Seung Keun Back

Ewha Womans University, Seoul, Seoul, South Korea

Are you Seung Keun Back?

Claim your profile

Publications (29)103.99 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is increasing epidemiological evidence of an association between childhood obesity and atopic dermatitis, but little is known about the underlying mechanism(s). In the present study, we used a rat model of atopic dermatitis to assess whether juvenile obesity, induced by reduction of litter size, aggravated the signs of atopic dermatitis and, if so, whether this aggravation was associated with changes in plasma concentration of adipokines, such as leptin and adiponectin. Dermatitis was induced by neonatal capsaicin treatment. Body weight, dermatitis score, serum IgE, skin nerve growth factor (NGF), serum leptin and adiponectin, and cytokine mRNA expression in the skin lesion were compared between small (SL, 5 pups) and large litters (LL, 15 pups). The body weight of juvenile rats up to 6 weeks of age was significantly heavier in the SL group, compared with those in the LL group. The SL group showed more robust development of dermatitis, and higher levels of serum IgE and skin NGF than the LL group. Additionally, the SL group demonstrated higher levels of leptin and pro-inflammatory cytokine mRNA but lower levels of adiponectin than the LL group. These results suggest a causal link between a decrease in immunological tolerance, induced by juvenile obesity, and aggravation of atopic dermatitis.
    Allergy, asthma & immunology research 01/2015; 7(1):69-75. · 3.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, we investigated whether a novel compound, 2-(2-(4-((4-chlorophenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethylamino)-N-(3,4,5-trimethoxybenzyl)acetamide (HYP-1), is capable of binding to voltage-gated sodium channels (VGSCs) and evaluated both its inhibitory effect on Na(+) currents of the rat dorsal root ganglia (DRG) sensory neuron and its in vivo analgesic activity using rat models of inflammatory and neuropathic pain. HYP-1 showed not only high affinity for rat sodium channel (site 2), but also potent inhibitory activity against the TTX-R Na(+) currents of the rat DRG sensory neuron. HYP-1 co-injected with formalin (5%, 50μl) under the plantar surface of rat hind paw dose-dependently reduced spontaneous pain behaviors during both the early and late phases. This result was confirmed by c-Fos immunofluorescence in the L4-5 spinal segments. A large number of c-Fos-positive neurons were observed in rat injected with a mixture of formalin and vehicle, but not in rat treated with a mixture of formalin and HYP-1. In addition, the effectiveness of HYP-1 (6 and 60mg/kg, i.p.) in suppression of neuropathic pain, such as mechanical, cold and warm allodynia, induced by rat tail nerve injury was investigated. HYP-1 showed limited selectivity over hERG, N-type and T-type channels. Our present results indicate that HYP-1, as a VGSC blocker, has potential analgesic activities against nociceptive, inflammatory and neuropathic pain.
    Pharmacology Biochemistry and Behavior 07/2012; 103(1):33-42. · 2.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The pathophysiological mechanisms underlying chronic pruritic skin diseases, e.g. atopic dermatitis (AD), and effective therapies remain elusive due to the paucity of animal models. Recently, we rediscovered that injection of capsaicin into rat pups resulted in vigorous scratching behavior and chronically relapsing AD-like cutaneous lesions well into adulthood. To characterize the chronic pruritic dermatitis induced by neonatal capsaicin treatment. Capsaicin (50mg/kg) was given to rat pups subcutaneously within 48 h after birth, and then scratching behavior, dermatitis and pathophysiological changes of rat skin were investigated chronologically. Neonatal capsaicin treatment led to not only severe scratching and cutaneous lesions but also a large number of pathophysiological changes in the skin, such as histopathological changes including the deficiency of epidermal filaggrin expression, increases in the number of mast cells, levels of tissue NGF and Th2 cytokine mRNA, impaired skin barrier function and colonization with S. aureus. In addition, we observed the hyperproduction of serum IgE, which is clinically similar to the pathophysiology seen in the patients with atopic dermatitis. During the follow-up observation, the rats showed the alternative periods of relapsing and remitting skin lesions. Injection of capsaicin into rat pups results in chronically relapsing pruritic dermatitis, similar to human AD. Therefore, we think neonatal capsaicin treatment could be a useful model for studying human AD and for the development of novel therapeutic drugs.
