Emmanuelle Brochiero

Université de Montréal, Montréal, Quebec, Canada

Are you Emmanuelle Brochiero?

Claim your profile

Publications (44)157.44 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Extensive alveolar epithelial injury and remodelling is a common feature of acute lung injury and acute respiratory distress syndrome (ARDS) and it has been established that epithelial regeneration, and secondary lung oedema resorption, is crucial for ARDS resolution. Much evidence indicates that K(+) channels are regulating epithelial repair processes; however, involvement of the KCa3.1 channels in alveolar repair has never been investigated before. Wound-healing assays demonstrated that the repair rates were increased in primary rat alveolar cell monolayers grown on a fibronectin matrix compared to non-coated supports, whereas an anti-β1-integrin antibody reduced it. KCa3.1 inhibition/silencing impaired the fibronectin-stimulated wound-healing rates, as well as cell migration and proliferation, but had no effect in the absence of coating. We then evaluated a putative relationship between KCa3.1 channel and the migratory machinery protein β1-integrin, which is activated by fibronectin. Co-immunoprecipitation and immunofluorescence experiments indicated a link between the two proteins and revealed their cellular co-distribution. In addition, we demonstrated that KCa3.1 channel and β1-integrin membrane expressions were increased on a fibronectin matrix. We also showed increased intracellular calcium concentrations as well as enhanced expression of TRPC4, a voltage-independent calcium channel belonging to the large TRP channel family, on a fibronectin matrix. Finally, wound-healing assays showed additive effects of KCa3.1 and TRPC4 inhibitors on alveolar epithelial repair. Taken together, our data demonstrate for the first time complementary roles of KCa3.1 and TRPC4 channels with extracellular matrix and β1-integrin in the regulation of alveolar repair processes.
    Respiratory research 09/2015; 16(1):100. DOI:10.1186/s12931-015-0263-x · 3.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cystic fibrosis lung disease is characterized by chronic airway infections with the opportunistic pathogen Pseudomonas aeruginosa and severe neutrophilic pulmonary inflammation. P. aeruginosa undergoes extensive genetic adaptation to the cystic fibrosis (CF) lung environment, and adaptive mutations in the quorum sensing regulator gene lasR commonly arise. We sought to define how mutations in lasR alter host-pathogen relationships. We demonstrate that lasR mutants induce exaggerated host inflammatory responses in respiratory epithelial cells, with increased accumulation of proinflammatory cytokines and neutrophil recruitment due to the loss of bacterial protease– dependent cytokine degradation. In subacute pulmonary infections, lasR mutant–infected mice show greater neu-trophilic inflammation and immunopathology compared with wild-type infections. Finally, we observed that CF patients infected with lasR mutants have increased plasma interleukin-8 (IL-8), a marker of inflammation. These findings suggest that bacterial adaptive changes may worsen pulmonary inflammation and directly contribute to the pathogenesis and progression of chronic lung disease in CF patients.
    Science Advances 07/2015; 1(6). DOI:10.1126/sciadv.1500199
  • Claudia Bilodeau · Olivier Bardou · Émilie Maillé · Yves Berthiaume · Emmanuelle Brochiero ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Cystic fibrosis (CF)-related diabetes (CFRD) is associated with faster pulmonary function decline. Thus, we evaluated the impact of hyperglycemia on airway epithelial repair and transepithelial ion transport, which are critical in maintaining lung integrity and function. Non-CF and CF airway epithelial cells were exposed to low (LG) or high (HG) glucose before ion current and wound repair rate measurements. CFTR and K(+) currents decreased after HG treatments. HG also reduced the wound healing rates of non-CF and CF cell monolayers. Although CFTR correction with VRT-325 accelerated the healing rates of CF cells monolayers under LG conditions, this improvement was significantly abrogated under HG conditions. Our data highlights a deleterious impact of hyperglycemia on ion transport and epithelial repair functions, which could contribute to the deterioration in lung function in CFRD patients. HG may also interfere with the beneficial effects of CFTR rescue on airway epithelial repair. Copyright © 2015 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
    Journal of cystic fibrosis: official journal of the European Cystic Fibrosis Society 04/2015; DOI:10.1016/j.jcf.2015.04.002 · 3.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The epithelial response to bacterial airway infection, a common feature of lung diseases such as chronic obstructive pulmonary disease and cystic fibrosis, has been extensively studied. However, its impact on cystic fibrosis transmembrane conductance regulator (CFTR) channel function is not clearly defined. Our aims were, therefore, to evaluate the effect of Pseudomonas aeruginosa on CFTR function and expression in non-cystic fibrosis airway epithelial cells, and to investigate its impact on ΔF508-CFTR rescue by the VRT-325 corrector in cystic fibrosis cells. CFTR expression/maturation was evaluated by immunoblotting and its function by short-circuit current measurements. A 24-h exposure to P. aeruginosa diffusible material (PsaDM) reduced CFTR currents as well as total and membrane protein expression of the wildtype (wt) CFTR protein in CFBE-wt cells. In CFBE-ΔF508 cells, PsaDM severely reduced CFTR maturation and current rescue induced by VRT-325. We also confirmed a deleterious impact of PsaDM on wt-CFTR currents in non-cystic fibrosis primary airway cells as well as on the rescue of ΔF508-CFTR function induced by VRT-325 in primary cystic fibrosis cells. These findings show that CFTR function could be impaired in non-cystic fibrosis patients infected by P. aeruginosa. Our data also suggest that CFTR corrector efficiency may be affected by infectious components, which should be taken into account in screening assays of correctors. Copyright ©ERS 2015.
    European Respiratory Journal 03/2015; 45(6). DOI:10.1183/09031936.00076214 · 7.64 Impact Factor
  • M Ruffin · N Trinh · C Bilodeau · E Maille · T Beaudoin · D Nguyen · S Rousseau · E Brochiero ·

