Rafal Luchowski

University of North Texas HSC at Fort Worth, Fort Worth, Texas, United States

Are you Rafal Luchowski?

Claim your profile

Publications (54)156.57 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bovine serum albumin (BSA) protected nanoclusters (Au and Ag) represent a group of nanomaterials that holds great promise in biophysical applications due to their unique fluorescence properties and lack of toxicity. These metal nanoclusters have utility in a variety of disciplines including catalysis, biosensing, photonics, imaging and molecular electronics. However, they suffer from several disadvantages such as low fluorescence quantum efficiency (typically near 6%) and broad emission spectrum (540 nm to 800 nm). We describe an approach to enhance the apparent brightness of BSA Au clusters by linking them with a high extinction donor organic dye pacific blue (PB). In this conjugate PB acts as a donor to BSA Au clusters and enhances its brightness by resonance energy transfer (RET). We found that the emission of BSA Au clusters can be enhanced by a magnitude of two-fold by resonance energy transfer (RET) from the high extinction donor PB, and BSA Au clusters can act as an acceptor to nanosecond lifetime organic dyes. By pumping the BSA Au clusters using a high extinction donor, one can increase the effective brightness of less bright fluorophores like BSA Au clusters. Moreover, we prepared another conjugate of BSA Au clusters with the near infrared (NIR) dye Dylight 750 (Dy750), where BSA Au clusters act as a donor to Dy750. We observed that BSA Au clusters can function as a donor, showing 46% transfer efficiency to the NIR dye Dy750 with a long lifetime component in the acceptor decay through RET. Such RET-based probes can be used to prevent the problems of a broad emission spectrum associated with the BSA Au clusters. Moreover, transferring energy from BSA Au clusters to Dy750 will result in a RET probe with a narrow emission spectrum and long lifetime component which can be utilized in imaging applications.
    Nanoscale 11/2013; · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we analyzed multibilayer lipid-protein membranes composed of the photosynthetic light-harvesting complex II (LHCII; isolated from spinach [Spinacia oleracea]) and the plant lipids monogalcatosyldiacylglycerol and digalactosyldiacylglycerol. Two types of pigment-protein complexes were analyzed: those isolated from dark-adapted leaves (LHCII) and those from leaves preilluminated with high-intensity light (LHCII-HL). The LHCII-HL complexes were found to be partially phosphorylated and contained zeaxanthin. The results of the x-ray diffraction, infrared imaging microscopy, confocal laser scanning microscopy, and transmission electron microscopy revealed that lipid-LHCII membranes assemble into planar multibilayers, in contrast with the lipid-LHCII-HL membranes, which form less ordered structures. In both systems, the protein formed supramolecular structures. In the case of LHCII-HL, these structures spanned the multibilayer membranes and were perpendicular to the membrane plane, whereas in LHCII, the structures were lamellar and within the plane of the membranes. Lamellar aggregates of LHCII-HL have been shown, by fluorescence lifetime imaging microscopy, to be particularly active in excitation energy quenching. Both types of structures were stabilized by intermolecular hydrogen bonds. We conclude that the formation of trans-layer, rivet-like structures of LHCII is an important determinant underlying the spontaneous formation and stabilization of the thylakoid grana structures, since the lamellar aggregates are well suited to dissipate excess energy upon overexcitation.
    The Plant Cell 06/2013; 25(6):2155-70. · 9.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this report, we investigated the so-called plasmonic platforms prepared to target ultra-short fluorescence and accurate instrumental response function in a time-domain spectroscopy and microscopy. The interaction of metallic nanoparticles with nearby fluorophores results in the increase of the dye fluorescence quantum yield, photostability and decrease of the lifetime parameter. The mentioned properties of platforms were applied to achieve a picosecond fluorescence lifetime (21 ps) of erythrosin B, used later as a better choice for deconvolution of fluorescence decays measured with “color” sensitive photo-detectors. The ultra-short fluorescence standard based on combination of thin layers of silver film, silver colloidal nanoparticles (about 60 nm in diameter), and top layer of erythrosin B embedded in 0.2 % poly(vinyl) alcohol. The response functions were monitored on two photo-detectors; microchannel plate photomultiplier and single photon avalanche photodiode as a Rayleigh scattering and ultra-short fluorescence. We demonstrated that use of the plasmonic base fluorescence standard as an instrumental response function results in the absence of systematic error in lifetime measurements and analysis.