    Journal of dermatological science 05/2012; 67(2):111-9. · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nociceptors are a subset of small primary afferent neurons that respond to noxious chemical, thermal and mechanical stimuli. Ion channels in nociceptors respond differently to noxious stimuli and generate electrical signals in different ways. Anoctamin 1 (ANO1 also known as TMEM16A) is a Ca(2+)-activated chloride channel that is essential for numerous physiological functions. We found that ANO1 was activated by temperatures over 44 °C with steep heat sensitivity. ANO1 was expressed in small sensory neurons and was highly colocalized with nociceptor markers, which suggests that it may be involved in nociception. Application of heat ramps to dorsal root ganglion (DRG) neurons elicited robust ANO1-dependent depolarization. Furthermore, knockdown or deletion of ANO1 in DRG neurons substantially reduced nociceptive behavior in thermal pain models. These results indicate that ANO1 is a heat sensor that detects nociceptive thermal stimuli in sensory neurons and possibly mediates nociception.
    Nature Neuroscience 05/2012; 15(7):1015-21. · 14.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuropathic pain and allodynia may arise from sensitization of central circuits. We report a mechanism of disinhibition-based central sensitization resulting from long-term depression (LTD) of GABAergic interneurons as a consequence of TRPV1 activation in the spinal cord. Intrathecal administration of TRPV1 agonists led to mechanical allodynia that was not dependent on peripheral TRPV1 neurons. TRPV1 was functionally expressed in GABAergic spinal interneurons and activation of spinal TRPV1 resulted in LTD of excitatory inputs and a reduction of inhibitory signaling to spinothalamic tract (STT) projection neurons. Mechanical hypersensitivity after peripheral nerve injury was attenuated in TRPV1(-/-) mice but not in mice lacking TRPV1-expressing peripheral neurons. Mechanical pain was reversed by a spinally applied TRPV1 antagonist while avoiding the hyperthermic side effect of systemic treatment. Our results demonstrate that spinal TRPV1 plays a critical role as a synaptic regulator and suggest the utility of central nervous system-specific TRPV1 antagonists for treating neuropathic pain.
    Neuron 05/2012; 74(4):640-7. · 15.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: N-type Ca2+ channels (Ca(v)2.2) play an important role in the transmission of pain signals to the central nervous system. ω-Conotoxin (CTx)-MVIIA, also called ziconotide (Prialt®), effectively alleviates pain, without causing addiction, by blocking the pores of these channels. Unfortunately, CTx-MVIIA has a narrow therapeutic window and produces serious side effects due to the poor reversibility of its binding to the channel. It would thus be desirable to identify new analgesic blockers with binding characteristics that lead to fewer adverse side effects. Here we identify a new CTx, FVIA, from the Korean Conus Fulmen and describe its effects on pain responses and blood pressure. The inhibitory effect of CTx-FVIA on N-type Ca2+ channel currents was dose-dependent and similar to that of CTx-MVIIA. However, the two conopeptides exhibited markedly different degrees of reversibility after block. CTx-FVIA effectively and dose-dependently reduced nociceptive behavior in the formalin test and in neuropathic pain models, and reduced mechanical and thermal allodynia in the tail nerve injury rat model. CTx-FVIA (10 ng) also showed significant analgesic effects on writhing in mouse neurotransmitter- and cytokine-induced pain models, though it had no effect on acute thermal pain and interferon-γ induced pain. Interestingly, although both CTx-FVIA and CTx-MVIIA depressed arterial blood pressure immediately after administration, pressure recovered faster and to a greater degree after CTx-FVIA administration. The analgesic potency of CTx-FVIA and its greater reversibility could represent advantages over CTx-MVIIA for the treatment of refractory pain and contribute to the design of an analgesic with high potency and low side effects.
