J Prados

University of Granada, Granata, Andalusia, Spain

Are you J Prados?

Claim your profile

Publications (114)293.89 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Colorectal cancer is one of the most prevalent cancers in the world. Patients in advanced stages often develop metastases that require chemotherapy and usually show a poor response, have a low survival rate and develop considerable toxicity with adverse symptoms. Gene therapy may act as an adjuvant therapy in attempts to destroy the tumor without affecting normal host tissue. The bacteriophage E gene has demonstrated significant antitumor activity in several cancers, but without any tumor-specific activity. The use of tumor-specific promoters may help to direct the expression of therapeutic genes so they act against specific cancer cells. We used the carcinoembryonic antigen promoter (CEA) to direct E gene expression (pCEA-E) towards colon cancer cells. pCEA-E induced a high cell growth inhibition of human HTC-116 colon adenocarcinoma and mouse MC-38 colon cancer cells in comparison to normal human CCD18co colon cells, which have practically undetectable levels of CEA. In addition, in vivo analyses of mice bearing tumors induced using MC-38 cells showed a significant decrease in tumor volume after pCEA-E treatment and a low level of Ki-67 in relation to untreated tumors. These results suggest that the CEA promoter is an excellent candidate for directing E gene expression specifically toward colon cancer cells.
    International Journal of Molecular Sciences 06/2015; 16(6):12601-12615. DOI:10.3390/ijms160612601 · 2.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nanoplatforms can optimize the efficacy and safety of chemotherapy, and thus cancer therapy. However, new approaches are encouraged in developing new nanomedicines against malignant cells. In this work, a reproducible methodology is described to prepare Δ(9)-tetrahidrocannabinol (Δ(9)-THC)-loaded poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles against lung cancer. The nanoformulation is further improved by surface functionalization with the biodegradable polymers chitosan and poly(ethylene glycol) (PEG) in order to optimize the biological fate and antitumor effect. Mean nanoparticle size (≈290nm) increased upon coating with PEG, CS, and PEG-CS up to ≈590nm, ≈745nm, and ≈790nm, respectively. Surface electrical charge was controlled by the type of polymeric coating onto the PLGA particles. Drug entrapment efficiencies (≈95%) were not affected by any of the polymeric coatings. On the opposite, the characteristic sustained (biphasic) Δ(9)-THC release from the particles can be accelerated or slowed down when using PEG or chitosan, respectively. Blood compatibility studies demonstrated the adequate in vivo safety margin of all of the PLGA-based nanoformulations, while protein adsorption investigations postulated the protective role of PEGylation against opsonization and plasma clearance. Cell viability studies comparing the activity of the nanoformulations against human A-549 and murine LL2 lung adenocarcinoma cells, and human embryo lung fibroblastic MRC-5 cells revealed a statistically significant selective cytotoxic effect toward the lung cancer cell lines. In addition, cytotoxicity assays in A-549 cells demonstrated the more intense anticancer activity of Δ(9)-THC-loaded PEGylated PLGA nanoparticles. These promising results were confirmed by in vivo studies in LL2 lung tumor-bearing immunocompetent C57BL/6 mice. Copyright © 2015. Published by Elsevier B.V.
    International Journal of Pharmaceutics 04/2015; 487(1-2). DOI:10.1016/j.ijpharm.2015.04.054 · 3.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The clinical use of 5-fluorouracil, one of the drugs of choice in colon cancer therapy, is limited by a nonuniform oral absorption, a short plasma half-life, and by the development of drug resistances by malignant cells. We hypothesized that the formulation of biodegradable nanocarriers for the efficient delivery of this antitumor drug may improve its therapeutic effect against advanced or recurrent colon cancer. Hence, we have engineered two 5-fluorouracil-loaded nanoparticulate systems based on the biodegradable polymers poly(butylcyanoacrylate) and poly(ε-caprolactone). Drug incorporation to the nanosystems was accomplished by entrapment (encapsulation/dispersion) within the polymeric network during nanoparticle synthesis, i.e., by anionic polymerization of the monomer and interfacial polymer disposition, respectively. Main factors determining 5-fluorouracil incorporation within the polymeric nanomatrices were investigated. These nanocarriers were characterized by high drug entrapment efficiencies and sustained drug-release profiles. In vitro studies using human and murine colon cancer cell lines demonstrated that both types of nanocarriers significantly increased the antiproliferative effect of the encapsulated drug. In addition, both nanoformulations produced in vivo an intense tumor growth inhibition and increased the mice survival rate, being the greater tumor volume reduction obtained when using the poly(ε-caprolactone)-based formulation. These results suggest that these nanocarriers may improve the antitumor activity of 5-fluorouracil and could be used against advanced or recurrent colon cancer.
