in bioinformatics. It provides pre-calculated sequence similarities interconnecting the entire known protein sequence universe, complemented by pre-calculated protein features and domains, similarity clusters and functional annotations. SIMAP covers all major public protein databases as well as many consistently re-annotated metagenomes from different repositories. As of September 2013, SIMAP contains >163 million proteins corresponding to ∼70 million non-redundant sequences. SIMAP uses the sensitive FASTA search heuristics, the Smith-Waterman alignment algorithm, the InterPro database of protein domain models and the BLAST2GO functional annotation algorithm. SIMAP assists biologists by facilitating the interactive exploration of the protein sequence universe. Web-Service and DAS interfaces allow connecting SIMAP with any other bioinformatic tool and resource. All-against-all protein sequence similarity matrices of project-specific protein collections are generated on request. Recent improvements allow SIMAP to cover the rapidly growing sequenced protein sequence universe. New Web-Service interfaces enhance the connectivity of SIMAP. Novel tools for interactive extraction of protein similarity networks have been added. Open access to SIMAP is provided through the web portal; the portal also contains instructions and links for software access and flat file downloads.
    Nucleic Acids Research 10/2013; · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nitrospira are the most widespread and diverse known nitrite-oxidizing bacteria and key nitrifiers in natural and engineered ecosystems. Nevertheless, their ecophysiology and environmental distribution are understudied due to the recalcitrance of Nitrospira to cultivation and the lack of a molecular functional marker, which would allow the detection of Nitrospira in the environment. Here we introduce nxrB, the gene encoding subunit beta of nitrite oxidoreductase, as a functional and phylogenetic marker for Nitrospira. Phylogenetic trees based on nxrB of Nitrospira were largely congruent to 16S rRNA-based phylogenies. By using new nxrB-selective PCR primers, we obtained almost full-length nxrB sequences from Nitrospira cultures, two activated sludge samples, and several geographically and climatically distinct soils. Amplicon pyrosequencing of nxrB fragments from 16 soils revealed a previously unrecognized diversity of terrestrial Nitrospira with 1,801 detected species-level OTUs (using an inferred species threshold of 95% nxrB identity). Richness estimates ranged from 10 to 946 co-existing Nitrospira species per soil. Comparison to an archaeal amoA dataset obtained from the same soils [Environ. Microbiol. 14: 525-539 (2012)] uncovered that ammonia-oxidizing archaea and Nitrospira communities were highly correlated across the soil samples, possibly indicating shared habitat preferences or specific biological interactions among members of these nitrifier groups.
    Environmental Microbiology 10/2013; · 6.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the era of metagenomics and amplicon sequencing, comprehensive analyses of available sequence data remain a challenge. Here we describe an approach exploiting metagenomic and amplicon data sets from public databases to elucidate phylogenetic diversity of defined microbial taxa. We investigated the phylum Chlamydiae whose known members are obligate intracellular bacteria that represent important pathogens of humans and animals, as well as symbionts of protists. Despite their medical relevance, our knowledge about chlamydial diversity is still scarce. Most of the nine known families are represented by only a few isolates, while previous clone library-based surveys suggested the existence of yet uncharacterized members of this phylum. Here we identified more than 22 000 high quality, non-redundant chlamydial 16S rRNA gene sequences in diverse databases, as well as 1900 putative chlamydial protein-encoding genes. Even when applying the most conservative approach, clustering of chlamydial 16S rRNA gene sequences into operational taxonomic units revealed an unexpectedly high species, genus and family-level diversity within the Chlamydiae, including 181 putative families. These in silico findings were verified experimentally in one Antarctic sample, which contained a high diversity of novel Chlamydiae. In our analysis, the Rhabdochlamydiaceae, whose known members infect arthropods, represents the most diverse and species-rich chlamydial family, followed by the protist-associated Parachlamydiaceae, and a putative new family (PCF8) with unknown host specificity. Available information on the origin of metagenomic samples indicated that marine environments contain the majority of the newly discovered chlamydial lineages, highlighting this environment as an important chlamydial reservoir.The ISME Journal advance online publication, 15 August 2013; doi:10.1038/ismej.2013.142.