    Pediatric Pulmonology 09/2014; 49. · 2.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Ca(2+)-activated potassium channel KCa3.1 is emerging as a therapeutic target for a large variety of health disorders. One distinguishing feature of KCa3.1 is that the channel open probability at saturating Ca(2+) concentrations (Pomax) is low, typically 0.1-0.2 for KCa3.1 wild type. This observation argues for the binding of Ca(2+) to the calmodulin (CaM)-KCa3.1 complex, promoting the formation of a preopen closed-state configuration leading to channel opening. We have previously shown that the KCa3.1 active gate is most likely located at the level of the selectivity filter. As Ca(2+)-dependent gating of KCa3.1 originates from the binding of Ca(2+) to CaM in the C terminus, the hypothesis of a gate located at the level of the selectivity filter requires that the conformational change initiated in the C terminus be transmitted to the S5 and S6 transmembrane helices, with a resulting effect on the channel pore helix directly connected to the selectivity filter. A study was thus undertaken to determine to what extent the interactions between the channel pore helix with the S5 and S6 transmembrane segments contribute to KCa3.1 gating. Molecular dynamics simulations first revealed that the largest contact area between the pore helix and the S5 plus S6 transmembrane helices involves residue F248 at the C-terminal end of the pore helix. Unitary current recordings next confirmed that modulating aromatic-aromatic interactions between F248 and W216 of the S5 transmembrane helical segment and/or perturbing the interactions between F248 and residues in S6 surrounding the glycine hinge G274 cause important changes in Pomax. This work thus provides the first evidence for a key contribution of the pore helix in setting Pomax by stabilizing the channel closed configuration through aromatic-aromatic interactions involving F248 of the pore helix. We propose that the interface pore helix/S5 constitutes a promising site for designing KCa3.1 potentiators.
    The Journal of General Physiology 02/2014; 143(2):289-307. DOI:10.1085/jgp.201311097 · 4.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: K+ channels, which are overexpressed in several cancers, have been identified as regulators of cell proliferation and migration, key processes in cancer development/propagation. Their role in lung cancer has not been studied extensively; but we showed previously that KvLQT1 channels are involved in cell migration, proliferation and repair of normal lung epithelial cells. We now investigated the role of these channels in lung cancer cell lines and their expression levels in human lung adenocarcinoma (AD) tissues. First, we observed that the wound-healing rates of A549 lung adenocarcinoma cell monolayers were reduced by clofilium and chromanol or after silencing with KvLQT1-specific siRNA. Dose-dependent decrease of A549 cell growth and cell accumulation in G0/G1 phase were seen after KvLQT1 inhibition. Clofilium also affected 2D and 3D migration of A549 cells. Similarly, H460 cell growth, migration and wound healing were diminished by this drug. Because K+ channel overexpression has been encountered in some cancers, we assessed KvLQT1 expression levels in tumor tissues from patients with lung AD. KvLQT1 protein expression in tumor samples was increased by 1.5- to 7-fold, compared to paired non-neoplastic tissues, in 17 of 26 patients. In summary, our data reveal that KvLQT1 channel blockade efficiently reduces A549 and H460 cell proliferation and migration. Moreover, KvLQT1 overexpression in AD samples suggests that it could be a potential therapeutic target in lung cancer.
    International Journal of Oncology 12/2013; 44(3). DOI:10.3892/ijo.2013.2228 · 3.03 Impact Factor
  • Source
    Alban Girault · Emmanuelle Brochiero ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Efficient repair of the epithelial tissue, which is frequently exposed to insults, is necessary to maintain its functional integrity. It is therefore necessary to better understand the biological and molecular determinants of tissue regeneration and to develop new strategies to promote epithelial repair. Interestingly, a growing body of evidence indicates that many members of the large and widely-expressed family of K(+) channels are involved in the regulation of cell migration and proliferation, key processes of epithelial repair. The first goal of this review is to briefly summarize the complex mechanisms, including cell migration, proliferation and differentiation, engaged after epithelial injury. We then present evidence implicating K(+) channels in the regulation of these key repair processes. The mechanisms whereby K(+) channels may control epithelial repair processes are also described. In particular, changes in membrane potential, K(+) concentration, cell volume, intracellular calcium and signaling pathways following modulation of K(+) channel activity, as well as physical interaction of K(+) channels with the cytoskeleton or integrins are presented. Finally, the challenges to efficient, specific and safe targeting of K(+) channels for therapeutic applications to improve epithelial repair in vivo are discussed.
    AJP Cell Physiology 11/2013; 306(4). DOI:10.1152/ajpcell.00226.2013 · 3.78 Impact Factor
  • C. Bilodeau · N. Trinh · E. Maille · E. Brochiero ·