    Journal of Nanoparticle Research. 06/2013; 15(6):1-12.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Of the many optical bioassays available, sensing by fluorescence anisotropy have great advantages as it provides a sensitive, instrumentally simple, ratiometric method of detection. However, it is hampered by a severe limitation as the emission lifetime of the label needs to be comparable to the correlation lifetime (tumbling time) of the biomolecule which is labelled. For proteins of moderate size this is in the order of 20-200 ns, which due to practical issues currently limits the choice of labels to the dansyl-type dyes and certain aromatics dyes. These have the significant drawback of UV/blue absorption and emission as well as an often significant solvent sensitivity. Here, we report the synthesis and characterization of a new fluorescent label for high molecular weight biomolecules assay based on the azadioxatriangulenium motif. The NHS ester of the long fluorescence lifetime, red emitting fluorophore: azadioxatriangulenium (ADOTA-NHS) was conjugated to anti-rabbit Immunoglobulin G (antiIgG). The long fluorescence lifetime was exploited to determine the correlation time of the high molecular weight antibody and its complex with rabbit Immuniglobulin G (IgG) with steady-state fluorescence anisotropy and time-resolved methods: solution phase immuno-assay was performed following either steady-state or time-resolved fluorescence anisotropy. By performing a variable temperature experiment it was determined that the binding of the ligand resulted in an increase in correlation time by more than 75 %, and a change in the steady-state anisotropy increase of 18%. The results show that the triangulenium class of dyes can be used in anisotropy assay for detecting binding events involving biomolecules of far larger size than what is possible with the other red emitting organic dyes.
    Methods and applications in fluorescence. 01/2013; 1(2):25001.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous observations made by our laboratory indicate that the presence of anti-IL-8 autoantibody:IL-8 immune complexes in lung fluids from patients with acute lung injury / acute respiratory distress syndrome (ALI/ARDS) is an important prognostic indicator of the development and ultimate outcome of ALI/ARDS. We also showed that these complexes display pro-inflammatory activity towards neutrophils through engagement of FcγRIIa receptors. Because sepsis is one of the most common risk factors for ALI/ARDS, the initial goal of our current study was to investigate effect of lipopolysaccharide (LPS) on expression of FcγRIIa receptors in neutrophils. Our results indicate that LPS triggers an increase in expression of FcγRIIa on the neutrophil surface, and this leads to shortening of the molecular distance between FcγRIIa and TLR4. When such neutrophils are stimulated with anti-IL-8:IL-8 complexes the TLR4 cascade becomes activated via the engagement of FcγRIIa. The underlying molecular mechanism has been subsequently examined and involves Bruton's tyrosine kinase (Btk). In conclusion, our study reveals existence of Btk dependent molecular cooperation between FcγRIIa and TLR4 signaling cascades in LPS "primed" human neutrophils. Furthermore, we have used FRET (Fluorescence Lifetime Imaging) to study the interaction between TLR4 and FcγRIIa in human alveolar neutrophils from patients with ALI/ARDS. The results from these experiments confirm the existence of the molecular cooperation between TLR4 and FcγRIIa.