    The ISME Journal 08/2013; · 8.95 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Based on phylogenetic analyses and gene distribution patterns of a few complete genomes, a new distinct phylum within the Archaea, the Thaumarchaeota, has recently been proposed. Here we present analyses of six archaeal fosmid sequences derived from a microbial hot spring community in Kamchatka. The phylogenetic analysis of informational components (ribosomal RNAs and proteins) reveals two major (hyper-)thermophilic clades ("Hot Thaumarchaeota-related Clade" 1 and 2, HTC1 and HTC2) related to Thaumarchaeota, representing either deep branches of this phylum or a new archaeal phylum and provides information regarding the ancient evolution of Archaea and their evolutionary links with Eukaryotes.
    Research in Microbiology 03/2013; · 2.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: The Amoebozoa constitute one of the primary divisions of eukaryotes encompassing taxa of both biomedical and evolutionary importance, yet its genomic diversity remains largely unsampled. Here we present an analysis of a whole genome assembly of Acanthamoeba castellanii (Ac) the first representative from a solitary free-living amoebozoan. RESULTS: Ac encodes 15,455 compact intron rich genes a significant number of which are predicted to have arisen through interkingdom lateral gene transfer (LGT). A majority of the LGT candidates have undergone a substantial degree of intronization and Ac appears to have incorporated them into established transcriptional programs. Ac manifests a complex signaling and cell communication repertoire including a complete tyrosine kinase signaling toolkit and a comparable diversity of predicted extracellular receptors to that found in the facultatively multicellular dictyostelids. An important environmental host of a diverse range of bacteria and viruses, Ac utilizes a diverse repertoire of predicted pattern recognition receptors many with predicted orthologous functions in the innate immune systems of higher organisms. CONCLUSIONS: Our analysis highlights the important role of LGT in the biology of Ac and in the diversification of microbial eukaryotes. The early evolution of a key signaling facility implicated in the evolution of metazoan multicellularity strongly argues for its emergence early in the Unikont lineage. Overall the availability of an Ac genome should aid in deciphering the biology of the Amoebozoa and facilitate functional genomic studies in this important model organism and environmental host.
    Genome biology 02/2013; 14(2):R11. · 10.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In marine systems, nitrate is the major reservoir of inorganic fixed nitrogen. The only known biological nitrate-forming reaction is nitrite oxidation, but despite its importance, our knowledge of the organisms catalyzing this key process in the marine N-cycle is very limited. The most frequently encountered marine NOB are related to Nitrospina gracilis, an aerobic chemolithoautotrophic bacterium isolated from ocean surface waters. To date, limited physiological and genomic data for this organism were available and its phylogenetic affiliation was uncertain. In this study, the draft genome sequence of N. gracilis strain 3/211 was obtained. Unexpectedly for an aerobic organism, N. gracilis lacks classical reactive oxygen defense mechanisms and uses the reductive tricarboxylic acid cycle for carbon fixation. These features indicate microaerophilic ancestry and are consistent with the presence of Nitrospina in marine oxygen minimum zones. Fixed carbon is stored intracellularly as glycogen, but genes for utilizing external organic carbon sources were not identified. N. gracilis also contains a full gene set for oxidative phosphorylation with oxygen as terminal electron acceptor and for reverse electron transport from nitrite to NADH. A novel variation of complex I may catalyze the required reverse electron flow to low-potential ferredoxin. Interestingly, comparative genomics indicated a strong evolutionary link between Nitrospina, the nitrite-oxidizing genus Nitrospira, and anaerobic ammonium oxidizers, apparently including the horizontal transfer of a periplasmically oriented nitrite oxidoreductase and other key genes for nitrite oxidation at an early evolutionary stage. Further, detailed phylogenetic analyses using concatenated marker genes provided evidence that Nitrospina forms a novel bacterial phylum, for which we propose the name Nitrospinae.
    Frontiers in Microbiology 01/2013; 4:27. · 3.90 Impact Factor

Publication Stats

3k Citations
608.75 Total Impact Points

Institutions

  • 2004–2014
    • University of Vienna
      • • Department für Computational Systems Biology
      • • Department of Microbial Ecology
      Wien, Vienna, Austria
  • 2013
    • Universität Konstanz
      Constance, Baden-Württemberg, Germany
  • 2011
    • Computational Systems Biology
      Rovereto, Trentino-Alto Adige, Italy
  • 2004–2011
    • Technische Universität München
      • Lehrstuhl für Tierökologie
      München, Bavaria, Germany
  • 2010
    • University of Zurich
      • Institute for Food Safety and Hygiene
      Zürich, ZH, Switzerland
  • 2009
    • Helmholtz-Zentrum für Umweltforschung
      • Department of Proteomics
      Leipzig, Saxony, Germany
  • 2007
    • Universität zu Lübeck
      Lübeck Hansestadt, Schleswig-Holstein, Germany