Jungwon Seo

Tokyo Medical and Dental University, Edo, Tōkyō, Japan

Are you Jungwon Seo?

Claim your profile

Publications (7)26.84 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Many studies have shown that it is possible to use culture conditions to direct the differentiation of murine embryonic stem (ES) cells into a variety of cell types, including cardiomyocytes and neurons. However, the molecular mechanisms that control lineage commitment decisions by ES cells remain poorly understood. In this study, we investigated the role of the 3 major mitogen-activated protein kinases (MAPKs: extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38) in ES cell lineage commitment and showed that the p38 MAPK-specific inhibitor SB203580 blocks the spontaneous differentiation of ES cells into cardiomyocytes and instead induces the differentiation of these ES cells into neurons. Robust p38 MAPK activity between embryoid body culture days 3 and 4 is crucial for cardiomyogenesis of ES cells, and specific inhibition of p38 MAPK activity at this time results in ES cell differentiation into neurons rather than cardiomyocytes. At the molecular level, inhibition of p38 MAPK activity suppresses the expression of bmp-2 mRNA, whereas treatment of ES cells with bone morphogenetic protein 2 (BMP-2) inhibits the neurogenesis induced by SB203580. Further, luciferase reporter assays and chromatin immunoprecipitation experiments showed that BMP-2 expression in ES cells is regulated directly by the transcription factor myocyte enhancer factor 2C, a well-known substrate of p38 MAPK. Our findings reveal the molecular mechanism by which p38 MAPK activity in ES cells drives their commitment to differentiate preferentially into cardiomyocytes, and the conditions under which these same cells might develop into neurons.
    Stem cells and development 11/2010; 19(11):1723-34. DOI:10.1089/scd.2010.0066 · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stress-induced Sapk/Jnk signaling is involved in cell survival and apoptosis. Recent studies have increased our understanding of the physiological roles of Jnk signaling in embryonic development. However, still unclear is the precise function of Jnk signaling during gastrulation, a critical step in the establishment of the vertebrate body plan. Here we use morpholino-mediated knockdown of the zebrafish orthologs of the Jnk activators Mkk4 and Mkk7 to examine the effect of Jnk signaling abrogation on early vertebrate embryogenesis. Depletion of zebrafish Mkk4b led to abnormal convergent extension (CE) during gastrulation, whereas Mkk7 morphants exhibited defective somitogenesis. Surprisingly, Mkk4b morphants displayed marked upregulation of wnt11, which is the triggering ligand of CE and stimulates Jnk activation via the non-canonical Wnt pathway. Conversely, ectopic activation of Jnk signaling by overexpression of an active form of Mkk4b led to wnt11 downregulation. Mosaic lineage tracing studies revealed that Mkk4b-Jnk signaling suppressed wnt11 expression in a non-cell-autonomous manner. These findings provide the first evidence that wnt11 itself is a downstream target of the Jnk cascade in the non-canonical Wnt pathway. Our work demonstrates that Jnk activation is indispensable for multiple steps during vertebrate body plan formation. Furthermore, non-canonical Wnt signaling may coordinate vertebrate CE movements by triggering Jnk activation that represses the expression of the CE-triggering ligand wnt11.
    Journal of Cellular Biochemistry 07/2010; 110(4):1022-37. DOI:10.1002/jcb.22616 · 3.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: SP600125 is used as a specific inhibitor of c-Jun N-terminal kinase (JNK). We initially aimed to examine physiological roles of JNK in mast cells that play a central role in inflammatory and immediate allergic responses. We found that Fc receptor for IgE (FcepsilonRI)-induced degranulation (serotonin release) and cytokine gene expression [interleukin (IL)-6, tumour necrosis factor-alpha and IL-13] in bone marrow-derived mast cells, were almost completely inhibited by SP600125. However, the time course of FcepsilonRI-induced JNK activation did not correlate with that of serotonin release. Furthermore, FcepsilonRI-induced degranulation and cytokine gene expression were not impaired in a JNK activator, MKK7-deficient mast cells, in which JNK activation was lost. These results indicate that the inhibitory effects by SP600125 are not due to impaired JNK activation. Instead, we found that SP600125 markedly inhibited the FcepsilonRI-induced activation of phosphatidylinositol 3-kinase (PI3K) and Akt, the same as a PI3K inhibitor, wortmannin. Finally, we found that SP600125 specifically inhibits delta form of p110 catalytic subunit (p110delta) of PI3K. Thus, SP600125 exerts its influence on mast cell functions by inhibiting the kinase activity of PI3K, but not JNK.
    Journal of Biochemistry 01/2009; 145(3):345-54. DOI:10.1093/jb/mvn172 · 2.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stress-activated protein kinase/c-Jun NH(2)-terminal kinase (SAPK/JNK), belonging to the mitogen-activated protein kinase family, plays an important role in stress signaling. SAPK/JNK activation requires the phosphorylation of both Thr and Tyr residues in its Thr-Pro-Tyr motif, and SEK1 and MKK7 have been identified as the dual specificity kinases. In this study, we generated mkk7(-/-) mouse embryonic stem (ES) cells in addition to sek1(-/-) cells and compared the two kinases in terms of the activation and phosphorylation of JNK. Although SAPK/JNK activation by various stress signals was markedly impaired in both sek1(-/-) and mkk7(-/-) ES cells, there were striking differences in the dual phosphorylation profile. The severe impairment observed in mkk7(-/-) cells was accompanied by a loss of the Thr phosphorylation of JNK without marked reduction in its Tyr-phosphorylated level. On the other hand, Thr phosphorylation of JNK in sek1(-/-) cells was also attenuated in addition to a decreased level of its Tyr phosphorylation. Analysis in human embryonic kidney 293T cells transfected with a kinase-dead SEK1 or a Thr-Pro-Phe mutant of JNK1 revealed that SEK1-induced Tyr phosphorylation of JNK1 was followed by additional Thr phosphorylation by MKK7. Furthermore, SEK1 but not MKK7 was capable of binding to JNK1 in 293T cells. These results indicate that the Tyr and Thr residues of SAPK/JNK are sequentially phosphorylated by SEK1 and MKK7, respectively, in the stress-stimulated ES cells.
