Are you Séverine Dubois?

Claim your profile

Publications (4)60.75 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The VNTR polymorphism 5' of the insulin gene has been related to obesity in a previous study on children with early onset of severe obesity. Our purpose was to analyze the association between this polymorphism and adiposity variability in an unselected population of children and adolescents in northern France. In 293 nuclear families from the Fleurbaix Laventie Ville Santé study, we genotyped the INS VNTR polymorphism in 431 children and adolescents (8 to 18 years of age) and their parents. Overweight was defined according to the international definition in both children and adults. A transmission disequilibrium test in families with an overweight offspring was performed. The prevalence of overweight was compared according to genotype. The effect of the genotype on BMI and waist circumference was tested with a linear regression model, adjusting for age, gender, and Tanner stage. There was an undertransmission of class III alleles from heterozygous parents to their overweight offspring (p < 0.002). Overweight was associated with class I alleles in children and adolescents (12% I/I, I/III vs. 3% III/III; p < 0.08). Those with a class III/III genotype had a 1 kg/m(2) lower mean BMI (p = 0.04) and 3 cm lower waist circumference (p = 0.02) than those bearing one or two class I alleles. No association of adiposity or obesity with class I alleles was found in parents. INS VNTR polymorphism seems to contribute to differences in adiposity level in the general population of children and adolescents.
    Obesity research 04/2004; 12(3):499-504. · 4.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The gene GAD2 encoding the glutamic acid decarboxylase enzyme (GAD65) is a positional candidate gene for obesity on Chromosome 10p11-12, a susceptibility locus for morbid obesity in four independent ethnic populations. GAD65 catalyzes the formation of gamma-aminobutyric acid (GABA), which interacts with neuropeptide Y in the paraventricular nucleus to contribute to stimulate food intake. A case-control study (575 morbidly obese and 646 control subjects) analyzing GAD2 variants identified both a protective haplotype, including the most frequent alleles of single nucleotide polymorphisms (SNPs) +61450 C>A and +83897 T>A (OR = 0.81, 95% CI [0.681-0.972], p = 0.0049) and an at-risk SNP (-243 A>G) for morbid obesity (OR = 1.3, 95% CI [1.053-1.585], p = 0.014). Furthermore, familial-based analyses confirmed the association with the obesity of SNP +61450 C>A and +83897 T>A haplotype (chi(2) = 7.637, p = 0.02). In the murine insulinoma cell line betaTC3, the G at-risk allele of SNP -243 A>G increased six times GAD2 promoter activity (p < 0.0001) and induced a 6-fold higher affinity for nuclear extracts. The -243 A>G SNP was associated with higher hunger scores (p = 0.007) and disinhibition scores (p = 0.028), as assessed by the Stunkard Three-Factor Eating Questionnaire. As GAD2 is highly expressed in pancreatic beta cells, we analyzed GAD65 antibody level as a marker of beta-cell activity and of insulin secretion. In the control group, -243 A>G, +61450 C>A, and +83897 T>A SNPs were associated with lower GAD65 autoantibody levels (p values of 0.003, 0.047, and 0.006, respectively). SNP +83897 T>A was associated with lower fasting insulin and insulin secretion, as assessed by the HOMA-B% homeostasis model of beta-cell function (p = 0.009 and 0.01, respectively). These data support the hypothesis of the orexigenic effect of GABA in humans and of a contribution of genes involved in GABA metabolism in the modulation of food intake and in the development of morbid obesity.
    PLoS Biology 01/2004; 1(3):E68. · 12.69 Impact Factor
  • Diabetes 02/1999; 48(1):206-8. · 7.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Obesity, a common multifactorial disorder, is a major risk factor for type 2 diabetes, hypertension and coronary heart disease (CHD). According to the definition of the World Health Organization (WHO), approximately 6-10% of the population in Westernized countries are considered obese. Epidemiological studies have shown that 30-70% of the variation in body weight may be attributable to genetic factors. To date, two genome-wide scans using different obesity-related quantitative traits have provided candidate regions for obesity. We have undertaken a genome-wide scan in affected sibpairs to identify chromosomal regions linked to obesity in a collection of French families. Model-free multipoint linkage analyses revealed evidence for linkage to a region on chromosome 10p (MLS=4.85). Two further loci on chromosomes 5cen-q and 2p showed suggestive evidence for linkage of serum leptin levels in a genome-wide context. The peak on chromosome 2 coincided with the region containing the gene (POMC) encoding pro-opiomelanocortin, a locus previously linked to leptin levels and fat mass in a Mexican-American population and shown to be mutated in obese humans. Our results suggest that there is a major gene on chromosome 10p implicated in the development of human obesity, and the existence of two further loci influencing leptin levels.
    Nature Genetics 12/1998; 20(3):304-8. · 35.21 Impact Factor