    The AAPS Journal 04/2015; DOI:10.1208/s12248-015-9761-5 · 3.91 Impact Factor
  • Annals of Oncology 04/2015; 26(suppl 1):i14-i14. DOI:10.1093/annonc/mdv045.15 · 6.58 Impact Factor
  • Source
    European Journal of Anatomy 04/2015; 11(S1).
  • Source
    European Journal of Anatomy 04/2015; 11(S1).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of doxorubicin (DOX), one of the most effective antitumor molecules in the treatment of metastatic breast cancer, is limited by its low tumor selectivity and its severe side effects. Colloidal carriers based on biodegradable poly(butylcyanoacrylate) nanoparticles (PBCA NPs) may enhance DOX antitumor activity against breast cancer cells, thus allowing a reduction of the effective dose required for antitumor activity and consequently the level of associated toxicity. DOX loading onto PBCA NPs was investigated in this work via both drug entrapment and surface adsorption. Cytotoxicity assays with DOX-loaded NPs were performed in vitro using breast tumor cell lines (MCF-7 human and E0771 mouse cancer cells), and in vivo evaluating antitumor activity in immunocompetent C57BL/6 mice. The entrapment method yielded greater drug loading values and a controlled drug release profile. Neither in vitro nor in vivo cytotoxicity was observed for blank NPs. The 50% inhibitory concentration (IC50) of DOX-loaded PBCA NPs was significantly lower for MCF-7 and E0771 cancer cells (4 and 15 times, respectively) compared with free DOX. Furthermore, DOX-loaded PBCA NPs produced a tumor growth inhibition that was 40% greater than that observed with free DOX, thus reducing DOX toxicity during treatment. These results suggest that DOX-loaded PBCA NPs have great potential for improving the efficacy of DOX therapy against advanced breast cancers.
    International Journal of Nanomedicine 02/2015; 10:1291-306. DOI:10.2147/IJN.S74378 · 4.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The overall survival of patients with pancreatic ductal adenocarcinoma is extremely low. Although gemcitabine is the standard used chemotherapy for this disease, clinical outcomes do not reflect significant improvements, not even when combined with adjuvant treatments. There is an urgent need for prognosis markers to be found. The aim of this study was to analyze the potential value of serum cytokines to find a profile that can predict the clinical outcome in patients with pancreatic cancer and to establish a practical prognosis index that significantly predicts patients’ outcomes. We have conducted an extensive analysis of serum prognosis biomarkers using an antibody array comprising 507 human cytokines. Overall survival was estimated using the Kaplan-Meier method. Univariate and multivariate Cox’s proportional hazard models were used to analyze prognosis factors. To determine the extent that survival could be predicted based on this index, we used the leave-one-out cross-validation model. The multivariate model showed a better performance and it could represent a novel panel of serum cytokines that correlates to poor prognosis in pancreatic cancer. B7-1/CD80, EG-VEGF/PK1, IL-29, NRG1-beta1/HRG1-beta1, and PD-ECGF expressions portend a poor prognosis for patients with pancreatic cancer and these cytokines could represent novel therapeutic targets for this disease.