    Pediatric Pulmonology 10/2013; 48:251-251. · 2.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alveolar epithelial cells are involved in Na(+) absorption via the epithelial Na(+) channel (ENaC), an important process for maintaining an appropriate volume of liquid lining the respiratory epithelium and for lung oedema clearance. Here, we investigated how a 20% hypotonic shock modulates the ionic current in these cells. Polarized alveolar epithelial cells isolated from rat lungs were cultured on permeant filters and their electrophysiological properties recorded. A 20% bilateral hypotonic shock induced an immediate, but transient 52% rise in total transepithelial current and a 67% increase in the amiloride-sensitive current mediated by ENaC. Amiloride pre-treatment decreased the current rise after hypotonic shock, showing that ENaC current is involved in this response. Since Cl(-) transport is modulated by hypotonic shock, its contribution to the basal and hypotonic-induced transepithelial current was also assessed. Apical NPPB, a broad Cl(-) channel inhibitor and basolateral DIOA a potassium chloride co-transporter (KCC) inhibitor reduced the total and ENaC currents, showing that transcellular Cl(-) transport plays a major role in that process. During hypotonic shock, a basolateral Cl(-) influx, partly inhibited by NPPB is essential for the hypotonic-induced current rise. Hypotonic shock promoted apical ATP secretion and increased intracellular Ca(2+). While apyrase, an ATP scavenger, did not inhibit the hypotonic shock current response, W7 a calmodulin antagonist completely prevented the hypotonic current rise. These results indicate that a basolateral Cl(-) influx as well as Ca(2+)/calmodulin, but not ATP, are involved in the acute transepithelial current rise elicited by hypotonic shock.
    PLoS ONE 09/2013; 8(9):e74565. DOI:10.1371/journal.pone.0074565 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Airway epithelial cells are key initial innate immune responders in the fight against respiratory viruses, primarily via the secretion of antiviral and proinflammatory cytokines that act in an autocrine/paracrine fashion to trigger the establishment of an antiviral state. It is currently thought that the early antiviral state in airway epithelial cells primarily relies on IFNβ secretion and the subsequent activation of the interferon-stimulated gene factor 3 (ISGF3) transcription factor complex, composed of STAT1, STAT2 and IRF9, which regulates the expression of a panoply of interferon-stimulated genes encoding proteins with antiviral activities. However, the specific pathways engaged by the synergistic action of different cytokines during viral infections, and the resulting physiological outcomes are still ill-defined. Here, we unveil a novel delayed antiviral response in the airways, which is initiated by the synergistic autocrine/paracrine action of IFNβ and TNFα, and signals through a non-canonical STAT2- and IRF9-dependent, but STAT1-independent cascade. This pathway ultimately leads to the late induction of the DUOX2 NADPH oxidase expression. Importantly, our study uncovers that the development of the antiviral state relies on DUOX2-dependent H2O2 production. Key antiviral pathways are often targeted by evasion strategies evolved by various pathogenic viruses. In this regard, the importance of the novel DUOX2-dependent antiviral pathway is further underlined by the observation that the human respiratory syncytial virus is able to subvert DUOX2 induction.Cell Research advance online publication 2 April 2013; doi:10.1038/cr.2013.47.
    Cell Research 04/2013; 23(5). DOI:10.1038/cr.2013.47 · 12.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Airway damage and remodelling are important components of lung pathology progression in cystic fibrosis (CF). Although repair mechanisms are engaged to restore the epithelial integrity, these processes are obviously insufficient to maintain lung function in CF airways. Our aims were therefore to study how the basic CFTR defect could impact epithelial wound-healing and to determine if CFTR correction could improve it.Wound-healing experiments, as well as cell migration and proliferation assays, were performed to study the early phases of epithelial repair in human CF and non-CF airway cells. CFTR function was evaluated using CFTR siRNA and inhibitor GlyH101 in non-CF cells, and conversely after CFTR rescue with the CFTR corrector VRT-325 in CF cells.Wound-healing experiments first showed that airway cells from CF patients repaired slower than non-CF cells. CFTR inhibition or silencing in non-CF primary airway cells significantly inhibited wound-closure. GlyH101 also decreased cell migration and proliferation. Interestingly, wt-CFTR transduction in CF airway cell lines or CFTR correction with VRT-325 in CFBE-ΔF508 and primary CF bronchial monolayers significantly improved wound-healing.Altogether our results demonstrated that functional CFTR plays a critical role in wound-repair, and CFTR correction may represent a novel strategy to promote the airway repair processes in CF.
    European Respiratory Journal 04/2012; 40(6). DOI:10.1183/09031936.00221711 · 7.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Active Na(+) absorption by alveolar ENaC is the main driving force of liquid clearance at birth and lung edema resorption in adulthood. We have demonstrated previously that long-term modulation of KvLQT1 and K(ATP) K(+) channel activities exerts sustained control in Na(+) transport through the regulation of ENaC expression in primary alveolar type II (ATII) cells. The goal of the present study was: 1) to investigate the role of the α-ENaC promoter, transfected in the A549 alveolar cell line, in the regulation of ENaC expression by K(+) channels, and 2) to determine the physiological impact of K(+) channels and ENaC modulation on fluid clearance in ATII cells. KvLQT1 and K(ATP) channels were first identified in A549 cells by PCR and Western blotting. We showed, for the first time, that KvLQT1 activation by R-L3 (applied for 24h) increased α-ENaC expression, similarly to K(ATP) activation by pinacidil. Conversely, pharmacological KvLQT1 and K(ATP) inhibition or silencing with siRNAs down-regulated α-ENaC expression. Furthermore, K(+) channel blockers significantly decreased α-ENaC promoter activity. Our results indicated that this decrease in promoter activity could be mediated, at least in part, by the repressor activity of ERK1/2. Conversely, KvLQT1 and K(ATP) activation dose-dependently enhanced α-ENaC promoter activity. Finally, we noted a physiological impact of changes in K(+) channel functions on ERK activity, α-, β-, γ-ENaC subunit expression and fluid absorption through polarized ATII cells. In summary, our results disclose that K(+) channels regulate α-ENaC expression by controlling its promoter activity and thus affect the alveolar function of fluid clearance.
    Biochimica et Biophysica Acta 03/2012; 1818(7):1682-1690. DOI:10.1016/j.bbamem.2012.02.025 · 4.66 Impact Factor

