R Ferracini

Università degli Studi di Torino, Torino, Piedmont, Italy

Are you R Ferracini?

Claim your profile

Publications (58)196.17 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Dickoppf-1 (DKK-1) is a negative regulator of bone formation with tumorigenic potential. The up-regulation of DKK-1 is an early event in prostate cancer (PCa) development, thus we investigated its role as a marker in the diagnosis and prognosis of PCa. We retrospectively enrolled 159 patients who underwent prostate biopsy, either for elevated PSA or suspect digital rectal examination, between 2003 and 2010. During the biopsy, one serum sample was collected from all patients; PSA and DKK-1 were measured by ELISA technique. Amongst the biopsy of 159 patients 75 were affected by PCa and 84 were not the mean period of follow-up for these patients was 5 years; a new biopsy was performed in case of PCa suspicion. PSA performed better than DKK-1 in detecting PCa (0.63 vs 0.51 respectively). Differently from PSA DKK-1 was significantly higher in patients who developed PCa during follow-up than in cancer-free ones, thus DKK-1 performed better than PSA in detecting these patients (0.67 vs 0.55). DKK-1 was significantly lower in patients with bone metastases, whereas PSA was not significantly different in patients with different outcomes. DKK-1 might be predictive for patients negative at first biopsy who will develop PCa and in the prognosis of bone metastases. It performed worse than PSA in the early diagnosis of Pca.
    BMC Clinical Pathology 03/2014; 14(1):11.
  • Source
  • Source
    Dataset: Plos PKU
  • Source
    Dataset: BMC cancer
  • Source
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Background:Bone metastases represent a common and severe complication in breast cancer, and the involvement of cancer stem cells (CSCs) in the promotion of bone metastasis is currently under discussion. Here, we used a human-in-mice model to study bone metastasis formation due to primary breast CSCs-like colonisation.Methods:Primary CD44(+)CD24(-) breast CSCs-like were transduced by a luciferase-lentiviral vector and injected through subcutaneous and intracardiac (IC) routes in non-obese/severe-combined immunodeficient (NOD/SCID) mice carrying subcutaneous human bone implants. The CSCs-like localisation was monitored by in vivo luciferase imaging. Bone metastatic CSCs-like were analysed through immunohistochemistry and flow cytometry, and gene expression analyses were performed by microarray techniques.Results:Breast CSCs-like colonised the human-implanted bone, resulting in bone remodelling. Bone metastatic lesions were histologically apparent by tumour cell expression of epithelial markers and vimentin. The bone-isolated CSCs-like were CD44(-)CD24(+) and showed tumorigenic abilities after injection in secondary mice. CD44(-)CD24(+) CSCs-like displayed a distinct bone tropism signature that was enriched in genes that discriminate bone metastases of breast cancer from metastases at other organs.Conclusion:Breast CSCs-like promote bone metastasis and display a CSCs-like bone tropism signature. This signature has clinical prognostic relevance, because it efficiently discriminates osteotropic breast cancers from tumour metastases at other sites.
    British Journal of Cancer 06/2013; 108(12):2525-2536. · 5.08 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Gastric cancer is one of the most common and lethal malignancies worldwide. Bone metastases in gastric cancer are less common than in other solid tumors, but when they occur the prognosis is generally poor. Increased osteoclastogenesis and osteoclast activity are common features in bone metastases caused by different osteotropic cancer. We investigated osteoclastogenesis and its mechanisms in gastric cancer by enrolling 31 newly diagnosed gastric cancer patients and 45 healthy controls. We studied in vitro osteoclastogenesis in the peripheral blood mononuclear cell cultures of patients and controls, showing spontaneous osteoclastogenesis for half of the patients. This osteoclastogenesis was RANKL- and TNF-α-independent. We analyzed primary tumor and bone metastatic tissues of gastric cancer for the expression of genes involved in osteoclastogenesis. The expression of transforming growth factor-β (TGF-β), osteoprotegerin (OPG), IL-7 and dickkopf-1 (DKK-1) was higher in primary tumors than in bone metastases. RANKL was not detectable in primary tumor or in bone metastatic tissue. The serum RANKL level was significantly higher in healthy controls than in patients, and it was not related to osteoclastogenesis, thereby suggesting that RANKL is not involved in the bone metastatic mechanisms in gastric cancer. We hypothesized a role of RANKL in angiogenesis, thus we compared the serum levels of RANKL to those of VEGF, since VEGF is directly related to angiogenesis. Different from RANKL, the VEGF serum levels were higher in gastric patients than in controls, suggesting a block of the angiogenesis inhibition due to RANKL. RANKL and VEGF serum levels were not predictive of overall survival in our cohort of gastric patients.