    BioMed Research International 01/2015; in press(6). DOI:10.1155/2015/518284 · 2.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Advanced colon cancer has a poor prognosis due to the limited effectiveness of current chemotherapies. Treatment failures may be avoided by the utilization of nanoparticles, which can enhance the effects of antitumor drugs, reduce their side effects and increase their directionality. Polystyrene nanoparticles have shown high biocompatibility and appropriate physicochemical properties and may represent a novel and more effective approach against colon cancer. In the present study, polystyrene nanoparticles were synthesized and fluorescently labelled, analyzing their cell internalization, intracellular localization and capacity to release transported molecules in tumour and non-tumour human colon cell lines (T84 and CCD-18). Flow cytometry and fluorescence microscopy studies demonstrated that polystyrene nanoparticles are an effective vehicle for the intracellular delivery of small molecules into colon epithelium cells. The percentage cell uptake was around 100 % in both T84 and CCD-18 cell lines after only 24 h of exposure and was cell confluence-independent. The polystyrene nanoparticles showed no cytotoxicity in either colon cell line. It was found that small molecules can be efficiently delivered into colon cells by using a disulphide bridge as release strategy. Analysis of the influence of the functionalization of the polystyrene nanoparticles surface on the internalization efficiency revealed some morphological changes in these cells. These results demonstrate that polystyrene nanoparticles may improve the transport of biomolecules into colon cells which could have a potential application in chemotherapeutic treatment against colon cancer.
    Journal of Nanoparticle Research 01/2015; 17(1). DOI:10.1007/s11051-014-2814-3 · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy associated with poor survival rates. Fast detection of PDAC appears to be the most relevant strategy to improve the long-term survival of patients. Our objective was to identify new markers in peripheral blood that differentiates between PDAC patients and healthy controls. Peripheral blood samples from PDAC patients (n = 18) and controls (n = 18) were analyzed by whole genome cDNA microarray hybridization. The most relevant genes were validated by quantitative real-time PCR (RT-qPCR) in the same set of samples. Finally, our gene prediction set was tested in a blinded set of new peripheral blood samples (n = 30). Microarray studies identified 87 genes differentially expressed in peripheral blood samples from PDAC patients. Four of these genes were selected for analysis by RT-qPCR, which confirmed the previously observed changes. In our blinded validation study, the combination of CLEC4D and IRAK3 predicted the diagnosis of PDAC with 93 % accuracy, with a sensitivity of 86 % and specificity of 100 %. Peripheral blood gene expression profiling is an useful tool for the diagnosis of PDAC. We present a validated four-gene predictor set (ANKRD22, CLEC4D, VNN1, and IRAK3) that may be useful in PDAC diagnosis.
    Digestive Diseases and Sciences 07/2014; 59(11). DOI:10.1007/s10620-014-3291-3 · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background New biomarkers are needed for the prognosis of advanced colorectal cancer, which remains incurable by conventional treatments. O6-methylguanine DNA methyltransferase (MGMT) methylation and protein expression have been related to colorectal cancer treatment failure and tumor progression. Moreover, the presence in these tumors of cancer stem cells, which are characterized by CD133 expression, has been associated with chemoresistance, radioresistance, metastasis, and local recurrence. The objective of this study was to determine the prognostic value of CD133 and MGMT and their possible interaction in colorectal cancer patients. Methods MGMT and CD133 expression was analyzed by immunohistochemistry in 123 paraffin-embedded colorectal adenocarcinoma samples, obtaining the percentage staining and intensity. MGMT promoter methylation status was obtained by using bisulfite modification and methylation-specific PCR (MSP). These values were correlated with clinical data, including overall survival (OS), disease-free survival (DFS), tumor stage, and differentiation grade. Results Low MGMT expression intensity was significantly correlated with shorter OS and was a prognostic factor independently of treatment and histopathological variables. High percentage of CD133 expression was significantly correlated with shorter DFS but was not an independent factor. Patients with low-intensity MGMT expression and ≥50% CD133 expression had the poorest DFS and OS outcomes. Conclusions Our results support the hypothesis that MGMT expression may be an OS biomarker as useful as tumor stage or differentiation grade and that CD133 expression may be a predictive biomarker of DFS. Thus, MGMT and CD133 may both be useful for determining the prognosis of colorectal cancer patients and to identify those requiring more aggressive adjuvant therapies. Future studies will be necessary to determine its clinical utility.