    Molecular Pain 12/2010; 6:97. · 3.53 Impact Factor
    This article is viewable in ResearchGate's enriched format
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The vast majority of human peripheral nerve injuries occur in the upper limb, whereas the most animal studies have been conducted using the hindlimb models of neuropathic pain, involving damages of the sciatic or lumbar spinal nerve(s). We attempted to develop a rat forelimb model of peripheral neuropathy by partial injury of the median and ulnar nerves. The halves of each nerve were transected by microscissors at about 5mm proximal from the elbow joint and behavioral signs of neuropathic pain, such as mechanical and cold allodynia, and heat hyperalgesia, were monitored up to 126 days following nerve injury. Mechanical allodynia was assessed by measuring the forepaw withdrawal threshold to von Frey filaments, and cold allodynia was evaluated by measuring the time spent in lifting or licking the forepaw after applying acetone to it. Heat hyperalgesia was also monitored by investigating the forepaw withdrawal latencies using the Hargreaves' test. After the nerve injury, the experimental animals exhibited long-lasting clear neuropathic pain-like behaviors, such as reduced forepaw withdrawal threshold to von Frey filaments, the increased response duration of the forepaw to acetone application, and the decreased withdrawal latency to radiant heat stimulation. These behaviors were significantly alleviated by administration of gabapentin (5 or 50mg/kg, i.p.) in a dose-dependent manner. Therefore, these abnormal sensitivities are interpreted as the signs of neuropathic pain following injury of the median and ulnar nerves. Our rat forelimb model of neuropathic pain may be useful for studying human neuropathic pain and screening for valuable drug candidates.
    European journal of pain (London, England) 10/2010; 15(5):459-66. · 3.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Novel diphenylpiperazine derivatives were synthesized and evaluated for their inhibitory activity against T-type calcium channel by whole-cell patch clamp recordings on HEK293 cells. Among the test compounds, 2 and 3d were effective in decreasing the response to formalin in both the first and second phases and demonstrated antiallodynic effects in a rat model of neuropathic pain.
    Bioorganic & medicinal chemistry 08/2010; 18(16):5938-44. · 2.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Impairment in spinal inhibition caused by quantitative alteration of GABAergic elements following peripheral nerve injury has been postulated to mediate neuropathic pain. In the present study, we tested whether neuropathic pain could be induced or reversed by pharmacologically modulating spinal GABAergic activity, and whether quantitative alteration of spinal GABAergic elements after peripheral nerve injury was related to the impairment of GABAergic inhibition or neuropathic pain. To these aims, we first analyzed the pain behaviors following the spinal administration of GABA antagonists (1 microg bicuculline/rat and 5 microg phaclofen/rat), agonists (1 microg muscimol/rat and 0.5 microg baclofen/rat) or GABA transporter (GAT) inhibitors (20 microg NNC-711/rat and 1 microg SNAP-5114/rat) into naïve or neuropathic animals. Then, using Western blotting, PCR or immunohistochemistry, we compared the quantities of spinal GABA, its synthesizing enzymes (GAD65, 67) and its receptors (GABA(A) and GABA(B)) and transporters (GAT-1, and -3) between two groups of rats with different severity of neuropathic pain following partial injury of tail-innervating nerves; the allodynic and non-allodynic groups. Intrathecal administration of GABA antagonists markedly lowered tail-withdrawal threshold in naïve animals, and GABA agonists or GAT inhibitors significantly attenuated neuropathic pain in nerve-injured animals. However, any quantitative changes in spinal GABAergic elements were not observed in both the allodynic and non-allodynic groups. These results suggest that although the impairment in spinal GABAergic inhibition may play a role in mediation of neuropathic pain, it is not accomplished by the quantitative change in spinal elements for GABAergic inhibition and therefore these elements are not related to the generation of neuropathic pain following peripheral nerve injury.