  • Cytokine 10/2011; 56(1):45-45. DOI:10.1016/j.cyto.2011.07.141 · 2.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic infection and inflammation have been associated with progressive airway epithelial damage in patients with cystic fibrosis (CF). However, the effect of inflammatory products on the repair capacity of respiratory epithelia is unclear. Our objective was to study the regulation of repair mechanisms by tumor necrosis factor-α (TNF-α), a major component of inflammation in CF, in a model of mechanical wounding, in two bronchial cell lines, non-CF NuLi and CF CuFi. We observed that TNF-α enhanced the NuLi and CuFi repair rates. Chronic exposure (24-48 h) to TNF-α augmented this stimulation as well as the migration rate during repair. The cellular mechanisms involved in this stimulation were then evaluated. First, we discerned that TNF-α induced metalloproteinase-9 release, epidermal growth factor (EGF) shedding, and subsequent EGF receptor transactivation. Second, TNF-α-induced stimulation of the NuLi and CuFi wound-closure rates was prevented by GM6001 (metalloproteinase inhibitor), EGF antibody (to titrate secreted EGF), and EGF receptor tyrosine kinase inhibitors. Furthermore, we recently reported a relationship between the EGF response and K(+) channel function, both controlling bronchial repair. We now show that TNF-α enhances KvLQT1 and K(ATP) currents, while their inhibition abolishes TNF-α-induced repair stimulation. These results indicate that the effect of TNF-α is mediated, at least in part, through EGF receptor transactivation and K(+) channel stimulation. In contrast, cell proliferation during repair was slowed by TNF-α, suggesting that TNF-α could exert contrasting actions on repair mechanisms of CF airway epithelia. Finally, the stimulatory effect of TNF-α on airway wound repair was confirmed on primary airway epithelial cells, from non-CF and CF patients.
    AJP Lung Cellular and Molecular Physiology 09/2011; 301(6):L945-55. DOI:10.1152/ajplung.00149.2011 · 4.08 Impact Factor
  • Source
    R. Sauvé · A. Longpré-Lauzon · L. Garneau · H. Klein · E. Brochiero ·