    Oncology Reports 04/2013; 29(4):1453-8. · 2.30 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The MET oncogene is aberrantly overexpressed in human osteosarcomas. We have previously converted primary cultures of human bone-derived cells into osteosarcoma cells by overexpressing MET. To determine whether MET transforms mesenchymal stem cells or committed progenitor cells, here we characterize distinct MET overexpressing osteosarcoma (MET-OS) clones using genome-wide expression profiling, cytometric analysis, and functional assays. All the MET-OS clones consistently display mesenchymal and stemness markers, but not most of the mesenchymal–stem cell-specific markers. Conversely, the MET-OS clones express genes characteristic of early osteoblastic differentiation phases, but not those of late phases. Profiling of mesenchymal stem cells induced to differentiate along osteoblast, adipocyte, and chondrocyte lineages confirms that MET-OS cells are similar to cells at an initial phase of osteoblastic differentiation. Accordingly, MET-OS cells cannot differentiate into adipocytes or chondrocytes, but can partially differentiate into osteogenic-matrix-producing cells. Moreover, in vitro MET-OS cells form self-renewing spheres enriched in cells that can initiate tumors in vivo. MET kinase inhibition abrogates the self-renewal capacity of MET-OS cells and allows them to progress toward osteoblastic differentiation. These data show that MET initiates the transformation of a cell population that has features of osteo-progenitors and suggest that MET regulates self-renewal and lineage differentiation of osteosarcoma cells.
    Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 02/2012; 27(6):1322-34. · 6.04 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The MET oncogene is aberrantly over-expressed in human osteosarcomas. We have previously converted primary cultures of human bone-derived cells into osteosarcoma cells by over-expressing MET. To determine whether MET transforms mesenchymal stem cells or committed progenitor cells, here we characterize distinct MET over-expressing osteosarcoma (MET-OS) clones using genome-wide expression profiling, cytometric analysis and functional assays. All the MET-OS clones consistently display mesenchymal and stemness markers, but not most of the mesenchymal-stem-cell-specific markers. Conversely, the MET-OS clones express genes characteristic of early osteoblastic differentiation phases, but not those of late phases. Profiling of mesenchymal stem cells induced to differentiate along osteoblast, adipocyte and chondrocyte lineages confirms that MET-OS cells are similar to cells at an initial phase of osteoblastic differentiation. Accordingly, MET-OS cells cannot differentiate into adipocytes or chondrocytes, but can partially differentiate into osteogenic-matrix-producing cells. Moreover, in vitro MET-OS cells form self-renewing spheres enriched in cells that can initiate tumors in vivo. MET kinase inhibition abrogates the self-renewal capacity of MET-OS cells and allows them to progress towards osteoblastic differentiation. These data show that MET initiates the transformation of a cell population that has features of osteo-progenitors and suggest that MET regulates self-renewal and lineage differentiation of osteosarcoma cells.
    Journal of Bone and Mineral Research 02/2012; · 6.13 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: This study shows that teriparatide promotes the circulating osteoblast (OB) precursor degree of maturation in patients affected by postmenopausal osteoporosis. Anabolic treatment with teriparatide has proven effective for the therapy of postmenopausal osteoporosis and significantly reduces the risk of non-vertebral fragility fractures. The aim of this study was to investigate the effect of teriparatide on circulating OB precursors. We evaluated by flow cytometry and real-time PCR the expression of OBs typical markers in peripheral blood mononuclear cells during treatment with teriparatide plus calcium and vitamin D, raloxifene plus calcium and vitamin D or calcium and vitamin D alone at various time points. Serum bone alkaline phosphatase and osteocalcin (OC) were measured as markers of bone turnover. Our results show that circulating OB precursors are more numerous and more immature in patients affected by fragility fractures than in osteoporotic patients without fractures. We also show that teriparatide treatment increases the expression of alkaline phosphatase and of OC in OB precursors; thus, it increases their degree of maturation. We suggest that teriparatide acts as anabolic agents also by promoting the maturation of OB precursors.