    American Journal of Respiratory Cell and Molecular Biology 12/2012; · 4.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Overexcitation of the photosynthetic apparatus is potentially dangerous because it can cause oxidative damage. Photoprotection realized via the feedback de-excitation in the pigment-protein light-harvesting complex LHCII, embedded in the chloroplast lipid environment, was studied with use of the steady-state and time-resolved fluorescence spectroscopy techniques. Illumination of LHCII results in the pronounced singlet excitation quenching, demonstrated by decreased quantum yield of the chlorophyll a fluorescence and shortening of the fluorescence lifetimes. Analysis of the 77 K chlorophyll a fluorescence emission spectra reveals that the light-driven excitation quenching in LHCII is associated with the intensity increase of the spectral band in the region of 700 nm, relative to the principal band at 680 nm. The average chlorophyll a fluorescence lifetime at 700 nm changes drastically upon temperature decrease: from 1.04 ns at 300 K to 3.63 ns at 77 K. The results of the experiments lead us to conclude that: (i) the 700 nm band is associated with the inter-trimer interactions which result in the formation of the chlorophyll low-energy states acting as energy traps and non-radiative dissipation centers; (ii) the Arrhenius analysis, supported by the results of the FTIR measurements, suggests that the photo-reaction can be associated with breaking of hydrogen bonds. Possible involvement of photo-isomerization of neoxanthin, reported previously (Biochim. Biophys. Acta 1807 (2011) 1237-1243) in generation of the low-energy traps in LHCII is discussed.
    Biochimica et Biophysica Acta 12/2012; · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amphotericin B (AmB) is a lifesaving polyene antibiotic used widely to treat deep-seated mycoses. Both the pharmaceutical effectiveness as well as toxic side effects depend on molecular organization of the drug. In the present study, we analyzed steady-state fluorescence, fluorescence anisotropy spectra, fluorescence lifetimes, and fluorescence anisotropy decays of AmB in the systems believed to ensure monomeric organization of the drug and in model lipid membranes. The results of the analyses show that in all of the systems studied, the drug appears in, at least, two spectral forms, interpreted as monomeric and aggregated. Spectroscopic and fluorescence lifetime characteristics of both forms are provided. Interpretation of the fluorescence anisotropy spectra of AmB incorporated into liposomes formed with dipalmitoylphosphatidylcholine let us conclude that monomers of the drug are more tightly bound to the lipid membranes as compared to the aggregates and that AmB aggregates destabilize the membrane structure. Structural model analysis, compared to the analysis of spectral shifts, leads to the conclusion that basic constituents of AmB aggregated structure is a tetramer composed of two hydrogen-bond-stabilized dimers, each dimer formed by molecules twisted by ca. 170°. The tetramer itself can span lipid bilayers and can act as a transmembrane ion channel. Specific aggregate formation of AmB has been concluded as a universal and ubiquitous form of molecular organization of the drug. This process is discussed in terms of toxic side effects of AmB.
    Molecular Pharmaceutics 04/2012; 9(5):1511-20. · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amphotericin B (AmB) is a lifesaving polyene antibiotic used widely to treat deep-seated mycoses. Both the pharmaceutical effectiveness as well as toxic side effects depend on molecular organization of the drug. In the present study we analyzed steady-state fluorescence, fluorescence anisotropy spectra, fluorescence lifetimes and fluorescence anisotropy decays of AmB in the systems believed to assure monomeric organization of the drug and in model lipid membranes. The results of the analyses show that in all of the systems studied, the drug appears in, at least, two spectral forms, interpreted as monomeric and aggregated. Spectroscopic and fluorescence lifetime characteristics of both forms are provided. Interpretation of the fluorescence anisotropy spectra of AmB incorporated into liposomes formed with dipalmitoylphosphatidylcholine let conclude that monomers of the drug are more tightly bound to the lipid membranes as compared to the aggregates and that AmB aggregates destabilize the membrane structure. Structural model analysis, compared to the analysis of spectral shifts, leads to the conclusion that basic constituents of AmB aggregated structure is a tetramer composed of two hydrogen-bond-stabilized dimers, each dimer formed by molecules twisted by ca. 170 deg. The tetramer itself can span lipid bilayers and can act as a transmembrane ion channel. Specific aggregate formation of AmB has been concluded as an universal and ubiquitous form of molecular organization of the drug. This process is discussed in terms of toxic side effects of AmB.