    Journal of Cystic Fibrosis 06/2010; 9. DOI:10.1016/S1569-1993(10)60052-5 · 3.48 Impact Factor
  • Olivier Bardou · Nguyen Thu Ngan Trinh · Emmanuelle Brochiero ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Transcripts of more than 30 different K(+) channels have been detected in the respiratory epithelium lining airways and alveoli. These channels belong to the 3 main classes of K(+) channels, i.e. i) voltage-dependent or calcium-activated, 6 transmembrane segments (TM), ii) 2-pores 4-TM and iii) inward-rectified 2-TM channels. The physiological and functional significance of this high molecular diversity of lung epithelial K(+) channels is not well understood. Surprisingly, relatively few studies are focused on K(+) channel function in lung epithelial physiology. Nevertheless, several studies have shown that KvLQT1, KCa and K(ATP) K(+) channels play a crucial role in ion and fluid transport, contributing to the control of airway and alveolar surface liquid composition and volume. K(+) channels are involved in other key functions, such as O(2) sensing or the capacity of the respiratory epithelia to repair after injury. This mini-review aims to discuss potential functions of lung K(+) channels.
    Medecine sciences: M/S 05/2009; 25(4):391-7. DOI:10.1051/medsci/2009254391 · 0.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The vectorial transport of ions and water across epithelial cells depends to a large extent on the coordination of the apical and basolateral ion fluxes with energy supply. In this work we provide the first evidence for a regulation by the 5'-AMP-activated protein kinase (AMPK) of the calcium-activated potassium channel KCa3.1 expressed at the basolateral membrane of a large variety of epithelial cells. Inside-out patch-clamp experiments performed on human embryonic kidney (HEK) cells stably transfected with KCa3.1 first revealed a decrease in KCa3.1 activity following the internal addition of AMP at a fixed ATP concentration. This effect was dose dependent with half inhibition at 140 muM AMP in 1 mM ATP. Evidence for an interaction between the COOH-terminal region of KCa3.1 and the gamma1-subunit of AMPK was next obtained by two-hybrid screening and pull-down experiments. Our two-hybrid analysis confirmed in addition that the amino acids extending from Asp(380) to Ala(400) in COOH-terminal were essential for the interaction AMPK-gamma1/KCa3.1. Inside-out experiments on cells coexpressing KCa3.1 with the dominant negative AMPK-gamma1-R299G mutant showed a reduced sensitivity of KCa3.1 to AMP, arguing for a functional link between KCa3.1 and the gamma1-subunit of AMPK. More importantly, coimmunoprecipitation experiments carried out on bronchial epithelial NuLi cells provided direct evidence for the formation of a KCa3.1/AMPK-gamma1 complex at endogenous AMPK and KCa3.1 expression levels. Finally, treating NuLi monolayers with the membrane permeant AMPK activator 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) caused a significant decrease of the KCa3.1-mediated short-circuit currents, an effect reversible by coincubation with the AMPK inhibitor Compound C. These observations argue for a regulation of KCa3.1 by AMPK in a functional epithelium through protein/protein interactions involving the gamma1-subunit of AMPK.
    AJP Cell Physiology 02/2009; 296(2):C285-95. DOI:10.1152/ajpcell.00418.2008 · 3.78 Impact Factor
  • Source