    Osteoporosis International 05/2011; 23(4):1245-53. · 4.04 Impact Factor
  • Bone 01/2011; 48. · 3.82 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: This study evaluates cytokines production in bone and bone marrow of patients with an osteoporotic fracture or with osteoarthritis by real time PCR, Western blot and immunohistochemistry. We demonstrate that the cytokine pattern is shifted towards osteoclast activation and osteoblast inhibition in patients with osteoporotic fractures. Fragility fractures are the resultant of low bone mass and poor bone architecture typical of osteoporosis. Cytokines involved in the control of bone cell maturation and function are produced by both bone itself and bone marrow cells, but the roles of these two sources in its control and the amounts they produce are not clear. This study compares their production in patients with an osteoporotic fracture and those with osteoarthritis. We evaluated 52 femoral heads from women subjected to hip-joint replacement surgery for femoral neck fractures due to low-energy trauma (37), or for osteoarthritis (15). Total RNA was extracted from both bone and bone marrow, and quantitative PCR was used to identify the receptor activator of nuclear factor kB Ligand (RANKL), osteoprotegerin (OPG), macrophage colony stimulating factor (M-CSF), transforming growth factor β (TGFβ), Dickoppf-1 (DKK-1) and sclerostin (SOST) expression. Immunohistochemistry and Western blot were performed in order to quantify and localize in bone and bone marrow the cytokines. We found an increase of RANKL/OPG ratio, M-CSF, SOST and DKK-1 in fractured patients, whereas TGFβ was increased in osteoarthritic bone. Bone marrow produced greater amounts of RANKL, M-CSF and TGFβ compared to bone, whereas the production of DKK-1 and SOST was higher in bone. We show that bone marrow cells produced the greater amount of pro-osteoclastogenic cytokines, whereas bone cells produced higher amount of osteoblast inhibitors in patients with fragility fracture, thus the cytokine pattern is shifted towards osteoclast activation and osteoblast inhibition in these patients.
    Osteoporosis International 11/2010; 22(11):2869-77. · 4.04 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Arthroplasty is a very successful medical procedure. Failures depend on aseptic loosening caused by periprosthetic osteolysis, where T cells have a contradictory role. We analyzed osteoclastogenesis in peripheral blood mononuclear cell (PBMC) cultures of periprosthetic osteolysis patients and the phenotype of T cells localized in periprosthetic tissues. We enrolled 45 subjects with periprosthetic osteolysis (15), stable prosthesis (15) and healthy controls (15). We performed PBMC cultures to study osteoclastogenesis. Osteoclasts and T cell phenotype were examined by immunohistochemistry, immunofluorescence and flow citometry. Periprosthetic osteolysis patients showed spontaneous osteoclastogenesis, which was inhibited by RANK-Fc and T cell depletion. In periprosthetic osteolysis patients' PBMC cultures, CD4 and CD8 T cells increased and CD8 T cells did not express CD25. In periprosthetic tissues T cells were close to osteoclasts, suggesting their interaction. Local CD8 T cells showed a regulatory phenotype, expressing CD25 and FoxP3, while CD4 T cells did not express activation markers. Our data suggest that, in an early stage of periprosthetic osteolysis, T cells may promote osteoclastogenesis, whereas subsequently osteoclasts activate FoxP3/CD8 T cells, which inhibit CD4 effector T cells. This mechanism may explain the previous finding of non-active T cells in periprosthetic tissues.
    Biomaterials 10/2010; 31(29):7519-25. · 7.60 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: A new series of bisphosphonates bearing either the nitrogen-containing NO-donor furoxan (1,2,5-oxadiazole 2-oxide) system or the related furazan (1,2,5-oxadiazole) in lateral chain has been developed. pK(a) values and affinity for hydroxyapatite were determined for all the compounds. The products were able to inhibit osteoclastogenesis on RAW 246.7 cells at 10microM concentration. The most active compounds were further assayed on human PBMC cells and on rat microsomes. Unlike most nitrogen-containing bisphosphonates which target farnesyl pyrophosphate synthase, experimental and theoretical investigations suggest that the activity of our derivatives may be related to different mechanisms. The furoxan derivatives were also tested for their ability to relax rat aorta strips in view of their potential NO-dependent vasodilator properties.
    Bioorganic & medicinal chemistry 03/2010; 18(7):2428-38. · 2.82 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Iloprost has been suggested to possess anti-inflammatory and immunomodulating actions and it is widely use as a vasodilatator in systemic sclerosis (SSc). In this study we evaluate the effect of iloprost on immune response in SSc patients. To this extend we enrolled 15 women affected by SSc and infused iloprost for 5 days. The effect of iloprost on T cells and monocytes was measured by flow cytometry, Real time PCR and measuring cytokines production in vivo and in vitro by ELISA. Our results demonstrate that Iloprost reduces T cell and TNF alpha production both in vivo and in vitro. It reduces T regulatory cells number, but increases their activity after immune stimulation. It increases serum IL-2 and this increase persists 28 days after the last infusion, also RANKL was increased both in vivo and in vitro. We observed no effect on IFN gamma production. These results suggest that iloprost has anti-inflammatory and immunomodulating effects, reducing TNF alpha production by T cells and the number of T regulatory cells and increasing IL-2 and RANKL.