    Korean Journal of Physiology and Pharmacology 04/2010; 14(2):59-69. · 1.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of novel non-peptide diamide compounds was synthesized and evaluated as antibradykinin agents by utilizing guinea-pig ileum smooth muscle. Among the final compounds, (Z)-4-(4-(bis(4-fluorophenyl)methyl)piperazin-1-yl)-4-oxo-N-(4-phenylbutan-2-yl)but-2-enamide showed most favorable bradykinin inhibitory activity and demonstrated analgesic efficacies in the rat models of inflammatory and neuropathic pain.
    Bioorganic & medicinal chemistry 02/2010; 18(6):2327-36. · 2.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although numerous animal models for low back pain associated with intervertebral disk (IVD) degeneration have been proposed, insufficient data have been provided to make any conclusions regarding pain. Our aim in this study was to determine the reliability of complete Freund's adjuvant (CFA) injection into the rat spine as an animal model representing human discogenic pain. We studied IVD degenerative changes with pain development after a 10-microL CFA injection into the L5-6 IVD of adult rats using behavioral, histologic, and biochemical studies. Serial histologic changes were analyzed to detect degenerative changes. Expression of calcitonin gene-related peptide (CGRP), prostaglandin E (PGE), and inducible nitric oxide synthase (iNOS) were determined using immunohistochemistry or real-time polymerase chain reaction as support data for pain development. In addition, CGRP immunoreactivity (ir) at the IVD was considered indirect evidence of neural ingrowth into the IVD. There was a significant increase of the hindpaw withdrawal response in the CFA group until 7 wk postoperatively (P < 0.05). Histologic analyses revealed progressive degenerative changes of the disks without any damage in adjacent structures, including nerve roots. In the CGRP-ir staining study, the bilateral dorsal horns and IVD had positive ir after intradiscal CFA injection. CGRP mRNA expression was increased in the dorsal root ganglion (DRG) at 2 and 4 wk, whereas PGE and iNOS mRNAs were markedly increased at 2 wk. The increment of CGRP expression was higher in allodynic rats compared with nonallodynic rats. Intradiscal CFA injection led to chronic disk degeneration with allodynia, which was suggested by pain behavior and expression of pain-related mediators. The increment of CGRP, PGE, and iNOS also suggest pain-related signal processing between the IVD and the neural pathway in this animal model. This animal model may be useful for future research related to the pathophysiology and development of novel treatment for spine-related pain.
    Anesthesia and analgesia 10/2009; 109(4):1287-96. · 3.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transient receptor potential vanilloid subtype 1 (TRPV1) and metabotropic glutamate receptor 5 (mGluR5) located on peripheral sensory terminals have been shown to play critical roles in the transduction and modulation of pain sensation. To date, however, very little is known regarding the significance of functional expression of mGluR5 and TRPV1 on the central terminals of sensory neurons in the dorsal horn of the spinal cord. Here we show that TRPV1 on central presynaptic terminals is coupled to mGluR5 in a membrane-delimited manner, thereby contributing to the modulation of nociceptive synaptic transmission in the substantia gelatinosa neurons of the spinal cord. Further, our results demonstrate that TRPV1 is involved in the pain behaviors induced by spinal mGluR5 activation, and diacylglycerol produced by the activation of mGluR5 mediates functional coupling of mGluR5 and TRPV1 on the presynaptic terminals. Thus, mGluR5-TRPV1 coupling on the central presynaptic terminals of nociceptive neurons may be an important mechanism underlying central sensitization under pathological pain conditions.