    BMC Cancer 07/2014; 14(1):511. DOI:10.1186/1471-2407-14-511 · 3.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: Pancreatic ductal adenocarcinoma is a deadly disease because of late diagnosis and chemoresistance. We aimed to find a panel of serum cytokines representing diagnostic and predictive biomarkers for pancreatic cancer. Methods: A cytokine antibody array was performed to simultaneously identify 507 cytokines in sera of patients with pancreatic cancer and healthy controls. The nonparametric Mann-Whitney U test was used to pairwise compare the controls, the pretreated patients, and the posttreated patients. Fold changes greater than or equal to 1.5 or less than or equal to 1/1.5 were considered significant. Receiver operating characteristic curves were used to assess the performance of the model. A leave-one-out cross-validation was used for estimating prediction error. Results: Comparing the sera of pretreated patients against the control samples, the cytokines fibroblast growth factor 10 (FGF-10/keratinocyte growth factor-2 (KGF-2), chemokine (C-X-C motif) ligand 11 interferon inducible T cell alpha chemokine (I-TAC)/chemokine [C-X-C motif] ligand 11 (CXCL11), oncostatin M (OSM), osteoactivin/glycoprotein nonmetastatic melanoma protein B, and stem cell factor (SCF) were found significantly overexpressed. Besides, the cytokines CD30 ligand/tumor necrosis factor superfamily, member 8 (TNFSF8), chordin-like 2, FGF-10/KGF-2, growth/differentiation factor 15, I-TAC/CXCL11, OSM, and SCF were differentially expressed in response to treatment. Conclusions: We propose a role for FGF-10/KGF-2, I-TAC/CXCL11, OSM, osteoactivin/glycoprotein nonmetastatic melanoma protein B, and SCF as novel diagnostic biomarkers. CD30 ligand/TNFSF8, chordin-like 2, FGF-10/KGF-2, growth/differentiation factor 15, I-TAC/CXCL11, OSM, and SCF might represent as predictive biomarkers for gemcitabine and erlotinib response of patients with pancreatic cancer.
    Pancreas 06/2014; 43(7). DOI:10.1097/MPA.0000000000000155 · 3.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cancer stem cell (CSC) hypothesis on the origin of cancer has recently gained considerable support. CSCs are tumour cells with the capacity for self-renewal and differentiation that direct the origin and progression of the disease and may be responsible for relapse, metastasis and treatment failures. CSCs are identified and isolated by using membrane and cell activity markers; in the case of breast cancer CSCs (BCSCs), these are CD44(+) /CD24(low/-) and show aldehyde dehydrogenase activity, alongside their capacity to grow and form mammospheres. The presence of stem cell properties is associated with a worse outcome. Hence, these cells have important clinical implications, and elucidation of the mechanisms underlying their activity will allow the development of novel effective therapies and diagnostic instruments, improving the prognosis of these patients. Standard treatments are directed against the tumour mass and do not eliminate CSCs. There is therefore a need for specific anti-CSC therapies, and numerous authors are investigating new targets to this end, as reported in this review. It is also necessary for clinical trials to be undertaken to allow this new knowledge to be applied in the clinical setting. However, there have been few trials on anti-BSCSC therapies to date. This article is protected by copyright. All rights reserved.