    Molecular Pharmaceutics 04/2012; · 4.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Celiac disease (CD) is an immune-mediated disorder affecting genetically predisposed subjects. It is caused by the ingestion of wheat gluten and related prolamins. A final diagnosis for this disease can be obtained by examination of jejunal biopsies. Nevertheless, different analytical approaches have been established to detect the presence of anti-tissue transglutaminase antibodies that represent a serological hallmark of the disease. In this work, we explored a new method for the diagnosis of CD based on the detection of serum anti-transglutaminase antibodies by resonance energy transfer (RET) between donor molecules and acceptor molecules. In particular, we labeled the liver transglutaminase (tTG) enzyme from guinea pig and the rabbit anti-tTG antibodies with a couple of fluorescence probes that are able to make RET if they are located within with Förster distance. We labeled tTG with the fluorescence probe DyLight 594 as donor and the anti-tTG antibodies with the fluorescence probe DyLight 649 as acceptor. However, due to the large size of the formed complex (tTG/anti-tTG), and consequently to the low efficiency energy transfer process between the donor-acceptor molecules, we explored a new experimental approach that allows us to extend the utilizable range of RET between donor:acceptor pairs by using one single molecule as donor and multiple molecules as energy acceptors, instead of using a single acceptor molecule as usually occurs in RET experiments. The obtained results clearly show that the use of one donor and multiacceptor strategy enables for a simple and rapid detection of serum anti-transglutaminase antibodies. In addition, our results point out that it is possible to consider this approach as a new method for a wide variety of analytical assays.
    Analytical Biochemistry 03/2012; 425(1):13-7. · 2.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: D166V point mutation in the ventricular myosin regulatory light chain (RLC) is one of the causes of familial hypertrophic cardiomyopathy (FHC). We show here that the rates of cross-bridge attachment and dissociation are significantly different in isometrically contracting cardiac myofibrils from right ventricle of WT and Tg-D166V mice. To avoid averaging over ensembles of molecules composing muscle fibers, the data was collected from a single molecule. Kinetics were derived by tracking the orientation of a single actin molecule by fluorescence anisotropy. Orientation oscillated between two states, corresponding to the actin-bound and actin-free states of the myosin cross-bridge. The cross-bridge in a wild-type (healthy) heart stayed attached and detached from thin filament on average for 0.7 and 2.7 s, respectively. In FHC heart, these numbers increased to 2.5 and 5.8 s, respectively. These findings suggest that alterations in myosin cross-bridge kinetics associated with D166V mutation of RLC ultimately affect the ability of a heart to efficiently pump the blood.
    Methods in molecular biology (Clifton, N.J.) 01/2012; 875:311-34. · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: LHCII is the largest light-harvesting pigment-protein complex of plants, comprising more than half of photosynthetically active chlorophyll pigments in biosphere. Understanding relationship between the molecular structure of the complex and photophysical processes that undergo in this pigment-protein complex is an aim of numerous current studies. This chapter addresses possibility of the application of single-molecule fluorescence measurements and fluorescence lifetime imaging microscopy (FLIM) in a study of LHCII.
    Methods in molecular biology (Clifton, N.J.) 01/2012; 875:263-9. · 1.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Amphotericin B (AmB) is a polyene antibiotic used to treat deep-seated mycoses. Both the pharmaceutical and toxic activities of AmB depend on the molecular organization of the drug. The fluorescence of AmB has proven to be a powerful technique of studying the drug's association state. In particular, fluorescence lifetime appeared to be sensitive to the formation of AmB dimers and aggregated structures. This paper addresses the application of the fluorescence technique in the study of the molecular organization of AmB, and perspectives on future application of this approach are addressed briefly.
    Methods in molecular biology (Clifton, N.J.) 01/2012; 875:57-65. · 1.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The surface-confined assay format is one of the most convenient detection formats used in many immunoassays. Fluorescence emission from monolayers of dyes requires a strong excitation and good detection system. Such samples are susceptible to artifacts due to background fluorescence from substrates. We demonstrate that using silver nanostructures deposited on the slide substrate can significantly enhance measured fluorescence, reduce unwanted background and increase photostability of the used probes. Using thin layers of polymer doped with fluorescein, we tested two nanostructures--silver island films (SIFs) deposited on glass slides and self-assembled colloidal structures (SACS) deposited on thin silver film. The SACS surfaces show extraordinary fluorescence enhancements: over 100-folds in hot spots. We applied these surfaces for enhanced Alexa488 model immunoassay.