    Journal of Neuroscience 09/2009; 29(32):10000-9. · 6.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The early postnatal period has been suggested to be the vulnerable time for structural and functional reorganization of sensory systems, and painful stimuli at this time may alter neuronal circuits, thereby leading to changes in an individual's response to pain later in life. In the present study, we examined whether inflammatory experience in the early life can affect pain responses to subsequent noxious insults later in life. The two groups of neonatal rats, treated with an inflammatory irritant and untreated, were subjected to inflammation and peripheral nerve injury in adulthood. Neonatal inflammation was induced by injection of complete Freund's adjuvant (CFA, 25 microl) into the hindpaw or tail of newborn rat pups. Adult rats which had suffered from neonatal paw inflammation at P0 were subjected to re-injection of CFA into the paw neonatally exposed to CFA or L5 spinal nerve ligation. Paw thickness and histology of inflamed paw were examined to assess the neonatal inflammation. Adult animals whose tail had been subjected to CFA injection on P3 received tail-innervating nerve injury. The results showed that the neonatal CFA-treated rats suffered from chronic inflammation, confirmed by persistent increase of paw thickness and histological result of inflamed paw. These animals showed enhanced pain responses to re-inflammatory challenge by injection of CFA (200 microl) into the neonatally inflamed paw 8 weeks after birth compared with the neonatally untreated animals. However, neuropathic pain on the hindpaw and the tail which had been induced by peripheral nerve injury in the neonatal CFA-treated group were not different from those of the untreated group. The present data suggest that early neonatal long-lasting inflammation differentially affects pain responses later in life, depending on the types of subsequent noxious insults.
    International journal of developmental neuroscience: the official journal of the International Society for Developmental Neuroscience 06/2009; 27(3):215-22. · 2.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although deficits in synaptic plasticity have been identified in aged or neuroinflamed animals with memory impairments, few studies have examined the cellular basis of plasticity in such animals. Here, we examined whether chronic neuroinflammation altered long-term depression (LTD) and studied the underlying mechanism of LTD impairment by neuroinflammation. Chronic neuroinflammation was induced by administration of lipopolysaccharide (LPS) to the fourth ventricle. Excitatory postsynaptic potentials were recorded extracellularly in the rat hippocampal CA1 area to examine alterations in synaptic plasticity. Chronic administration of LPS induced remarkable memory impairment in the Morris water maze test. N-methyl-d-aspartate receptor (NMDAR)-dependent LTD was almost absent in LPS-infused animals. The AMPA receptor (AMPAR)-mediated synaptic response was reduced in the LPS-infused group. These results suggest that reduction in NMDAR-dependent LTD might arise because of alterations in postsynaptic AMPARs as well as NMDARs and that such changes may be present in mild and early forms of Alzheimer-type dementia.
    Biochemical and Biophysical Research Communications 04/2009; 383(1):93-7. · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To gain an insight into the developmental characteristics of neuropathic pain induced by peripheral nerve injury during neonatal period, we employed three groups of rats suffering from peripheral nerve injury at different postnatal times, and compared the onset time, severity and persistency of neuropathic pain behaviors, such as mechanical and cold allodynia. The first group (P0 group) was subjected to partial injury of tail-innervating nerves within 24 h after birth, the second group (P10 group) underwent nerve injury at postnatal day (P) 10, and the third group (P60 group) was subjected to injury at P60. Although mechanical allodynia was readily detectable in the P60 group even 1 day after nerve injury, the signs of neuropathic pain were observed from 6 or 8 weeks after nerve injury in the P0 or P10 groups, respectively. Compared with the P60 group, the P0 group showed more robust mechanical and cold allodynia, whereas the P10 group exhibited rather milder pains. In addition, while the P0 and P60 groups showed long-lasting signs of mechanical allodynia, the P10 group exhibited shorter persistency. These results indicate that peripheral nerve injury during neonatal period leads to neuropathic pain with distinct developmental characteristics later in life.
    Neuroscience Research 09/2008; 61(4):412-9. · 2.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic inflammatory and neuropathic pain is often difficult to manage using conventional remedies. The underlying mechanisms and therapeutic strategies required for the management of chronic pain need to be urgently established. The cyclic AMP (cAMP) second messenger system has been implicated in the mechanism of nociception, and the inhibition of the cAMP pathway by blocking the activities of adenylyl cyclase (AC) and protein kinase A has been found to prevent chronic pain in animal models. However, little is known regarding which of the 10 known isoforms of AC are involved in nociceptive pathways. Therefore, we investigated the potential pronociceptive function of AC5 in nociception using recently developed AC5 knockout mice (AC5-/-). We found that AC5-/- mice show markedly attenuated pain-like responses in acute thermal and mechanical pain tests as compared with the wildtype control. Also, AC5-/- mice display hypoalgesic responses to inflammatory pain induced by subcutaneous formalin injection into hindpaws, and to non-inflammatory and inflammatory visceral pain induced by injecting magnesium sulfate or acetic acid into the abdomen. Moreover, AC5-/- mice show strongly suppressed mechanical and thermal allodynia in two nerve injury-induced neuropathic pain models. These results suggest that AC5 is essential for acute and chronic pain, and that AC5 knockout mice provide a useful model for the evaluation of the pathophysiological mechanisms of pain.