    European Journal of Clinical Investigation 04/2014; 44(7). DOI:10.1111/eci.12276 · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This article describes the antitumor properties of a new family of merosesquiterpenes, which were synthesized by Diels-Alder cycloaddition of the labdane diene trans-communic acid, highly abundant in Cupressus sempervirens, or its methyl ester, with the appropriate dienophile. These compounds demonstrated potent cytotoxic activity in vitro against human breast, colon, and lung tumor cells. We highlight the elevated activity (IC50: 0.35 ± 0.10 μM) and specificity (TI: 9) of compound 13 against the MCF-7 line, which corresponds to the most prevalent breast cancer cell subtype, luminal A. It was found that compound 13 exerts its anti-tumor action by inducing oxidative stress, arresting the cell cycle in stages G0-G1, and activating apoptosis, which are all associated with low cyclin D1 regulation, pRb hypophosphorylation, increased expression of p27 and p53, and poly (ADP-ribose) polymerase (PARP) fractioning. Epithelial-mesenchymal transition, a phenomenon associated with metastasis promotion and a worsened prognosis also appeared to be inhibited by compound 13. In addition, it markedly reduced tumor development in immunocompetent C57BL/6 mice with allografts of E0771 mouse breast tumor cells (luminal A subtype). According to these findings, this new family of compounds, especially compound 13, may be highly useful in the treatment of human breast cancer.
    European Journal of Medicinal Chemistry 03/2014; 79C:1-12. DOI:10.1016/j.ejmech.2014.03.071 · 3.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our aim was to evaluate the impact of anatomy as a multidisciplinary area and to identify trends in research by anatomists over time. Data from three main sources were analyzed: SCImago Journal & Country Rank (SJR), using the number of total documents as indicator; MEDLINE (PubMed) database (1898 through October 2012), using the keyword “anatomy” in the “affiliation” field; and the Journal Citation Report (JCR), gathering impact factor and quartile data. The number of publications by anatomists increased between 1898 and 1941, followed by a reduction until 1961 and then by a marked rise to reach 36,686 between 2002 and 2012. After 1941, anatomists began to publish in journals from JCR categories other than “Anatomy & Morphology”, especially after 1962. Between 2007 and 2012, only 22.23 % of articles by anatomists in JCR-indexed journals were in the “Anatomy & Morphology” area and 77.77 % in journals from other categories; 58 % of their articles were in journals in the first and second quartiles. The contribution of anatomists to scientific knowledge is high quality and considerably greater than indicated by the SJR database. This input is especially relevant in the Neurosciences, Cell Biology, and Biology categories. In addition, more than two-thirds of manuscripts by anatomists appear in JCR-ranked publications, and more than half in the top two quartiles of the impact factor ranking. Our results show that the scientific production of anatomists has improved the quantity and quality of multi-disciplinary scientific activity in different knowledge areas.
    Scientometrics 01/2014; 98(1). DOI:10.1007/s11192-013-1006-8 · 2.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulation of hematopoietic stem cell release, migration, and homing from the bone marrow (BM) and of the mobilization pathway involves a complex interaction among adhesion molecules, cytokines, proteolytic enzymes, stromal cells, and hematopoietic cells. The identification of new mechanisms that regulate the trafficking of hematopoietic stem/progenitor cells (HSPCs) cells has important implications, not only for hematopoietic transplantation but also for cell therapies in regenerative medicine for patients with acute myocardial infarction, spinal cord injury, and stroke, among others. This paper reviews the regulation mechanisms underlying the homing and mobilization of BM hematopoietic stem/progenitor cells, investigating the following issues: (a) the role of different factors, such as stromal cell derived factor-1 (SDF-1), granulocyte colony-stimulating factor (G-CSF), and vascular cell adhesion molecule-1 (VCAM-1), among other ligands; (b) the stem cell count in peripheral blood and BM and influential factors; (c) the therapeutic utilization of this phenomenon in lesions in different tissues, examining the agents involved in HSPCs mobilization, such as the different forms of G-CSF, plerixafor, and natalizumab; and (d) the effects of this mobilization on BM-derived stem/progenitor cells in clinical trials of patients with different diseases.