    Methods in molecular biology (Clifton, N.J.) 01/2012; 875:217-29. · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Familial hypertrophic cardiomyopathy (FHC) is a heritable form of cardiac hypertrophy caused by single-point mutations in genes encoding sarcomeric proteins including ventricular myosin regulatory light chain (RLC). FHC often leads to malignant outcomes and sudden cardiac death. The FHC mutations are believed to alter the kinetics of the interaction between actin and myosin resulting in inefficient energy utilization and compromised function of the heart. We studied the effect of the FHC-linked R58Q-RLC mutation on the kinetics of transgenic (Tg)-R58Q cardiac myofibrils. Kinetics was determined from the rate of change of orientation of actin monomers during muscle contraction. Actin monomers change orientation because myosin cross-bridges deliver periodic force impulses to it. An individual impulse (but not time average of impulses) carries the information about the kinetics of actomyosin interaction. To observe individual impulses it was necessary to scale down the experiments to the level of a few molecules. A small population (∼4 molecules) was selected by using (deliberately) inefficient fluorescence labeling and observing fluorescent molecules by a confocal microscope. We show that the kinetic rates are significantly smaller in the contracting cardiac myofibrils from Tg-R58Q mice then in control Tg-wild type (WT). We also demonstrate a lower force per cross-section of muscle fiber in Tg-R58Q versus Tg-WT mice. We conclude that the R58Q mutation-induced decrease in cross-bridge kinetics underlines the mechanism by which Tg-R58Q fibers develop low force and thus compromise the ability of the mutated heart to efficiently pump blood.
    Journal of Theoretical Biology 06/2011; 284(1):71-81. · 2.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present herein a silver nanostructure-assisted sensing platform which consists of a combined structure of Ag nanowire (NW) and nanodot (ND) array. Highly enhanced fluorescence from fluorophore is attributed to a strongly coupled optical near-field interaction between proximately located Ag NW and NDs. We obtained enhanced fluorescence intensity with up to 140 folds, as contrasted from background intensity, reaching a theoretical maximum value. On the other hand, fluorescence lifetime was greatly reduced to 0.27 ns (from 2.17 ns for the same fluorophores without nanostructure). This novel platform can be a promising utility for optical imaging and labeling of biological systems with a great sensitivity.
    Journal of Biomedical Optics 05/2011; 16(5):056008. · 2.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The antioxidant properties of aminobenzamide cysteine (ABZ Cys) makes it a molecule that can potentially be used as a drug in oxidative stress related diseases and delivered in the form of a nanoparticles. Here we have studied the photo-physical properties of ABZ Cys, a fluorescent analogue of a popular antioxidant N-acetyl cysteine (NAC). We have compared ABZ Cys steady state and time-resolved fluorescence properties with its parent compounds anthranilic acid and anthranilamide in solution as well as in poly-vinyl alcohol (PVA) polymer films. ABZ Cys did not show any significant shift in absorption after entrapment in PVA film, but there was a shift towards shorter wavelengths in the emission peak compared to the phosphate buffer solution. Fluorescence lifetimes and quantum yields indicated a slight quenching of ABZ Cys fluorescence in comparison to the cysteine-less parent compounds. We also demonstrated that very low concentrations of ABZ Cys, such as 100 nM, are readily detected by a commercial spectrofluorometer. Hence we have established the possible use of ABZ Cys in biomedical applications.