    BMC Immunology 01/2010; 11:62. · 2.61 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Phenylketonuria (PKU) is a rare inborn error of metabolism often complicated by a progressive bone impairment of uncertain etiology, as documented by both ionizing and non- ionizing techniques. Peripheral blood mononuclear cell (PBMC) cultures were performed to study osteoclastogenesis, in the presence or absence of recombinant human monocyte-colony stimulating factor (M-CSF) and receptor activator of NFκB ligand (RANKL). Flow cytometry was utilized to analyze osteoclast precursors (OCPs) and T cell phenotype. Tumour necrosis factor α (TNF-α), RANKL and osteoprotegerin (OPG) were quantified in cell culture supernatants by ELISA. The effects of RANKFc and anti-TNF-α antibodies were also investigated to determine their ability to inhibit osteoclastogenesis. In addition, bone conditions and phenylalanine levels in PKU patients were clinically evaluated. Several in vitro studies in PKU patients' cells identified a potential mechanism of bone formation inhibition commonly associated with this disorder. First, PKU patients disclosed an increased osteoclastogenesis compared to healthy controls, both in unstimulated and M-CSF/RANKL stimulated PBMC cultures. OCPs and the measured RANKL/OPG ratio were higher in PKU patients compared to healthy controls. The addition of specific antagonist RANKFc caused osteoclastogenesis inhibition, whereas anti-TNF-α failed to have this effect. Among PBMCs isolated from PKU patients, activated T cells, expressing CD69, CD25 and RANKL were identified. Confirmatory in vivo studies support this proposed model. These in vivo studies included the analysis of osteoclastogenesis in PKU patients, which demonstrated an inverse relation to bone condition assessed by phalangeal Quantitative Ultrasound (QUS). This was also directly related to non-compliance to therapeutic diet reflected by hyperphenylalaninemia. Our results indicate that PKU spontaneous osteoclastogenesis depends on the circulating OCP increase and the activation of T cells. Osteoclastogenesis correlates with clinical parameters, suggesting its value as a diagnostic tool for an early assessment of an increased bone resorption in PKU patients.
    PLoS ONE 01/2010; 5(11):e14167. · 3.73 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Bone metastases are a common and dismal consequence of lung cancer that is a leading cause of death. The role of IL-7 in promoting bone metastases has been previously investigated in NSCLC, but many aspects remain to be disclosed. To further study IL-7 function in bone metastasis, we developed a human-in-mice model of bone aggression by NSCLC and analyzed human bone metastasis biopsies. We used NOD/SCID mice implanted with human bone. After bone engraftment, two groups of mice were injected subcutaneously with A549, a human NSCLC cell line, either close or at the contralateral flank to the human bone implant, while a third control group did not receive cancer cells. Tumor and bone vitality and IL-7 expression were assessed in implanted bone, affected or not by A549. Serum IL-7 levels were evaluated by ELISA. IL-7 immunohistochemistry was performed on 10 human bone NSCLC metastasis biopsies for comparison. At 12 weeks after bone implant, we observed osteogenic activity and neovascularization, confirming bone vitality. Tumor aggressive cells implanted close to human bone invaded the bone tissue. The bone-aggressive cancer cells were positive for IL-7 staining both in the mice model and in human biopsies. Higher IL-7 serum levels were found in mice injected with A549 cells close to the bone implant compared to mice injected with A549 cells in the flank opposite to the bone implant. We demonstrated that bone-invading cells express and produce IL-7, which is known to promote osteoclast activation and osteolytic lesions. Tumor-bone interaction increases IL-7 production, with an increase in IL-7 serum levels. The presented mice model of bone invasion by contiguous tumor is suitable to study bone-tumor cell interaction. IL-7 plays a role in the first steps of metastatic process.