    BioMed Research International 06/2013; 2013:312656. DOI:10.1155/2013/312656 · 2.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gastrointestinal cancers remain one of the main causes of death in developed countries. The main obstacles to combating these diseases are the limitations of current diagnostic techniques and the low stability, availability, and/or specificity of pharmacological treatment. In recent years, nanotechnology has revolutionized many fields of medicine, including oncology. The association of chemotherapeutic agents with nanoparticles offers improvement in the solubility and stability of antitumor agents, avoidance of drug degradation, and reductions in therapeutic dose and toxicity, increasing drug levels in tumor tissue and decreasing them in healthy tissue. The use of specific molecules that drive nanoparticles to the tumor tissue represents a major advance in therapeutic specificity. In addition, the use of nanotechnology in contrast agents has yielded improvements in the diagnosis and the follow-up of tumors. These nanotechnologies have all been applied in gastrointestinal cancer treatment, first in vitro, and subsequently in vivo, with promising results reported in some clinical trials. A large number of patents have been generated by nanotechnology research over recent years. The objective of this paper is to review patents on the clinical use of nanoparticles for gastrointestinal cancer diagnosis and therapy and to offer an overview of the impact of nanotechnology on the management of this disease.
    05/2013; 9.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Colorectal cancer is the third most common cancer in both men and women and has shown a progressive increase over the past 20 years. Current chemotherapy has major limitations, and a novel therapeutic approach is required. Given that neoplastic transformation of colon epithelial cells is a consequence of genetic and epigenetic alterations, RNA interference (RNAi) has been proposed as a new therapeutic strategy that offers important advantages over conventional treatments, with high specificity and potency and low toxicity. RNAi has been employed as an effective tool to study the function of genes, preventing their expression and leading to the development of new approaches to cancer treatment. In malignancies, including colon cancer, RNAi is being used for "silencing" genes that are deregulated by different processes such as gene amplification, mutation, or overexpression and may be the cause of oncogenesis. This strategy not only provides information on the involvement of certain genes in colon cancer, but also opens up a new perspective for its treatment. However, most studies have used adenovirus or lentivirus vectors to transport RNAi into tumor cells or tumors in animal models, because several technical obstacles must be overcome before RNAi can be used in the clinical setting. The aim of this study was to review current knowledge on the use of RNAi techniques in the treatment of colon cancer.
    BioDrugs 04/2013; DOI:10.1007/s40259-013-0019-4 · 2.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The number of patients with colorectal cancer, the third most frequently diagnosed malignancy in the world, has increased markedly over the past 20 years and will continue to increase in the future. Despite recent advances in chemotherapy, currently used anticancer molecules are unable to improve the prognosis of advanced or recurrent colorectal cancer, which remains incurable. The transport of classical drugs by nanoparticles has shown great promise in terms of improving drug distribution and bioavailability, increasing tissue half-life and concentrating anticancer molecules in the tumor mass, providing optimal drug delivery to tumor tissue, and minimizing drug toxicity, including those effects associated with pharmaceutical excipients. In addition, colon cancer targeting may be improved by incorporating ligands for tumor-specific surface receptors. Similarly, nanoparticles may interact with key drug-resistance molecules to prevent a reduction in intracellular drug levels drug. Recently published data have provided convincing pre-clinical evidence regarding the potential of active-targeted nanotherapeutics in colon cancer therapy, although, unfortunately, only a few of these therapies have translated into early-phase clinical trials. As nanotechnology promises to be a new strategy for improving the prognosis of colon cancer patients, it would be very useful to analyze recent progress in this field of research. This review discusses the current status of nanoparticle-mediated cancer-drug delivery, the challenges restricting its application, and the potential implications of its use in colon cancer therapy.
    Anti-cancer agents in medicinal chemistry 03/2013; DOI:10.2174/18715206113139990325 · 2.94 Impact Factor

Publication Stats

589 Citations
293.89 Total Impact Points

Institutions

  • 1991–2015
    • University of Granada
      • • Faculty of Medicine
      • • Department of Medicine
      • • Instituto de Biopatología y Medicina Regenerativa (IBIMER)
      • • Department of Anatomy and Embryology
      Granata, Andalusia, Spain
  • 1999–2011
    • Universidad de Jaén
      • • Department of Health Sciences
      • • Department of Experimental Biology
      Jaén, Andalusia, Spain
  • 1995–2002
    • Universidad de Almería
      Unci, Andalusia, Spain