    Journal of Biological Chemistry 06/2003; 278(19):16595-601. DOI:10.1074/jbc.M213182200 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mice lacking the stress-signaling kinase SEK1 die from embryonic day 10.5 (E10.5) to E12.5. Although a defect in liver formation is accompanied with the embryonic lethality of sek1(-/-) mice, the mechanism of the liver defect has remained unknown. In the present study, we first produced a monoclonal antibody specifically recognizing murine hepatoblasts for the analysis of liver development and further investigated genetic interaction ofsek1 with tumor necrosis factor-alpha receptor 1 gene (tnfr1) and protooncogene c-jun, which are also responsible for liver formation and cell apoptosis. The defective liver formation in sek1(-/-) embryos was not protected by additionaltnfr1 mutation, which rescues the embryonic lethality of mice lacking NF-kappaB signaling components. There was a progressive increase in the hepatoblast cell numbers of wild-type embryos from E10.5 to E12.5. Instead, impaired hepatoblast proliferation was observed in sek1(-/-) livers from E10.5, though fetal liver-specific gene expression was normal. The impaired phenotype in sek1(-/-) livers was more severe than in c-jun(-/-) embryos, and sek1(-/-) c-jun(-/-) embryos died more rapidly before E8.5. The hepatoblast proliferation required no hematopoiesis, since liver development was not impaired in AML1(-/-) mice that lack hematopoietic functions. Stimulation of stress-activated protein kinase/c-Jun N-terminal kinase by hepatocyte growth factor was attenuated in sek1(-/-) livers. Thus, SEK1 appears to play a crucial role in hepatoblast proliferation and survival in a manner apparently different from NF-kappaB or c-Jun.
    Developmental Biology 11/2002; 250(2):332-47. DOI:10.1006/dbio.2002.0781 · 3.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ultraviolet (UV) irradiation stimulates stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), which is a member of the mitogen-activated protein kinase (MAPK) superfamily and implicated in stress-induced apoptosis. UV also induces the activation of another MAPK member, extracellular signal-regulated kinase (ERK), which is typically involved in a growth-signaling cascade. However, the UV-induced signaling pathway leading to ERK activation, together with the physiological role, has remained unknown. Here we examined the molecular mechanism and physiological function of UV-induced ERK activation in human epidermoid carcinoma A431 cells that retain a high number of epidermal growth factor (EGF) receptors. UV-induced ERK activation was accompanied with the Tyr phosphorylation of EGF receptors, and both responses were completely abolished in the presence of a selective EGF receptor inhibitor (AG1478) or the Src inhibitor PP2 and by the expression of a kinase-dead Src mutant. On the other hand, SAPK/JNK activation by UV was partially inhibited by these inhibitors. UV stimulated Src activity in a manner similar to the ERK activation, but the Src activation was insensitive to AG1478. UV-induced cell apoptosis measured by DNA fragmentation and caspase 3 activation was enhanced by AG1478 and an ERK kinase inhibitor (U0126) but inhibited by EGF receptor stimulation by the agonist. These results indicate that UV-induced ERK activation, which provides a survival signal against stress-induced apoptosis, is mediated through Src-dependent Tyr phosphorylation of EGF receptors.
    Journal of Biological Chemistry 02/2002; 277(1):366-71. DOI:10.1074/jbc.M107110200 · 4.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK), which is a member of the mitogen-activated protein kinase (MAPK) family, plays an important role in a stress-induced signaling cascade. SAPK/JNK activation requires the phosphorylation of Thr and Tyr residues in its Thr-Pro-Tyr motif, and SEK1 (MKK4) and MKK7 (SEK2) have been identified as the upstream MAPK kinases. Here we examined the activation and phosphorylation sites of SAPK/JNK and differentiated the contribution of SEK1 and MKK7α1, -γ1, and -γ2 isoforms to the MAPK activation. In SEK1-deficient mouse embryonic stem cells, stress-induced SAPK/JNK activation was markedly impaired, and this defect was accompanied with a decreased level of the Tyr phosphorylation. Analysis in HeLa cells co-transfected with the two MAPK kinases revealed that the Thr and Tyr of SAPK/JNK were independently phosphorylated in response to heat shock by MKK7γ1 and SEK1, respectively. However, MKK7α1 failed to phosphorylate the Thr of SAPK/JNK unless its Tyr residue was phosphorylated by SEK1. In contrast, MKK7γ2 had the ability to phosphorylate both Thr and Tyr residues. In all cases, the dual phosphorylation of the Thr and Tyr residues was essentially required for the full activation of SAPK/JNK. These data provide the first evidence that synergistic activation of SAPK/JNK requires both phosphorylation at the Thr and Tyr residues in living cells and that the preference for the Thr and Tyr phosphorylation was different among the members of MAPK kinases.
    Journal of Biological Chemistry 08/2001; 276(33):30892-30897. · 4.57 Impact Factor

Publication Stats

278 Citations
26.84 Total Impact Points


  • 2010
    • Tokyo Medical and Dental University
      • Department of Developmental and Regenerative Biology (Chronobiology)
      Edo, Tōkyō, Japan
  • 2003
    • University of Toronto
      • Department of Medical Biophysics
      Toronto, Ontario, Canada
  • 2002
    • The University of Tokyo
      • Department of Pharmaceutical Sciences
      Edo, Tōkyō, Japan