    Olivier Bardou · Nguyen Thu Ngan Trinh · Emmanuelle Brochiero ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple K(+) channels are expressed in the respiratory epithelium lining airways and alveoli. Of the three main classes [1) voltage-dependent or Ca(2+)-activated, 6-transmembrane domains (TMD), 2) 2-pores 4-TMD, and 3) inward-rectified 2-TMD K(+) channels], almost 40 different transcripts have already been detected in the lung. The physiological and functional significance of this high molecular diversity of lung epithelial K(+) channels is intriguing. As detailed in the present review, K(+) channels are located at both the apical and basolateral membranes in the respiratory epithelium, where they mediate K(+) currents of diverse electrophysiological and regulatory properties. The main recognized function of K(+) channels is to control membrane potential and to maintain the driving force for transepithelial ion and liquid transport. In this manner, KvLQT1, KCa and K(ATP) channels, for example, contribute to the control of airway and alveolar surface liquid composition and volume. Thus, K(+) channel activation has been identified as a potential therapeutic strategy for the resolution of pathologies characterized by ion transport dysfunction. K(+) channels are also involved in other key functions in lung physiology, such as oxygen-sensing, inflammatory responses and respiratory epithelia repair after injury. The purpose of this review is to summarize and discuss what is presently known about the molecular identity of lung K(+) channels with emphasis on their role in lung epithelial physiology.
    AJP Lung Cellular and Molecular Physiology 02/2009; 296(2):L145-55. DOI:10.1152/ajplung.90525.2008 · 4.08 Impact Factor
  • Nguyen Thu Ngan Trinh · Anik Privé · Emilie Maillé · Josette Noël · Emmanuelle Brochiero ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Severe lesions of airway epithelia are observed in cystic fibrosis (CF) patients. The regulatory mechanisms of cell migration and proliferation processes, involved in the repair of injured epithelia, then need to be better understood. A model of mechanical wounding of non-CF (NuLi) and CF (CuFi) bronchial monolayers was employed to study the repair mechanisms. We first observed that wound repair, under paracrine and autocrine EGF control, was slower (up to 33%) in CuFi than in NuLi. Furthermore, EGF receptor (EGFR) activation, following wounding, was lower in CuFi than in NuLi monolayers. Cell proliferation and migration assays indicated a similar rate of proliferation in both cell lines but with reduced (by 25%) CuFi cell migration. In addition, cell migration experiments performed in the presence of conditioned medium, collected from NuLi and CuFi wounded bronchial monolayers, suggested a defect in EGF/EGFR signaling in CF cells. We (49) recently demonstrated coupling between the EGF response and K(+) channel function, which is crucial for EGF-stimulated alveolar repair. In CuFi cells, lower EGF/EGFR signaling was accompanied by a 40-70% reduction in K(+) currents and KvLQT1, ATP-sensitive potassium (K(ATP)), and Ca(2+)-activated K(+) (KCa3.1) channel expression. In addition, EGF-stimulated bronchial wound healing, cell migration, and proliferation were severely decreased by K(+) channel inhibitors. Finally, acute CFTR inhibition failed to reduce wound healing, EGF secretion, and K(+) channel expression in NuLi. In summary, the delay in CuFi wound healing could be due to diminished EGFR signaling coupled with lower K(+) channel function, which play a crucial role in bronchial repair.
    AJP Lung Cellular and Molecular Physiology 09/2008; 295(5):L866-80. DOI:10.1152/ajplung.90224.2008 · 4.08 Impact Factor

Publication Stats

738 Citations
157.44 Total Impact Points


  • 1999-2015
    • Université de Montréal
      • • Department of Medicine
      • • Center for Mathematical Research
      • • Department of Radiology, Radiation Oncology and Nuclear Medicine
      Montréal, Quebec, Canada
    • University of Nice-Sophia Antipolis
      Nice, Provence-Alpes-Côte d'Azur, France
  • 2007
    • Centre hospitalier de l'Université de Montréal (CHUM)
      • Département Médecine dentaire
      Montréal, Quebec, Canada
  • 2002
    • French National Centre for Scientific Research
      Lutetia Parisorum, Île-de-France, France