    Journal of photochemistry and photobiology. B, Biology 03/2011; 102(3):241-5. · 3.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a study of intramuscular motion during contraction of skeletal muscle myofibrils. Myofibrillar actin was labeled with fluorescent dye so that the ratio of fluorescently labeled to unlabeled protein was 1:10(5). Such sparse labeling assured that there was on average only one actin-marker present in the focus at a given time. From the intensity signal in the two orthogonal detection channels, significant fluctuations, similar to fluorescent burst in diffusion-based single-molecule detection schemes, were identified via a threshold algorithm and analyzed with respect to their intensity and polarization. When only rigor complexes were formed, the fluctuations of polarized intensity were characterized by unimodal Gaussian photon distributions. During contraction, in contrast, bimodal Gaussian photon distributions were observed above the rigor background threshold. This suggests that the bimodal Gaussian photon distributions represent pre- and post-power stroke conformations. Clusters of polarized photons indicated an anisotropy decay of single actomyosin motors of ~9s during muscle contraction. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
    Biochimica et Biophysica Acta 02/2011; 1813(5):858-66. · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We examined the orientational fluctuations of a small number of myosin molecules (approximately three) in working skeletal muscle myofibrils. Myosin light chain 1 (LC1) was labeled with a fluorescent dye and exchanged with the native LC1 of skeletal muscle myofibrils cross-linked with 1-ethyl-3-[3(dimethylamino) propyl] carbodiimide to prevent shortening. We observed a small volume within the A-band (∼10(-15) L) by confocal microscopy, and measured cyclic fluctuations in the orientation of the myosin neck (containing LC1) by recording the parallel and perpendicular components of fluorescent light emitted by the fluorescently labeled myosin LC1. Histograms of orientational fluctuations from fluorescent molecules in rigor were represented by a single Gaussian distribution. In contrast, histograms from contracting muscles were best fit by at least two Gaussians. These results provide direct evidence that cross-bridges in working skeletal muscle assume two distinct conformations, presumably corresponding to the pre- and post-power-stroke states.
    Biophysical Journal 02/2011; 100(4):1024-33. · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper describes a method to significantly enhance single-molecule fluorescence detection in confocal microscopy, demonstrating that fractal-like silver structures significantly improve dye stability and brightness. The experiments compared two immunoassay models based on the deposition of rabbit IgG on silver structures. The experiments were performed with the fluorophore-labeled protein at low picomolar concentrations. Well-separated bright spots were still easily distinguishable. Under standardized conditions we observed increased photostability and brightness enhancement for the dyes that were immobilized on the surface using a primary antibody. In contrast, when the unlabeled primary antibody was immobilized on the surface and the labeled secondary antibody was placed at a larger distance, we observed only a modest enhancement of fluorescence. Furthermore, based on backscattered reflected light images, it was proven that the observed fluorescence enhancements originate from the areas with deposited silver nanostructures. Fractal-like substrates are relatively easy to prepare. We believe that with their superior performance, they should find wide applications in single-molecule studies in which a longer observation time is required.
    Applied Spectroscopy 01/2011; 65(2):174-180. · 1.94 Impact Factor
  • Source
    Rafal Luchowski
    [Show abstract] [Hide abstract]
    ABSTRACT: This Letter concerns two-photon excitation of 2,5-Diphenyloxazole (PPO) upon illumination from a pulsed 532 nm solid state laser, with an average power of 30 mW, and a repetition rate of 20 MHz. A very agreeable emission spectrum position and shape has been achieved for PPO receiving one- and two-photon excitation, which suggests that the same excited state is involved for both excitation modes. Also, a perfect quadratic dependence of laser power in the emission intensity function has been recorded. We tested the application of a small solid state green laser to two-photon induced time-resolved fluorescence, revealing the emission anisotropy of PPO to be considerably higher for two-photon than for one-photon excitation.
    Chemical Physics Letters 01/2011; 501(4-6):572-574. · 2.15 Impact Factor

Publication Stats

208 Citations
156.57 Total Impact Points

Institutions

  • 2008–2013
    • University of North Texas HSC at Fort Worth
      • Department of Molecular Biology and Immunology
      Fort Worth, Texas, United States
    • Maria Curie-Sklodowska University in Lublin
      • Department of Biophysics
      Lublin, Lublin Voivodeship, Poland
  • 2012
    • National Research Council
      • Institute of Protein Biochemistry IBP
      Roma, Latium, Italy
  • 2010
    • V. N. Karazin Kharkiv National University
      • Department of Biological and Medical Physics
      Kharkiv, Kharkivs'ka Oblast', Ukraine
  • 2009
    • University of North Texas
      Denton, Texas, United States