    Genes Brain and Behavior 04/2007; 6(2):120-7. · 3.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: TRPV1 is a cation channel which is activated by temperature (> or =42 degrees C) and capsaicin. In the present study, we found a person with total insensitivity to capsaicin and attempted to unravel its causes. The expression levels of TRPV1 protein and mRNA in the cells of the person's buccal mucosa were less than half of those in a normal subject. Sequential analysis of mRNA and genomic DNA revealed several point mutations mostly in the second intron of the person's TRPV1. Interestingly, the subject showed hypersensitivity to garlic extract, but TRPA1 (allicin receptor) level was normal. These results suggest that the decreased expression of TRPV1 may be related to a functional knock out in capsaicin sensation and hypersensitivity to allicin in humans.
    Neuroscience Letters 01/2007; 411(2):87-91. · 2.06 Impact Factor
  • European journal of pain (London, England) 09/2006; 10. · 3.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study investigated whether the loss of spinal mu-opioid receptors following peripheral nerve injury is related to mechanical allodynia. We compared the quantity of spinal mu-opioid receptor and the effect of its antagonists, such as naloxone and CTOP, on pain behaviors in two groups of rats that showed extremely different severity of mechanical allodynia 2 weeks following partial injury of tail-innervating nerves. One group (allodynic group) exhibited robust signs of mechanical allodynia after the nerve injury, whereas the other group (non-allodynic group) showed little allodynia despite having suffered the same nerve injury. In addition, we investigated the quantity of spinal mu-opioid receptor and the effect of its antagonists on pain behaviors after the rats had recovered from mechanical allodynia 16 weeks following nerve injury. Immunohistochemical and Western blot analyses at 2 weeks after nerve injury indicated that spinal mu-opioid receptor content was more reduced in the allodynic group compared to the non-allodynic group. Intraperitoneal naloxone (2 mg/kg, i.p.) and intrathecal CTOP (10 microg/rat, i.t.) administration dramatically induced mechanical allodynia in the non-allodynic group. However, as in naïve animals, neither the loss of spinal mu-opioid receptors nor antagonist-induced mechanical allodynia was observed in the rats that had recovered from mechanical allodynia. These results suggest that the loss of spinal mu-opioid receptors following peripheral nerve injury is related to mechanical allodynia.
    Pain 08/2006; 123(1-2):117-26. · 5.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The dorsal column-medial lemniscal (DC-ML) system is known to be a route of ascending input signals for mechanical allodynia following peripheral nerve injury. We examined whether the pain signals after spinal hemisection were transmitted via the DC-ML system in the induction and maintenance phases of the neuropathic pain. Under enflurane anesthesia, rats were subjected to spinal hemisection at T13 level and bilateral DC lesion was made at T8 level 1 day or 3 weeks after the hemisection. The DC lesion 1 day after the hemisection significantly reduced the mechanical, but not cold, allodynia, whereas the DC lesion 3 weeks after the hemisection did not change both mechanical and cold allodynia. These results suggest that the signals for mechanical allodynia following spinal hemisection should be transmitted via the DC-ML system in the induction, but not maintenance, phase.
    Neuroscience Letters 06/2005; 379(3):218-22. · 2.06 Impact Factor

Publication Stats

334 Citations
103.99 Total Impact Points


  • 2010
    • Ewha Womans University
      • Department of Pharmacy
      Seoul, Seoul, South Korea
  • 2004–2007
    • Korea University
      • • Department of Physiology
      • • Medical Science Research Center
      Seoul, Seoul, United States