    BMC Cancer 01/2010; 10:12. · 3.33 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Phenylketonuria (PKU) is commonly complicated by a progressive bone impairment of uncertain aetiology. The therapeutic phenylalanine (Phe)-restricted diet and the possible noxious effects of high plasma Phe concentrations on bone have previously been suggested as possible determinant factors. Since osteoclasts are involved in bone reabsorption, they could play a role in determining bone damage in PKU. The reported increased excretion of bone resorption markers in PKU patients is consistent with this hypothesis. Although different diseases characterized by bone loss have been related to increased spontaneous osteoclastogenesis from peripheral blood mononuclear cells (PBMCs), to date there is no evidence of increased osteoclast formation in PKU. In this study, we compared the spontaneous osteoclastogenesis from PBMCs in 20 patients affected by PKU with that observed in age- and sex-matched healthy subjects. Phenylketonuric patients showed the number of osteoclasts to be almost double that observed in controls (159.9 ± 79.5 and 87.8 ± 44.7, respectively; p = 0.001). Moreover, a strict direct correlation between the spontaneous osteoclastogenesis in PKU patients and the mean blood Phe concentrations in the preceding year was observed (r = 0.576; p = 0.010). An imbalance between bone formation and bone resorption might explain, at least in part, the pathogenesis of bone loss in this disease. These findings could provide new insights into the biological mechanisms underlying bone damage in PKU.
    Journal of Inherited Metabolic Disease 11/2008; 31 Suppl 2:S339-42. · 4.07 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Lung cancer is a widespread disease and its incidence is growing. Since therapies have increased the life expectancy of lung cancer patients, the development of bone osteolytic metastases is becoming a common cause of morbidity. Osteolysis is caused by an increased osteoclast activity and may be reduced by inhibiting their formation and activity. We studied 60 male patients affected by NSCLC, divided in early and advanced stage disease. Patients' blood and urinary samples were collected at tumor diagnosis and at follow-up. PBMCs were cultured to investigate the spontaneous osteoclastogenesis. IL-7 was dosed in serum and its quantitative gene expression was evaluated on tumor and healthy tissues by RQ-PCR. Both at diagnosis and follow-up, osteolytic bone patients showed high spontaneous osteoclastogenesis level compared to non-bone metastatic and healthy controls. The presence of spontaneous osteoclastogenesis correlated with urinary crosslinks increase. Serum IL-7 levels were higher in bone metastatic patients than in patients without bone lesions and healthy controls. The serum IL-7 increase correlated with the osteoclastogenesis and, at least in part, depended on an increased IL-7 production by tumor cells. At follow-up, patients with increased osteoclastogenesis and serum IL-7 levels, were subjected to standard clinical analysis, which showed early secondary bone lesions. The in vitro assay for spontaneous osteoclastogenesis and serum IL-7 dosage could be useful for diagnostic purposes and it might be able to monitor cancer patients with a high risk to develop osteolytic metastases at follow-up, especially after a curative treatment.
    Lung Cancer 08/2008; 61(1):109-16. · 3.39 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Modulating protein ubiquitination via proteasome inhibition represents a promising target for cancer therapy, because of the higher sensitivity of cancer cells to the cytotoxic effects of proteasome inhibition. Here we show that CEP-18770 is a novel orally-active inhibitor of the chymotrypsin-like activity of the proteasome that down-modulates the nuclear factor-kappaB (NF-kappaB) activity and the expression of several NF-kappaB downstream effectors. CEP-18770 induces apoptotic cell death in multiple myeloma (MM) cell lines and in primary purified CD138-positive explant cultures from untreated and bortezomib-treated MM patients. In vitro, CEP-18770 has a strong antiangiogenic activity and potently represses RANKL-induced osteoclastogenesis. Importantly, CEP-18770 exhibits a favorable cytotoxicity profile toward normal human epithelial cells, bone marrow progenitors, and bone marrow-derived stromal cells. Intravenous and oral administration of CEP-18770 resulted in a more sustained pharmacodynamic inhibition of proteasome activity in tumors relative to normal tissues, complete tumor regression of MM xenografts and improved overall median survival in a systemic model of human MM. Collectively, these findings provide evidence for the utility of CEP-18770 as a novel orally active proteasome inhibitor with a favorable tumor selectivity profile for the treatment of MM and other malignancies responsive to proteasome inhibition.
    Blood 04/2008; 111(5):2765-75. · 9.06 Impact Factor

Publication Stats

884 Citations
196.17 Total Impact Points

Institutions

  • 2000–2013
    • Università degli Studi di Torino
      • Center for Experimental Research and Medical Studies
      Torino, Piedmont, Italy
    • Ospedale Ordine Mauriziano di Torino, Umberto I
      Torino, Piedmont, Italy
  • 2005–2010
    • Ospedale San Giovanni Battista, ACISMOM
      Torino, Piedmont, Italy
  • 2003
    • Institute for Cancer Research and Treatment
      Torino, Piedmont, Italy
  • 1999
    • University of Toronto
      Toronto, Ontario, Canada