Alberto Moreno

Institute for Biomedical Research “Alberto Sols“, Madrid, Madrid, Spain

Are you Alberto Moreno?

Claim your profile

Publications (7)34.33 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pigment epithelium-derived factor (PEDF), a member of the serine protease inhibitor superfamily, has potent anti-metastatic effects in cutaneous melanoma through its direct actions on endothelial and melanoma cells. Here we show that PEDF expression positively correlates with microphthalmia-associated transcription factor (MITF) in melanoma cell lines and human samples. High PEDF and MITF expression is characteristic of low aggressive melanomas classified according to molecular and pathological criteria, whereas both factors are decreased in senescent melanocytes and naevi. Importantly, MITF silencing down-regulates PEDF expression in melanoma cell lines and primary melanocytes, suggesting that the correlation in the expression reflects a causal relationship. In agreement, analysis of Chromatin immunoprecipitation coupled to high throughput sequencing (ChIP-seq) data sets revealed three MITF binding regions within the first intron of SERPINF1, and reporter assays demonstrated that the binding of MITF to these regions is sufficient to drive transcription. Finally, we demonstrate that exogenous PEDF expression efficiently halts in vitro migration and invasion, as well as in vivo dissemination of melanoma cells induced by MITF silencing. In summary, these results identify PEDF as a novel transcriptional target of MITF and support a relevant functional role for the MITF-PEDF axis in the biology of melanoma.
    Neoplasia. 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The protein ING4 binds to histone H3 trimethylated at Lys-4 (H3K4me3) through its C-terminal plant homeodomain, thus recruiting the HBO1 histone acetyltransferase complex to target promoters. The structure of the plant homeodomain finger bound to an H3K4me3 peptide has been described, as well as the disorder and flexibility in the ING4 central region. We report the crystal structure of the ING4 N-terminal domain, which shows an antiparallel coiled-coil homodimer with each protomer folded into a helix-loop-helix structure. This arrangement suggests that ING4 can bind simultaneously two histone tails on the same or different nucleosomes. Dimerization has a direct impact on ING4 tumor suppressor activity because monomeric mutants lose the ability to induce apoptosis after genotoxic stress. Homology modeling based on the ING4 structure suggests that other ING dimers may also exist.
    Journal of Biological Chemistry 02/2012; 287(14):10876-84. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inhibitor of growth 4 (ING4) is a member of the ING family of tumor suppressor proteins. In this study, we have analyzed the impact of two mutations in ING4 associated with human tumors (Y121N and N214D), testing their behavior in a series of functional, biochemical and structural analyses. We report that the N214D mutation dramatically dampened the ability of ING4 to inhibit proliferation, anchorage-independent growth or cell migration or to sensitize to cell death. In turn, the Y121N mutant did not differ significantly from wild-type ING4 in our assays. Neither of the mutations altered the normal subcellular localization of ING4, showing predominantly nuclear accumulation. We investigated the molecular basis of the defect in the activity of the N214D mutant. The folding and ability to bind histone marks of ING4 was not significantly altered by this mutation. Instead, we found that the functional impairment of the N214D mutant correlates with reduced protein stability due to increased proteasome-mediated degradation. In summary, our data demonstrates that a point mutation of ING4 associated to human tumors leads to the loss of several essential functions of ING4 pertinent to tumor protection and highlight the importance of ING4 function to prevent tumorigenesis.
    Carcinogenesis 11/2010; 31(11):1932-8. · 5.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cellular senescence is an effective tumor-suppressive mechanism that causes a stable proliferative arrest in cells with potentially oncogenic alterations. Here, we have investigated the role of the p33ING1 tumor suppressor in the regulation of cellular senescence in human primary fibroblasts. We show that p33ING1 triggers a senescent phenotype in a p53-dependent fashion. Also, endogenous p33ING1 protein accumulates in chromatin in oncogene-senescent fibroblasts and its silencing by RNA interference impairs senescence triggered by oncogenes. Notably, the ability to induce senescence is lost in a mutant version of p33ING1 present in human tumors. Using specific point mutants, we further show that recognition of the chromatin mark H3K4me3 is essential for induction of senescence by p33ING1. Finally, we demonstrate that ING1-induced senescence is associated to a specific genetic signature with a strong representation of chemokine and cytokine signaling factors, which significantly overlaps with that of oncogene-induced senescence. In summary, our results identify ING1 as a critical epigenetic regulator of cellular senescence in human fibroblasts and highlight its role in control of gene expression in the context of this tumor-protective response.
    Aging cell 11/2010; 10(1):158-71. · 7.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The INhibitor of Growth (ING) family of tumor suppressors regulates the transcriptional state of chromatin by recruiting remodeling complexes to sites with histone H3 trimethylated at position K4 (H3K4me3). This modification is recognized by the plant homeodomain (PHD) present at the C-terminus in the five members of the ING family. ING4 facilitates histone H3 acetylation by the HBO1 complex. Here, we show that ING4 forms homodimers through its N-terminal domain, which folds independently into an elongated coiled-coil structure. The central region of ING4, which contains the nuclear localization sequence, is disordered and flexible and does not directly interact with p53, or does it with very low affinity, in contrast to previous findings. The NMR analysis of the full-length protein reveals that the two PHD fingers of the dimer are chemically equivalent and independent of the rest of the molecule. The detailed NMR analysis of the full-length dimeric protein binding to histone H3K4me3 shows essentially the same binding site and affinity as the isolated PHD finger. Therefore, the ING4 dimer has two identical and independent binding sites for H3K4me3 tails, which, in the context of the chromatin, could belong to the same or to different nucleosomes. These results show that ING4 is a bivalent reader of the chromatin H3K4me3 modification and suggest a mechanism for enhanced targeting of the HBO1 complex to specific chromatin sites. This mechanism could be common to other ING-containing remodeling complexes.
    Journal of Molecular Biology 03/2010; 396(4):1117-27. · 3.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ING family of tumor suppressor proteins controls several cellular functions relevant to antitumor protection, such as cell cycle control, apoptosis, senescence, or migration. ING proteins are functionally linked to the p53 pathway, and they participate in transcriptional control via the recognition of histone marks and recruitment of protein complexes with chromatin-modifying activity to specific promoters. Here, we have investigated the global effect of ING1 in gene regulation through genome-wide analysis of expression profiles in primary embryonic fibroblasts deficient for the Ing1 locus. We find that Ing1 has a predominant role as transcriptional repressor in this setting, affecting the expression of genes involved in a variety of cellular functions. Within the subset of genes showing differential expression, we have identified DGCR8, a protein involved in the early steps of microRNA biogenesis. We show that ING1 binds to the DGCR8 promoter and controls its transcription through chromatin regulation. We also find that ING1 and DGCR8 can cooperate in restraining proliferation. In summary, this study reveals a novel connection between ING1 and a regulator of microRNA biogenesis and identifies new links between tumor suppressor proteins and the microRNA machinery.
    Cancer Research 02/2010; 70(5):1866-74. · 8.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cellular senescence is an effective anti-tumor barrier that acts by restraining the uncontrolled proliferation of cells carrying potentially oncogenic alterations. ING proteins are putative tumor suppressor proteins functionally linked to the p53 pathway and to chromatin regulation. ING proteins exert their tumor-protective action through different types of responses. Here, we review the evidence on the participation of ING proteins, mainly ING1 and ING2, in the implementation of the senescent response. The currently available data support an important role of ING proteins as regulators of senescence, in connection with the p53 pathway and chromatin organization.
    Current drug targets 06/2009; 10(5):406-17. · 3.93 Impact Factor